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Abstract: The recent spread of low-cost and high-quality RGB-D and infrared sensors has supported
the development of Natural User Interfaces (NUIs) in which the interaction is carried without the
use of physical devices such as keyboards and mouse. In this paper, we propose a NUI based on
dynamic hand gestures, acquired with RGB, depth and infrared sensors. The system is developed for
the challenging automotive context, aiming at reducing the driver’s distraction during the driving
activity. Specifically, the proposed framework is based on a multimodal combination of Convolutional
Neural Networks whose input is represented by depth and infrared images, achieving a good level
of light invariance, a key element in vision-based in-car systems. We test our system on a recent
multimodal dataset collected in a realistic automotive setting, placing the sensors in an innovative
point of view, i.e., in the tunnel console looking upwards. The dataset consists of a great amount of
labelled frames containing 12 dynamic gestures performed by multiple subjects, making it suitable
for deep learning-based approaches. In addition, we test the system on a different well-known public
dataset, created for the interaction between the driver and the car. Experimental results on both
datasets reveal the efficacy and the real-time performance of the proposed method.

Keywords: hand gesture recognition; natural user interfaces; depth maps; infrared images;
computer vision; deep learning; automotive

1. Introduction

The recent spread of cheap but high-quality RGB-D sensors, such as the Microsoft Kinect
(https:/ /developer.microsoft.com/en-us/windows/kinect), the pmdtec devices (https://pmdtec.
com/picofamily/) and the Intel RealSense family (https://www.intelrealsense.com), has supported
the development of Natural User Interfaces (NUIs). These interfaces allow us to set up a body-driven
interaction, i.e., the human-computer interaction is provided by means of a contactless body
capture (for instance, in terms of gestures [1] or voice [2]) in place of standard physical devices,
e.g., the keyboard. In the last decade, they have gathered increasing attention of the researchers in the
computer vision community [3-5].)

Among different solutions for the acquisition of 3D data, the usage of low-cost active depth,
RGB-D or stereo infrared sensors [1,6-9], which are usually coupled with an infrared emitter and easily
allow the acquisition of 2.5D data, has overcome other expensive and cumbersome 3D acquisition
devices, such as Lidar and 3D scanners.
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In this paper, we propose an NUI system based on hand gestures for the automotive context,
in order to improve the ease and the speed of the interaction between the driver and the car. Specifically,
we propose to use the NUI paradigm, aiming at reducing the driver inattention: since these interfaces
are extremely user-friendly and intuitive [4], then they can increase the amount of the time in which
the driver is focused on the driving activity, i.e., driver’s hands are on, or next to, the steering wheel
and the driver’s eyes are looking to the road.

It is proved that distraction is one of the most crucial causes in fatal road crashes [10,11] and the
presence of new technologies, like smartphones and tablets, has increased the distraction caused
by secondary tasks during the driving activity (for instance, reading messages or texting) [12].
The American National Highway Traffic Safety Administration (https://www.nhtsa.gov) (NHTSA)
defines the driver distraction as “an activity that could divert a person’s attention away from the
primary task of driving”, and literature works [13,14] usually distinguish among three types of
driver distraction.

The visual distraction is the first type and it is defined as not looking at the road. This is
often caused by an incorrect use of a smartphone or the infotainment system during the driving.
Several works [15,16] reveal that driver’s inspection patterns on the forward view are strongly
influenced by visual (and cognitive) distraction.

Another type of distraction is the manual distraction, which corresponds to the situation when
the driver’s hands are not on the steering wheel for a prolonged amount of time. This causes a lower
reaction time and less capacity to avoid dangers. This type of distraction is often related to the previous
one [17].

The last type of distraction is the cognitive distraction which corresponds to a driver whose
attention is not directed to the driving activity. It is often caused by external factors, such as heavy
cognitive load, bad physical conditions, or fatigue [18].

In this paper, we propose a system that aims to reduce the visual and manual distractions. Indeed,
if drivers can interact with the car by performing dynamic gestures, they can be more focused on the
driving activity, in terms of gaze direction and hands on the steering wheel [19], improving the road
traffic safety.

However, developing a vision-based interaction system for the automotive context is challenging.

