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Abstract: The concept of edge caching provision in emerging 5G and beyond mobile networks is a
promising method to deal both with the traffic congestion problem in the core network, as well
as reducing latency to access popular content. In that respect, end user demand for popular
content can be satisfied by proactively caching it at the network edge, i.e., at close proximity to
the users. In addition to model-based caching schemes, learning-based edge caching optimizations
have recently attracted significant attention, and the aim hereafter is to capture these recent advances
for both model-based and data-driven techniques in the area of proactive caching. This paper
summarizes the utilization of deep learning for data caching in edge network. We first outline the
typical research topics in content caching and formulate a taxonomy based on network hierarchical
structure. Then, many key types of deep learning algorithms are presented, ranging from supervised
learning to unsupervised learning, as well as reinforcement learning. Furthermore, a comparison of
state-of-the-art literature is provided from the aspects of caching topics and deep learning methods.
Finally, we discuss research challenges and future directions of applying deep learning for caching.
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1. Introduction

Undoubtedly, future 5G and beyond mobile communication networks will have to address
stringent requirements of delivering popular content at ultra high speeds and low latency due to the
proliferation of advanced mobile devices and data rich applications. In that ecosystem, edge-caching
has received significant research attention over the last decade as an efficient technique to reduce
delivery latency and network congestion especially during peak-traffic times or during unexpected
network congestion episodes by bringing popular data closer to the end users. One of the main
reasons for enabling edge caching in the network is to reduce the number of requests that traverse the
access and core mobile network, as well as reducing the load at the origin servers that would have to,
otherwise, respond to all requests directly in absence of edge caching. In that case, popular content and
objects can be stored and served from edge locations, which are closer to the end users. This operation
is also beneficial from the end user perspective since edge caching can dramatically reduce the overall
latency to access the content and increase in the sense of overall user experience. It is also important to
note that the notion of popular content means that the requests of top 10% of video content on the
Internet account for almost 80% of all traffic, which relates to multiple requests from different end
users of the same content [1].

Recently, deep learning (DL) has attracted significant attention from both academia and industry
and has been applied to diverse domains, like self-driving, medical diagnosis, and playing complex
games, such as Go [2]. DL has also made their way into communication areas [3]. In this paper,
we pay attention to the application of DL in caching policy. Though there are some earlier surveys
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related to machine learning applications, they either focus on general machine learning techniques for
caching [4–6], or concentrate on overall wireless applications [7–9]. The work [3] provides a big
picture of applying machine learning in wireless communications. In Reference [4], the authors
consider the machine learning on both caching and routing strategy. A comprehensive survey on
machine learning applications for caching content in edge networks is provided in Reference [5].
The researchers in Reference [6] provide a survey about machine learning on mobile edge caching and
communication resources. On the other hand, Reference [7] overviews how artificial neural networks
can be employed for various wireless network problems. The authors in Reference [8] detail a survey
on deep reinforcement learning (DRL) for issues in communications and networking. Reference [9]
presents a comprehensive on deep learning applications and edge computing paradigm. Our work
can be distinguished from the aforementioned papers based on the fact that we focus on the deep
learning techniques on content caching and both wired and wireless caching are taken into account.
Our main contributions are listed as follows:

• We classify the content caching problem into Layer 1 Caching and Layer 2 Caching. Each layer
caching consists of four tightly coupled subproblems: where to cache, what to cache,
cache dimensioning, and content delivery. Related researches are provided accordingly.

• We present the fundamentals of DL techniques which are widely used in content caching,
such as convolutional neural network, recurrent neural network, actor-critic model-based deep
reinforcement learning, etc.

• We analyze a broad range of state-of-the-art literature which use DL to content caching.
These papers are compared based on the DL structure, layer caching coupled subproblems,
and the objective of DL in each scenario. Then, we discuss research challenges and potential
directions for the utilization of DL in caching.

The rest of this survey is organized as follows (as illustrated in Figure 1). Section 2 presents
the categories of content caching problem. Section 3 reviews typical deep neural network structures.
In Section 4, we list state-of-the-art DL-based caching strategies and their comparison. Section 5
debates challenges, as well as potential research directions. In the end, Section 6 concludes this paper.
For better readability, the abbreviations in this paper is listed as Table 1 shows.

Figure 1. Survey architecture.
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Table 1. List of abbreviations.

Abbr. Description Abbr. Description

3C Computing, Caching and Communication A3C Asynchronous Advantage Actor-Critic

BBU Baseband Unit CCN Content-Centric Network

CNN Convolutional Neural Network CoMP-JT Coordinated Multi Point Joint Transmission

CR Content Router C-RAN Cloud-Radio Access Network

CSI Channel State Information D2D Device to Device

DDPG Deep Deterministic Policy Gradient DL Deep Learning

DNN Deep Neural Network DQN Deep Q Network

DRL Deep Reinforcement Learning DT Digital Twin

ED End Device ES Edge Server

ETSI European Telecommunication Standardization Institute

ESN Echo-State Network FIFO First In First Out

FNN Fully-Connected Neural Network FBS Femto Base Station

GRU Gated Recurrent Unit ICN Information-Centric Network

IoT Internet of Things LFU Least Frequently Used

LP Linear Programming LRU Least Recently, Used

LSTM Long Short-Term Memory MAR Mobile Augmented Reality

MD Mobile Device MILP Mixed Integer Linear Programming

MBS Macro Base Station NFV Network Function Virtualization

PNF Physical Network Function PPO Proximal Policy Optimization

QoE Quality of Experience RL Reinforcement Learning

RNN Recurrent Neural Network RRH Remote Radio Head

SAE Sparse Auto Encoder SDN Software Defined Network

Seq2Seq Sequence to Sequence SNM Shot Noise Model

TRPO Trust Region Policy Optimization TTL Time to Live

VNF Virtual Network Function WSN Wireless Sensor Network

2. Data Caching Review

The paradigm of data caching in edge networks is illustrated in Figure 2. Similar to [10], the scope
of edge in this paper is along the path between end user and data server, which contains Content
Router (CR), Macro Base Station (MBS), Femto Base Station (FBS), and End Device (ED). In the context
of Cloud-Radio Access Network (C-RAN) [11], both baseband unit (BBU) and remote radio head
(RRH) are considered as potential caching candidates to hosting content, where the BBUs are clustered
as a BBU pool centrally and RRHs are deployed near BS’s antenna distributively. According to
the hierarchical structure of edge network, the data caching is classified into two categories: Layer 1
Caching and Layer 2 Caching. In this section, we illustrate the typical research topics in these two areas.
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Figure 2. Data caching in edge network.

2.1. Layer 1 Caching

In Layer 1 Caching, the popular content is considered to be hosted in CRs. In the context of
Information-Centric Network (ICN), CR plays dual roles both as a typical router (i.e., data flow
forwarding) and content store (i.e., local area data caching facility). Generally, the CR is connected via
wired networks. Layer 1 Caching consists of four tightly coupled problems: where to cache, what to
cache, cache dimensioning, and content delivery [12].

Where to cache focuses on selecting the proper CRs to host the content. For instance, in Figure 2,
contents replicas can be placed in lower hierarchical level CRs, such as router B and C, as the mean
of reducing transmission cost but with extra cost pay for hosting contents; reversely, consolidating
caching in CR A can be adopted to saving caching cost at the expense of more transmission cost and
has the risk of expiring end users’ delay requirement. Here, the caching/hosting cost is the cost to
deploy the content, which could be measured by space utilization, energy consumption, or other
metrics. The transmission cost represents the price for delivering the content from cached CR (or data
server) to end user and is estimated via the number of hops generally. Where to cache problem usually
has been modeled as a Mixed Integer Linear Programming (MILP):

min
x

cTx, (1a)

s.t. Ax ≤ b, (1b)

x ∈ {0, 1}, (1c)

or x ≥ 0, (1d)

where x is the decision variable. Normally it is a binary variable indicating the CR assignment.
In special cases, with the aim of modeling or linearization, some non-binary auxiliary variables are
introduced as constraint (1d) shows. If taking caching a part of a file not the complete into consideration,
the decision variable x is a continuous variable representing the segments which are hosted in the CR,
then constraint (1c) becomes x ∈ [0, 1] and the MILP model turns to linear programming (LP). There are
many papers allocating contents via MILP with different objectives and limitations. The authors in
Reference [13] propose a model to minimize the user delay and load balancing level of CRs with the
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satisfaction of cache space. The work in Reference [14] considers a trade-off between caching and
transmission cost with cache space, link bandwidth, and user latency constraints. In Reference [15],
an energy efficient optimization model is constructed consisting of caching energy and transport energy.
Reference [16] provides more details of the mathematical model and related heuristic algorithms in
caching deployment of wired networks.