First of all, the system is required to be light invariant: the system reliability in presence of severe
light changes (due to, for instance, tunnels, bad weather conditions, nighttime driving) and the ability
to work without external light sources must be guaranteed. To this end, we investigate the use of a
multimodal system based on the acquisition of active (i.e., employing an infrared emitter) infrared
and depth sensors. This choice guarantees the acquisition of high-quality 2.5D data which does not
depend on external light sources.

Moreover, the system must ensure real-time speed, in order to quickly detect the dynamic gesture
and promptly provide a feedback to the user. In this regard, we propose the usage of acquisition
devices with a high frame rate (from 10 up to 200 fps) and of fast deep learning-based algorithms that
can assure real-time performance.

Finally, the system should not hinder the movements and the gaze of the driver for safety reasons.
Thus, acquisition devices and embedded boards must have a limited form factor in order to be
effectively integrated into the car cockpit. This is easily fulfilled by recent active infrared and depth
sensors which are available on the market and have limited dimensions and weight.

Therefore, considering the aforementioned elements, in this paper:

e  We propose a deep learning-based framework for the dynamic hand gesture recognition task.
In particular, we follow the Natural User Interface paradigm: in this way, a driver could use hand
gestures to safely interact with the infotainment system of the car.

o  We extend the preliminary work proposed in [20]. Specifically, in this paper we investigate the
use of multimodal data with the focus on light-invariant data (i.e., depth and infrared images).
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e  We propose and analyze the use of a multimodal deep learning-based architectures, as shown in
Figure 1. Moreover, we conduct extensive tests about the use of several input data types (single,
double and triple) and different training procedures.

o  We test the proposed method on two public datasets, namely Briareo [20] and Nvidia Dynamic
Hand Gesture [21] (here also referred as NVGestures). Results in terms of accuracy and confusion
matrices confirm the high level of accuracy achieved, enabling the implementation of real-world
human-—car interaction application. We also report the computational performance.

The rest of the paper is organized as follows. In Section 2, we present the related work and
datasets about the gesture recognition task focusing on the automotive setting. Then, in Section 3 we
present and detail the proposed method. In particular, we detail the model architecture (Section 3.1)
and the training procedure (Section 3.2) and present an investigation of multimodal fusion (Section 3.3).
The exploited datasets and the experimental results are reported in Section 4, structured in dataset
presentation, overall accuracy and comparison with the literature, analysis on the multimodal fusion,
and speed performance analysis. Section 5 draws the final conclusions of the work.

{ i 1 " :
- - ~[0--

Infrared

De =h

w De~= D

Average Predicted
hrg > —
Score Class

_fi_l

[Pool 7 x 7] [Pool 7 x 7] [Pool 7 x 7]

|Conv7><7||Conv7><7||Conv7><7|

Pool 2 x 2

—
X
—
>
o
o
o

Conv3x3
Convixi

Convi1x1

D Transition

D Dense Block

Figure 1. Overview of the proposed multimodal architecture using a triple input (infrared, RGB and
depth streams). Each branch is composed of a modified version of the DenseNet-161 [22] architecture,
which combines a sequence of dense and transition blocks. The input is a stream of images from
different modalities and the predictions of the three networks are combined with a late-fusion approach

to obtain the predicted gesture.

2. Related Work

In the first part of this Section, we analyze methods available in the literature, focusing on works
that use input data acquired through RGB-D sensors. In the last part, an investigation on publicly
released datasets in the literature is conducted.

2.1. Methods

In recent years, the gesture classification or recognition task has been discussed frequently in the
literature. From a general point of view, this task can be divided into two groups: non-vision based
recognition, i.e., methods based on contact-based devices (e.g., gloves [23] and electronic bracelet [24])
and vision-based recognition, i.e., methods that rely on images or videos acquired by cameras.

In this paper, we focus our analysis on the second group which has drawn a continuous research
interest in the last decade. In this context, one of the main challenges is to solve this task in a real-world
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setting, in which occlusions and varying lighting conditions are usually present. In this way, the use
of multimodal methods—which exploit data acquired by different sensors—and deep convolutional
neural network has taken a step forward to obtaining great results, even though many methods based
on machine learning techniques, such as Hidden Markov Models (HMM) [25] or Support Vector
Machines (SVM) [26], have been widely used [8,27].

A 3D Convolutional Neural Network (3D-CNN) [28] is used in [29] to tackle this task.
The 3D-CNN is based on the key aspects of standard Convolutional Neural Networks (CNNs) [30],
but it is oriented to extract features from temporal sequences. Indeed, the 3D-CNN receives as input a
single gesture sequence, then the extracted local spatial-temporal features are processed by a Recurrent
Neural Network (RNN) [31] that outputs the final classification. We use this method, the winner of
the competition on the VIVA challenge dataset [32], as main competitor. We note that, as reported by
the authors, the use of a 3D-CNN and a RNN is demanding in terms of the amount of training data
and procedure.

Taking inspiration from the same 3D architecture, Miao et al. [33] introduce a large-scale
video-based gesture recognition technique, which considers both RGB and depth data. The extracted
spatio-temporal features are then fed into a linear SVM classifier to obtain the final recognition output,
however, showing a lower accuracy.

Since dynamic gestures are performed through time, the recognition task can be also approached
using a Long-Short Term Memory (LSTM) [34] architecture such as the work presented in [20] in which
the authors exploit information extracted by a Leap Motion controller (https://developer.leapmotion.
com) and create different types of features that represent several hand motion characteristics.
In addition, they investigate the use of a 3D-CNN on several data types, i.e., RGB, depth and infrared
images. In [9] a Leap Motion controller is used to develop an interaction system based on a LSTM
network; the system is oriented to the interaction for a CAD software. A Long Short-Term Memory
(LSTM) and Gate Recurrent Unit (GRU) [35] are exploited, and the final classification is performed with
a fully-connected layer. We observe that both these methods rely on data provided by the proprietary
SDK of the Leap Motion controller.

2.2. Dataset for Hand Gesture Classification

Along with vision-based methods detailed in the previous Section, many datasets have been
publicly released. In particular, we focus on multimodal datasets [8,20,21,32] in which the subjects are
recorded by different acquisition sensors while performing a set of gesture classes created for different
tasks. We report a list of these datasets in Table 1, showing, in particular, the number of subjects
involved in the acquisition process, the number of gesture classes, if gestures are dynamic or static and
the availability of 3D hand joints, and RGB, depth and infrared images.

Table 1. A list of datasets commonly used for hand gesture classification task. We report the number
(#) of subjects involved and the gestures, taking into consideration also the presence of dynamism and
3D hand joints (3DJoints). Furthermore, we include also the types of the collected data: RGB images,
depth maps (from both Structured Light (SL) and Time-of-Flight (ToF) devices) and infrared images.

Dataset Year # Subjects # Gestures Dynamic 3DJoints RGB Depth Infrared
Unipd [8] 2014 14 10 v v SL

VIVA [32] 2014 8 19 v v SL v
Nvidia [21] 2015 20 25 v v SL v
LMDHG [36] 2017 21 13 v v v
Turms [19] 2018 7 - v v
CADGestures [9] 2019 30 8 v v v
Briareo [20] 2019 40 12 4 v v ToF 4

Some of these datasets collect samples for hand gesture analysis for a particular language or
environment; for example, the Chalearn dataset [37] contains a high number of subjects and samples,
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but it is specific for the Italian Sign Language and it is acquired in indoor scenarios. On the automotive
setting the Turms dataset [19] reproduces a real automotive context, but it is focused on driver’s hand
detection and tracking without gestures annotations. Authors from [8] present one of the first attempts
to improve the hand gestures recognition task using other types of data instead of RGB images or
videos. Therefore, they propose a dataset with depth maps and 3D hand joints information, acquired by
the first version of Microsoft Kinect and a Leap Motion device. The dataset contains the recordings of
14 people performing 10 different types of static gestures which are repeated 10 times each. Similarly
to Chalearn, it was collected in an indoor environment, with the acquisition devices placed in front
of the subjects-and it is specific for the American Sign Language. Therefore, these datasets are not
suitable for our experimental evaluation.