What to cache concentrates on selecting the proper contents in CRs for the purpose of maximizing
the cache hit ratio. Via exploiting the statistical patterns of user requests, the popularity of requested
information and user preference can be forecasted and play a very significant role in determining
caching content. On the one hand, from the view of aggregated request contents, researchers propose
many different models and algorithms for popularity estimation. One widely used model in web
caching is the Zipf model based on the assumption that the content popularity is static and each
users’ request is independent [17]. However, this method fails to reflect the temporal and spatial
correlations of the content, where the temporal correlation reflects the popularity varies over time
and the spatial correlation represents the content preference is different on the geographical area and
social cultural media. A temporal model named the shot noise model (SNM) is built in Reference [18]
which enables users to estimate the content popularity dynamically. Inspired by SNM, the work in
Reference [19] considers both spatial and temporal characteristics during caching decisions. On the
other hand, from the view of a specific end user during a certain period, caching his/her preference
content (may not be popular in the network) can also help to reduce the traffic flow. Many approaches
in recommendation systems can be applied in this case [20]. Another aspect of what to cache problem is
the designing of cache eviction strategies when storage space faces the risk of overflow. Depending on
the life of caching contents, these policies can be divided into two categories roughly: one includes first
in first out (FIFO), least frequently used (LFU), least recently used (LRU), and randomized replacement,
where the contents would not be removed until no more memory is available; the other one is called
time to live (TTL) strategy, where the eviction happens once the related timer expires. Reference [21]
presents an analytic model for hit ratio in TTL-based cache requested by independent and identically
distributed flows. It worth noting that in Reference [21], the TTL-based cache policy is used for
the consistency of dynamic contents instead of contents replacement. In Reference [22], the authors
introduce a TTL model for cache eviction and the timer is reset once related content cache hit happens.

Cache dimensioning highlights how much storage space to be allocated. Benefitting from the
softwarization and virtualization technologies, the cache size in each CR or edge cloud can be managed
in a more flexible and dynamical way, which makes the cache dimensioning decisions become an
important feature in data caching. Technically, the cache hit ratio rises with the increase of cache
memory and consequently eases the traffic congestion in the core network. However, excessive space
allocation would waste the resource, like energy, to support the caching function. Hence there is a
trade-off between cache size cost and network congestion. Economically, taking such a scenario into
consideration: a small content provider wants to rent service from a Content Delivery Network (CDN)
provider, such as Akamai or Huawei Cloud, and there is also a balance between investment saving
and network performance. In Reference [23], the proper cache size of individual CR in Content-Centric
Network (CCN) is investigated via exploiting the network topology. In Reference [24], the authors
consider the effect of network traffic distribution and user behaviors when designing cache size.

Content delivery considers how to transform the caching content to the requested user.
The delivery traffic embraces single cache file downloading and video content streaming and the
metrics for these two scenarios vary. Regarding file downloading, the content cannot be consumed
until the delivery is completed. Therefore, the downloading time of the entire file is viewed as a metric
to reflect the quality of experience (QoE). For video streaming, especially for those large video split
into several chunks, the delay limitation only works on the first chunk. In that case, delivering the first
chunk in time and keep the smooth transmission of the rest chunks are the key aims [25]. Apart from
those measuring metrics, another problem in content delivery is the routing policy. In CCN [26],
one implementation of ICN architecture employs a flooding-based name routing protocol to publish
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the request among cached CRs. On one hand, flooding strategy simplifies the designing complexity
and reduce the maintaining cost particularly in an unstable scenario; on the other hand, it costly wastes
bandwidth resources. In Reference [27], the authors discuss the optimal radius in scoped flooding.
The deliver route is often considered jointly with where to cache problem, in which the objective
function (1a) includes both deployment and routing cost.