The VIVA Hand Gestures [32] dataset is acquired in an automotive setting, during real driving
situations, and it has been released for the challenge organized by the Laboratory for Intelligent and
Safe Automobiles (LISA). Frequent occlusions and variable external light sources make this dataset
challenging. Gestures are acquired through the first version of the Microsoft Kinect device, a Structured
Light device able to acquire both RGB and depth data. The 19 classes of gestures are performed by
eight subjects. Each gesture is repeated two times, once from the driver’s point of view and once from
the passenger’s one. Unfortunately, this dataset, even though collected during the driving activity,
lacks in realism due to the presence of a flat green surface placed on the infotainment area on which
gestures are performed.

The Leap Motion Dynamic Hand Gesture (LMDHG) dataset [36] collects unsegmented dynamic
gestures, executed by either one or two hands. It consists of 3D coordinates of 23 hand joints,
collected through the public SDK of the Leap Motion controller. The 13 types of gestures are performed
by 21 people. A total of 50 sequences were released, including the no-gesture class.

In the CADGestures dataset [9] gestures are encoded in an 18-dimensional vector exploiting the
3D joints of fingers, palm and arm, which enable the computation of significant angles and translation
values. Using their dominant hand, 30 performed a gesture from a set of 8 classes twice, obtaining a
total of 480 gestures.

The largest dataset in terms of the number of gestures is the Nvidia Dynamic Hand Gesture
dataset [21]; composed of recordings from multiple sensors, i.e., the SoftKinetic DS325 and the DUO
3D stereo camera, placed in frontal and top positions with the respect of the driver, respectively.
This dataset contains 25 classes of gestures performed by 20 different subjects with the right hand
while the left one handles the steering wheel. Each gesture is repeated three times and acquired in
5 s video samples. Several types of data are available, such as RGB, optical flow, infrared and depth
images. We select this challenging dataset for our experimental evaluation, in addition to the Briareo
dataset [20].

The Briareo dataset consists in data collected in a car cockpit, placing the acquisition devices in the
tunnel console between the driver and the passenger, looking upwards toward the car ceiling. Due to
this position, sensors can be easily integrated and gestures can be performed near the steering wheel.

These two datasets are further detailed in Section 4.1.

3. Proposed Method

In this Section, we present and detail the proposed method. Specifically, we describe the
architecture of the model and its training procedure. Then, we introduce the multimodal fusion
technique and the corresponding multimodal architecture.

An overview of the proposed multimodal method is shown in Figure 1.

3.1. Model

In this Section, we describe the proposed deep learning approach for the dynamic hand gesture
recognition task. Our model is based on DenseNet [22], a deep convolutional network which adds
connections between each layer block and all following blocks.
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In particular, we modify the DenseNet-161 architecture in order to take as input sequence clips of
40 frames, which are sufficient to contain the most relevant movements of a gesture and to predict
a probability distribution over the C gestures of the specific dataset. To this end, we replace the first
convolutional layer with another one that matches the 40-frame input tensor. In addition, we modify
the last fully-connected layer (followed by a softmax layer) to predict a distribution over C output
classes. With this straightforward modification, we can predict an entire gesture with an efficient and
effective network which does not require heavy recurrent modules or 3D convolutions while obtaining
remarkable results, as shown in Section 4.2.

Considering the input data type, we adapt the number of input channels accordingly to the
channel of the single frames. That is, we used 40 x 3 input channels for the RGB frames and 40 x 1 for
the infrared and the depth frames. The input resolution is unchanged and thus set to 224 x 224 pixels.

A detailed definition of the proposed model is reported in Table 2. The first and second columns
contain the name of the block and its definition in terms of layers and repetitions; the third and fourth
columns contain the input size and the output size for each block.

A visual representation of this architecture is shown in Figure 1 (in the multimodal configuration
presented in Section 3.3).

Table 2. Architectural details of the proposed model. It is derived from DenseNet-161 [22] to take
sequence clips of 40 frames as input and to predict a distribution over C gestures.