2.2. Layer 2 Caching

Contrast to Layer 1 caching in wired connection, Layer 2 caching considers implementing caching
techniques in the wireless network. Though both of them need to solve where to cache, what to cache,
cache dimensioning, and content delivery problems, wireless caching is more challenging, and some
mature strategies in wired caching cannot be migrated directly to the wireless case. Some reasons
come from the listed aspects: the resources in the wireless environment, such as caching storage
and spectrum, are limited compared with CRs in Layer 1 Caching; the mobility of end users and
dynamic network topologies are also required to be considered during the design of caching strategies;
moreover, the wireless channels are uncertain since they can be affected by fading and interference.

In wireless caching, where to cache focus on finding the proper candidates among MBS, FBS,
ED, even BBU pool and RRU in C-RAN to host the content. Caching at MBS and FBS can alleviate
backhaul congestion since end users obtain the requested content from BS directly instead of from
CR via backhaul links. Compared with FBS, MBS has a wider coverage and typically, there is no
overlap among different MBSs [28]. As mentioned above, the caching space in BSs is limited and it is
impractical to cache all popular content. With the aim of improving the cache-hit ratio, a MILP-modeled
collaborative caching strategy among MBSs is proposed in Reference [29]. If the accessed MBS does
not host the content, the request will be served by a neighbor MBS which caches the file rather than by
the data server. For FBS caching, a distributed caching method is presented in Reference [30] and the
main idea is that the ED locating in the FBS coverage overlap is able to obtain contents from multiple
hosters. Caching at ED can not only ease backhaul congestion but also improve the area spectral
efficiency [28]. When the end user requests, he/she would be severed by the local storage if the content
is precached in his/her ED or by adjacent ED via Device to Device (D2D) communication if the content
is host accordingly. In Reference [31], the authors model the cache-enabled D2D network as a Poisson
cluster process, where end users are grouped into several clusters and the collective performance is
improved. Individually, caching the interested contents for other users affects personal benefit. In
Reference [32], a Stackelberg game model is applied to formulate the conflict among end users and a
related incentive mechanism is designed to encourage content sharing. For the case of cache-enabled
C-RAN, caching at BBU can ease the traffic congestion in the backhaul, while caching at RRH can
reduce the fronthaul communication cost. On the other hand, caching all at BBU raises the signaling
overhead of the BBU pool, while at RRH weakens the processing capability. Therefore, where to cache
the content in C-RAN makes a substantial contribution to balancing the signal processing capability at
the BBU pool and the backhaul/fronthaul costs [28]. The work in Reference [33] investigates caching at
RRHs with jointly considering cell outage probability and fronthaul utilization. Due to the end users’
mobility, the prediction/awareness of user moving behavior also influences the proper hoster selection.
There are some researches exploiting user mobility in cache strategy designing, like Reference [34,35].

Similar to Layer 1, what to cache decision, as well as eviction policy, of Layer 2 depends on
the accurate prediction on content popularity or user preference in the proactive caching method.
The content popularity contains the feature of temporal and spatial correlations, which has already
been described in Layer 1 Caching. In Layer 2 caching, the proper spatial granularity in popular
contents estimation needs to take special attention [36]. For example, the coverage of MBS and FBS are
different, which makes the popularity in MBS and FBS are different, as well. The former is based on a
large number of users’ behaviors, but the individual may prefer specific content categories. For small
cells, the preference estimation requires more accurate information, like historical data [28]. In order to
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capture the temporal and spatial dynamics of user preference, many different deep learning based
algorithms are proposed, which will be illustrated in Section 4.

Cache dimensioning in Layer 2 Caching has more complicated factors need to be considered,
not only including the network topology and content popularity as Layer 1 Caching, but also containing
backhaul transmission status and wireless channel features. The proper cache size assignment is
studied in the scenario of backhaul limited cellular network [37]. It also provides the closed-form
boundary of minimum cache size in one cell case. In the case of dense wireless network, the work in
Reference [38] quantifies the minimum required cache to achieve the linear capacity scaling of network
throughput. The authors of Reference [39] also consider the scenario of dense networks. They derive
the closed-form of the optimal memory size which can reduce the consumption of backhaul capacity,
as well as guarantee wireless QoS.