Block Definition Input Size Output Size
rgb: 120 x 224 x 224
Convolution 7 X 7 conv, stride 2 infrared: 40 x 224 x 224 96 x 112 x 112

depth: 40 x 224 x 224

Pooling 3 x 3 max pool, stride 2 96 x 112 x 112 96 x 56 x 56
1x1
Dense Block (1) ARG VI 96 x 56 x 56 384 x 56 x 56
3 x 3 conv
" 1 x 1 conv
Transition Block (1) 2 x 2 avg pool, stride 2 384 x 56 x 56 192 x 28 x 28
Dense Block (2) Lxdeonv) ) 192 x 28 x 28 768 x 28 x 28
3 x 3 conv
" 1 x 1 conv
Transition Block (2) 2 x 2 avg pool, stride 2 768 x 28 x 28 384 x 14 x 14
Dense Block (3) Lxdeonv) o 384 x 14 x 14 2112 x 14 x 14
3 x 3 conv
" 1 x 1 conv
Transition Block (3) 2 x 2 avg pool, stride 2 2112 x 14 x 14 1056 x 7 x 7
Dense Block (4) LxLeonvi )y 1056 x 7 x 7 2208 x 7 x 7
3 x 3 conv
Pooling 7 x 7 global avg pool 2208 x 7 x 7 2208 x 1 x 1
Classification C-class fully connected 2208 C

softmax

3.2. Training

In the experiments, the network is not trained from scratch. On the contrary, it is initialized with
the weights pre-trained on the ImageNet dataset [38] provided by the PyTorch library [39].

These initial weights are then fine-tuned on the training set of the selected dataset (presented
in Section 4.1) through Stochastic Gradient Descent (SGD) [40,41] with momentum [42] set to 0.5 for
Briareo, and through Adam [43] with weight decay 1 x 10~ for NVGestures. The model is trained for
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50 epochs. The network is optimized by minimizing the Categorical Cross-Entropy (CCE) [44] loss,
defined as

N C

Lece = — ZZ(%’,C log(pic)), @

F
where N is the number of samples in the mini-batch, C is the number of classes, y; . is 1 if the class c is
the ground truth class of the sample i and 0 otherwise. Finally, p; . is the predicted class distribution
over the C classes for the i-th sample. We set a learning rate of 1 x 10~2 for Briareo, 1 x 10~* for Adam,
and a batch size of 8 clips.

Input data is augmented at run-time through random flip and random crop (to the input
resolution) with a probability of 0.5. Since there is variability in the execution time between different
gestures and between the execution of the same gesture computed by different subjects, we extract 40
contiguous frames from the center of each recording session for training and testing the network.

We point out that this is not a limitation, since the same cut can be done in a real-world application
by detecting the hand in the field of view of the camera. A trivial, but effective way to detect
it is a simple threshold on the average value of the depth map: if a hand is over the cameras,
the average depth distance is different and this decrease/increase can be used as beginning and
ending of the sequence.

Input frames are normalized to have, on average, 0 mean and unit variance by subtracting the
average pixel value of the training set and dividing by its standard deviation.

3.3. Multimodal Fusion

In literature, many works show that deep learning architectures can benefit from multimodal
fusion (e.g., [27,45-47] among others). However, a general and effective fusion strategy is still not be
found, while it has been shown that the best fusion scheme is often task and dataset dependent [48].

Among different possible configurations, we have selected the late fusion strategy, also called
decision-level fusion, to combine the different data types available in the selected datasets. In details,
we train a different unimodal network for each available data type, as described in the previous
Sections. Then, during testing, the unimodal networks are fed with synchronized data from different
modalities and their predictions are combined with an average layer to obtain the final estimation.

We show the proposed multimodal architecture in Figure 1. It is composed of multiple branches
where each branch corresponds to the unimodal model presented in Section 3.1. It takes a clip of 40
frames in a different modality and predicts a probability distribution over C classes. Then, the single
predictions are averaged to obtain the final predicted gesture.

In the following section, we show that this setting is the most suitable for the gesture recognition
task with the proposed deep architecture. Moreover, we compare different combinations of input data
and different training strategies and analyze the computational cost of the proposed method.

4. Experimental Evaluation

In this Section, we firstly described the datasets on which the proposed model is trained. Then,
we evaluate through experiments the unimodal and multimodal architectures for the proposed system
for in-car dynamic gesture recognition.