According to the number of transmitters and receivers, we divide the content delivery in
Layer 2 caching into three categories: one candidate serves one end user, such as unicast and D2D
transmission; one candidate serves multiple users, like multicast; coordinated delivery including
multiple transmitters serve one or more receivers, like coordinated multi-point joint transmission
(CoMP-JT). Once the requested content is cached locally, BS can serve the end user via unicast
or the adjacent device shares the contents by implementing D2D transmission. The concurrent
transmission has the risk of co-channel interference in densely deployed networks. In the D2D network,
link scheduling is introduced to select subsets of links to transmit simultaneously [28]. In order to
improve spectral efficiency, multicast is applied in content delivery when serving multiple requests
simultaneously with the same content. Therefore, there is a trade-off between spectral efficiency and
service delay. For the aim of serving more users in one transmission, as well as higher spectral efficiency,
the BS will wait to collect enough requirement for the same content, which makes the first request a
long waiting time. An optimal dynamic multicast scheduling is proposed in Reference [40] to balance
these two factors. Multicast can also serve multiple requests with different contents. In Reference [41],
the authors provide a coded caching scheme which requires the communication link is error-free and
each user caches a part of its own content and partial for other users. Then, BS multicasts the coded data
to all users. Each user can decode his own requested content by XOR operation between the received
data and the precached other users’ file. However, the coding complexity increases exponentially
as the number of end users grows. The CoMP-JT can improve the spectral efficiency, as well via
sharing channel state information (CSI) and contents among BSs, but it also needs high-capacity
backhaul consumption for exchanging data. In C-RAN, the BBUs are centralized in the BBU pool,
which makes communication among BSs very efficiency. Reference [42] designs CoMP-JT in C-RAN for
the purpose of minimizing power consumption with limitations of transmission energy, link capacity
and requested QoS.

3. Deep Learning Outline

As Figure 3 shows, some typical deep neural network (DNN) methods are stated. These models
are classified into three categories depending on the training methods: supervised learning,
unsupervised learning, and reinforcement learning.
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Figure 3. Typical deep neural network (DNN) structures.

3.1. Fully-Connected Neural Network (FNN)

FNN is a kind of feedforward neural network whose information propagation direction is forward
and there is no cycle in neurons. As the name indicates, the connection between two adjacent layers
of FNN is filled. The hidden layer is applied to extract features of the input vector, and then feed the
output layer, which works as a classifier. Since each neuron of FNN is fully connected, each digit
of input vector makes contributions to the final output. That is to say, FNN hosts the ability to
extract global features. On the other hand, it lacks local pattern attention without data preprocessing,
such as augmentation. According to the Universal Approximation Theorem, FNN has the ability to
approximate any closed and bounded function with enough neurons in hidden layer [43]. Though FNN
is very powerful, it gets into trouble when dealing with real-world tasks, such as image recognition,
due to enormous number of weight parameters (because of being fully connected).

3.2. Convolutional Neural Network (CNN)

As aforementioned, the enormous number of weight parameters pose a significant challenge in
the training complexity of FNNs. In order to overcome this drawback, whilst being inspired by the
idea of receptive field in biology, CNN is proposed with the structure of stacked convolutional layer
and pooling layer, followed by some fully connected layers. The convolutional layer employs sliding
convolutional filters to the input vector, and the filter’s weights do not change during processing,
a.k.a. weight sharing. The pooling layer applies downsampling operation, usually through the
maximum or mean pooling. In this respect, both weight sharing and pooling reduce the number
of training parameters. It is worth noting that the downsampling operation also takes the risk of
dropping some information, which lowers the association between the local and global patterns,
especially for the case of info-intensive task (i.e., each element of a matrix or each pixel of an image
plays an important role in final object detection). For example, there is no pooling layer in Alpha-Go’s
neural architecture [44]. Generally, CNN tends to contain deeper layers and smaller convolutional
filters, and the structure is likely to be a fully convolutional network [45], reducing the ratio of
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pooling layers, as well as fully connected layers. Taxonomically, CNN belongs to feedforward neural
network and is the mainstream deep model in computer vision. The reasons come from that in image
recognition: (1) the local pattern makes more contribution in classifications; (2) the same pattern
appears in different positions; and (3) downsampling some pixels will not affect the classification.
The convolutional layer fits reason (1) and (2), while the pooling layer suits reason (3). CNN is also
employed in natural language processing. Including CNN and FNN, one of the limitations of the
feedforward neural network is that the output only depends on current input vectors. So, it is hard to
deal with sequential tasks.