In detail, we present the datasets Briareo [20] and NVGestures [21] and analyze the performance
of the single-modality networks and their combination with the late-fusion approach presented in
Section 3.3. Then, we report the results obtained on the two datasets and compare them to other
literature approaches. Finally, we report a comparison of different fusion and training schemes
for the Briareo dataset and an analysis of the computational requirements and performance of the
proposed architecture.
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4.1. Datasets

4.1.1. Briareo Dataset

This dataset has been presented in [20] and it has been acquired placing the acquisition devices
in an innovative point of view, i.e., in the central tunnel between the driver and the passenger seats.
This particular position has been selected, aiming to: (i) reduce the visual occlusions that can be
generated by the driver or passengers movements; (ii) facilitate the integration of the acquisition
devices in the car cockpit; (iii) protect the infrared sensors from the direct sunlight that could critically
compromise the operation of this kind of sensors.

From a technical point of view, the dataset has been acquired through three different cameras:

e  Pico Flexx (https://pmdtec.com/picofamily/flexx): this is a Time-of-Flight (ToF) depth sensor.
As reported in [49], ToF devices assure a better quality with the respect of Structured Light (SL)
depth sensors, for instance, reducing the presence of visual artifacts (visually represented as black
pixels or missing values). It has a spatial resolution of 224 x 171 pixels, acquiring 16-bit depth
images. This sensor is suitable for the automotive context due to its very limited form factor (only
68 x 17 x 7.35 mm) and weight (8 g), making it easy to be integrated in a car cockpit. Moreover,
the acquisition range allows to perform gesture next to the device, a crucial element in an indoor
environment like a car. In particular, there are two possible depth resolutions and two possible
ranges: 0.5-4 m and 0.1-1 m. During the acquisition, the second one is used. The frame rate for
the acquisition is set to 45 frame per seconds.

e Leap Motion (https://www.leapmotion.com): an infrared stereo camera specifically designed
for the human—computer interaction. It is suitable for the automotive context due to the high
frame rate (up to 200 frame per seconds) and limited size (70 x 12 X 3 mm) and weight (32 g).
In addition, the presence of two cameras with a good spatial resolution (640 x 240) is remarkable.
A fish-eye lens guarantees a proper acquisition range for in-car applications. These sensors are
equipped with a proprietary SDK able to detect the 3D location of hand joints, together with the
bone lengths and their orientations, with real-time performance.

Sample frames of the dataset captured with the two acquisition devices are shown in Figure 2.
The frames acquired with the RGB camera and with the Pico Flexx device are reported in the first three
rows, while the acquisition of the right camera of the Leap Motion sensor is reported in the last one.

The Briareo dataset contains the following 12 dynamic gestures, visually represented in Figure 3:

Fist

Pinch

Flip

Phone

Right swipe

Left swipe
Top-down swipe
Bottom-up swipe
Thumb up

Point

Clockwise rotation
Counterclockwise rotation

All the gestures were oriented to the interaction between the driver and a hypothetical
infotainment system. Some of them are directly related to common actions that can be
performed during the driving activity, such as making a phone call (“phone”) or skipping a song
(“right/left swipe”).

Gestures were performed by 40 subjects (33 males and 7 females) and each subject repeats the
gesture 3 times, for a total of 120 collected sequences. Each sequence lasted for at least 40 frames.


https://pmdtec.com/picofamily/flexx
https://www.leapmotion.com

Informatics 2020, 7, 31 9of 16

An additional sequence was then added containing all gestures performed sequentially without
interruptions. All the acquisition devices were synchronized.

Figure 2. Sample of multimodal data included in the Briareo dataset [20]. The first row contains RGB
frames, the second contains Infrared (IR) frames, while the third contains depth maps. The last row
reports the rectified frame of the infrared stereo camera (right view). As shown, RGB frames suffer
the lack of an additional light source, while infrared and depth data clearly collect the driver’s hand.
Frames are sampled from the gesture “clockwise rotation”.
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Figure 3. Dynamic gesture classes contained in the Briareo dataset. All gestures are designed for the

Thumb

C
Rotation
ccw
Rotation

interaction between an user, i.e., the driver, and a traditional infotainment system, in which it is possible
for instance skipping song (“right/left swipes”) or make a phone call (“phone”). Here, frames are
taken from the infrared domain. Image taken from [20].

4.1.2. Nvidia Dynamic Hand Gesture dataset

As mentioned above, we tested our system also on the Nvidia Dynamic Hand Gesture dataset [21],
referred as NVGestures in the following. The setting was an indoor car simulator with the recording
devices placed frontally and top-mounted with respect to the driver position. Specifically, we collected
the experimental results on all 25 dynamic gestures contained in this dataset, such as showing “thumb
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up” or “OK”, moving either the hand or two fingers up, down, left or right, showing the index
finger, or two or three fingers, clicking with the index finger, beckoning, opening or shaking the
hand, pushing the hand up, down, out or in, rotating two fingers clockwise or counter-clockwise,
pushing two fingers forward, closing the hand twice. For further details about this dataset, please see
Section 2 or refer to the original paper [21].

4.2. Experimental Results

In Table 3 we analyzed the different contributions of the input data types to the overall accuracy
on the Briareo dataset. In particular, we tested the system with a single input, represented by the
individual use of RGB, infrared or depth images, with the combination of two inputs and using all
the available modalities. From the single input case, it is possible to note that the network trained
on RGB data achieved the worst results. Indeed, as shown in Figure 2, intensity frames suffered the
lack of external light sources: the hand appears dark and several details about hand pose and fingers
were not visible. Furthermore, when it was used in combination with other inputs, the RGB data
negatively affected the combined accuracy. Nevertheless, RGB-based model still achieved a good
level of accuracy. Higher results were obtained when using infrared or depth data. In fact, both of
them relied on external light sources which resulted in clear IR and depth frames, overcoming the
brightness issue of the RGB data. Moreover, depth maps, encoding the 2.5D content of the hand
pose, were more discriminative with respect to other data types and provide the highest accuracy in
the single-input setting. Finally, the combined usage of infrared and depth data led to the highest
accuracy. That is, depth maps and infrared images represented the best combination in terms of overall
accuracy: these experimental results showed the effectiveness of the proposed multimodal method
and its applicability in real-world applications requiring light-invariance gesture recognition.

Table 3. Accuracy of the proposed multimodal system. Specifically, we report results individually
exploiting one type of input (“single input”) and all the possible combinations of multiple modalities.
As reported, the use of depth maps and infrared images represents the best choice in terms of gesture
recognition accuracy.

Input Data
Single Input Double Input Triple Input
RGB v v v/ v/
Infrared v v/ v v
Depth v v 4 v
Accuracy 0.833 0.861 0903 0.864 0.920 0.895 0.909

The bold of the number is to highlight the highest result. Same applies to the subsequent tables.

In Table 4, we report the results collected on the Briareo dataset. The unimodal approach presented
in [20], based on the well-known C3D network [28] is compared with the best combination obtained
from the previous experiment, i.e., the late fusion of infrared- and depth-based models. For a better
comparison, we report the overall accuracy on the whole test set, as well as the accuracy for each
gesture of the dataset. Moreover, Figure 4 depicts the confusion matrices calculated on the results
of our method. They represent the results of the unimodal depth network (left), the multimodal
depth+infrared network (center) and the multimodal depth+infrared+RGB network (right).

The confusion matrices reveal that the proposed method had, in general, a high level of
accuracy. They also show that the “clockwise” and “counterclockwise rotations” were the two most
challenging gestures, probably due to their similarity from a spatial point of view (hand pose) and
their temporal symmetry.
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Table 4. Comparison with competitors on the Briareo dataset [20]. Both overall accuracy and accuracy

per gesture are reported.

C3D [20] Ours
Gesture
RGB Depth Infrared  Depth + Infrared

Fist 0.542 0.708 0.750 1.000

Pinch 0.833 0.875 0.958 1.000

Flip-over 0.792 0.750 0.875 0.917

Telephone call 0.625 0.792 1.000 0.958

Right swipe 0.833 0.833 0.917 0.958

Left swipe 0.833 0.917 0.792 0.917

Top-down swipe 0.917 0.750 0.958 1.000

Bottom-up swipe 0.750 0.833 0.875 0.958

Thumb up 0.917 0.625 1.000 1.000

Point 0.667 0.708 1.000 1.000

CW Rotation 0.542 0.375 0.750 0.625

CCW Rotation 0.417 0.958 0.635 0.708

Overall Accuracy 0.722 0.760 0.875 0.920

(@) (b)
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Figure 4. Confusion matrices of the proposed method. From the left, we report the performance of the

systems using respectively depth; depth and infrared; depth, infrared and RGB data as input. (a) Depth;
(b) Depth + Infrared; (c) Depth + Infrared + RGB.