3.3. Recurrent Neural Network (RNN)

In order to deal with sequential tasks and using historical information, RNN employs neurons
with self feedback in hidden layers. Unlike the hidden neuron in feedforward neural network,
the output of recurrent neuron depends on both the current output of precious layer and last hidden
state. Compared with FNN approximates any continues functions, RNN with Sigmoid activation
function can simulate a universal Turing Machine and has the ability to solve all computational
problems [46]. Theoretically, RNN can deal with any long time series. Practically, RNN has the risk
to suffer from long-term dependencies problem [43] including gradient exploding and vanishing.
Additionally, RNN has more parameters waiting to be trained due to adding recurrent weights. In the
following, we introduce some RNN variants as Figure 4 shows.

Figure 4. Recurrent Neural Network (RNN) variants.

3.3.1. Echo-State Network (ESN)

As aforementioned, simple RNN contains more parameters in the training step, where the
recurrent weights and input weights are difficult to learn [43]. The basic idea of ESN is fixing these two
kinds of weights and only learn the output weights (as links highlighted in Figure 4). The hidden layer
is renamed as reservoir in ESN, where the neurons are sparsely connected and the weights are randomly
assigned. The recurrent weights keep constant so the information of previous moments is stored in
the reservoir with constant weight, like voice echoing. To avoid echo explosion, the eigenvalues of
recurrent weights should not be greater than 1. On the one hand, the preassigned weights of input and
reservoir layers reduce the number of training parameters then accelerate the training process; on the
other hand, since the connectivity and weight value are random, so the result is unlikely to be optimal.
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ESN has been successfully utilized in speech processing, stock price prediction, language modeling,
etc. However, when it comes to high dimensional temporal task, ESN is less competitive because only
the output weights are flexible during training. In order to extract different features, the reservoir
should be enough large, which challenges the ESN design.

3.3.2. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

Recently, an efficient way to cope with long-term dependencies in practical is employing gated
RNN, including LSTM [43]. Then, we compare with the recurrent neuron in simple RNN: Internally
LSTM introduces three gates to control signal propagation, where input gate I decides the partition
of input signal to be stored, forget gate F controls ratio of last moment memory to be kept until next
period (the name “forget gate” may be a little misleading because it actually represents the ratio
to be remembered), and output gate O influences the proportion of current state to be delivered;
Externally LSTM has four inputs embracing one input signal and three control signals for three
gates. All these four signals are derived via the calculation of current network input and last moment
delivered state (i.e., the output of last time state, called hidden state ht−1). The data flow before the
output gate is named inner state ct. Intuitively, ct contains something new learned via the input and the
previous knowledge through ht−1. In other words, some old memories still have an influence on the
current decision so the gradient vanishing is eased. The side effect of LSTM is that the implementation
of gate mechanism is very complicated, which makes both training and testing slower. Because of the
temporal causal, LSTM or common RNN does not support parallel training like CNN. One explanation
of the name “Long Short-Term Memory” is given by Xipeng Qiu in the book “Neural Networks
and Deep Learning” (https://nndl.github.io/): the hidden state h stores the historical information,
which is viewed as a kind of memory. In the simple RNN, this state is updated at each time slot,
which is called short-term memory. Besides, the parameter of neural network is updated at each
iteration, which is regarded as long-term memory. The life of h is longer than the short-term memory
and that is why it is named LSTM.

A simpler version is employing gated recurrent unit (GRU) [47]. On one hand, the role of input
gate and forget gate in LSTM are complementary. So, GRU combines these two gates and utilizes a
single gate Z to control the balance between the previous memory and newly learned knowledge.
On the other hand, GRU removes the output gate since both hidden state h and inner state c of LSTM
contain the information of last state. Moreover, the candidate state h′ in GRU depends on current input
and the result of reset gate R. Compared with LSTM, GRU has fewer parameters, which indicates its
training is faster than LSTM.