In Table 5 we report results obtained on the Nvidia Dynamic Gesture dataset. In this case,
we compared with the results obtained by the 2D Convolutional Neural Networks (2D CNN),
which were the most similar to our setting. Unfortunately, authors did not report multimodal results
for this setting. Therefore, we compared using the proposed unimodal networks only. For the sake of
comparison, we also report results obtained by the use of a 2D Recurrent Neural Network (2D RNN)
and a 2D RNN, which makes use of a CTC cost function, detailed in [21] (2D RNN + CTC).

Table 5. Comparison with competitors on the NVGestures dataset [21]. The overall accuracy for the
RGB and the depth data type is reported.

Model Input Type
RGB Depth

2D CNN [21] 0.556  0.681
2D RNN [21] 0579  0.647
2D RNN + CTC[21] 0.656 0.691
Ours 0.520  0.761
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4.2.1. Multimodal Fusion Analysis

Then, we investigated the role of the mid- and late-fusion strategies in the network architecture
implementation for different types of data. The mid-fusion was implemented by fusing the unimodal
networks at feature lever, after the last convolutional layer. Results are reported in Table 6: when using
infrared and depth data, the late-fusion represented the best choice and guaranteed an absolute
improvement of about 8% with respect to the mid-fusion.

Moreover, we analyzed different training procedures for the mid-level fusion strategy in Table 7.
The “end-to-end” training refers to a training from scratch of the multimodal system, i.e., the unimodal
networks are joint together and simultaneously trained from scratch. In the “fine-tuning” experiment
we exploited the pre-trained models and then we performed a fine-tuning of the whole combined
network. Finally, the “frozen” version consists of an individual train of each network, followed by their
union and a training of the joint fully connected layers, not updating the weights of the convolutional
layers of the single networks. As it can be seen, the “frozen” approach yielded to the higher accuracy.
However, it was yet lower that the accuracy obtained with a late fusion, confirming that a late fusion
was the best strategy for this combination of task and dataset.

Table 6. Comparison of different fusion strategies for different types of data.

Input Data
Double Input Triple Input
RGB v v v
Infrared 4 v v
Depth v v v
Mid-Fusion 0.882 0.837 0.885 0.878
Late-Fusion 0.864 0.920 0.895 0.909

Table 7. Comparison of different training procedures for the mid-level fusion strategy combining RGB,
infrared and depth data.

Training Procedures

End-to-End  Fine-Tuning Freezed
Mid-Fusion 0.722 0.774 0.878

4.2.2. Computational Performance

Thanks to its simplicity, as explained in Section 3.1, the system was able to run in real-time at
about 36 frames per second on a system with an Intel Core i7-7700K and a Nvidia GeForce GTX 1080 Ti.
The model had 28 M parameters and required just about 1 GB of GPU memory in the unimodal setting.

Regarding the multimodal combination with the late fusion strategy, the architecture required
a different network for every data type, but they can run in parallel on the same GPU maintaining
real-time speed. In the best setting (see Table 3), the system ran in real-time at about 27 fps on the
same machine on which the unimodal test was carried out. The model had 56 M parameters and
required about 2.7 GB of GPU memory. Even if the worst-case scenario was considered, i.e., using RGB,
Infrared and depth data on a device with limited memory (requiring running the models sequentially),
the proposed approach was able to run at about 10 fps which was enough to give a real-time feedback
to the user.

5. Conclusions

In this paper, we propose a multimodal hand gesture recognition system for the automotive
context. Following the Natural User Interface paradigm, we focus on dynamic gestures that can help in
reducing the driver’s manual and visual distractions during the driving activity. We investigate the use
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of different input types, i.e., RGB, infrared and depth data, and different multimodal fusion strategies
to combine data from multiple sources. Through an extensive experimental validation on two publicly
released datasets, we show that the infrared and depth data represent the best combination in terms of
hand gesture recognition accuracy in an automotive setting. Finally, an analysis of the computational
performance confirms the real-time speed of the proposed framework and thus its feasibility for
real-world in-car applications.
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