3.3.3. Seq2Seq and Pointer Network

A typical application of RNN is converting one sequence to another sequence (Seq2Seq, also called
encoder-decoder model), such as machine translation. As shown in Figure 4, Seq2Seq, the RNN
is extended through the timeline, where the input series is X = {X1, X2, X3} and the output is
Y = {Y1, Y2, Y3}. The equal symbol “=” represents the end of a sequence. Conventionally, the output
of Seq2Seq architecture is a probability distribution of output dictionary. However, it cannot deal
with the kind of problems that the size of output relies on the length of input due to the fixed output
dictionary. In Reference [48], the authors modify the output to be the distribution of input sequence,
which is analogous to pointers in C/C++. Pointer network has been widely used in text condensation.
Strictly speaking, the ESN and LSTM are the variants of RNN from the view of network constructions,
while Seq2Seq and pointer network are from application modes. Moreover, in some specific cases,
like require running time guarantee, the hidden layers of Seq2Seq can be implemented by CNN instead
of RNN [49].

https://nndl.github.io/
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3.4. Auto Encoder

Auto Encoder is a stack of two neural networks (NNs), named encoder and decoder, respectively,
where the former tries to learn the representative characteristics of input and generate a related
code, and the later reads the code and reconstructs the original input. In order to avoid the auto
encoder simply copying the input, some restrictions are considered, like the dimension of code is
smaller than input vector [43]. The quality of auto encoder can be measured via reconstruction error,
which estimates the similarity between input and output. In most cases, the auto encoder is used
for the proper representation of the input vector so the decoder part is removed after unsupervised
training. The code can be employed as input for further deep learning models. Additionally, the code
after dimensional reduction is easier for data visualizing analysis compared with the original high
dimensional input data. Because it is unsupervised learning, the auto encoder is expensive to pretrain
with big data.

3.5. Deep Reinforcement Learning (DRL)

Reinforcement Learning (RL) is a Markov Decision Process represented by a quintuple
{S ,A,P ,R, γ}, where S is the state space controlled by environment;A is the action space determined
by agent; P is the state transition function measuring the probability of moving to a new state st+1

given previous state st and action at; R is reward function calculated by environment considering state
and action; γ is a discount factor for estimating total reward. During the interaction between agent
and environment, agent observes current state st from environment and then takes action at following
its policy π. The environment moves to a new state st+1 stochastically based on P(st, at) and returns
a reward rt to agent. The RL’s aim is finding the policy π to maximum accumulated reward ∑t γtrt.
In the early stage, RL focuses on scenarios whose S and A are discrete and limited. So, the agent can
use a table to record this information. Recently, some tasks have enormous discrete states and actions,
such as playing go and even continuous value, such as self-driving, which makes table recording
impractical. In order to solve this, DRL combines RL and DL, where RL defines the problem and
optimization object; DL models the policy and the reward expectation. Depending on the roles of
DNN in DRL, we classify the DRL into 3 categories as follows.

3.5.1. DNN as Critic (Value-Based)

In value-based method, DNN does not get involved with policy decision but estimates the
policy performance. Two functions are introduced for the measurement: Vπ(s) represents the reward
expectation of policy π starting from state s; Qπ(s, a) illustrates the reward expectation of policy π

starting from state s and taking action a. In addition, Vπ(s) is the expected value of Qπ(s, a). If we can
estimate Qπ(s, a), the policy π can also be improved by choosing the action a∗ hold Qπ(s, a∗) ≥ Vπ(s).
As aforementioned, the conventional Q Learning scheme is impractical when dealing with tasks
containing enormous discrete states and actions. So, the DNN employed in agent is approximating
function Qπ(s, a), where the inputs are state s and action a and output is the estimated value Qπ(s, a).
There are some representative critic methods, like Deep Q Networks (DQN) [50,51] and its variants
Double DQN [52], Dueling DQN [53], etc.

As shown in the left side of Figure 5, the DNN Q is applied to estimate the state-action reward
Qπ(s, a) in the DQN scheme. There are two main problems in training step if we only employ
a single DNN: (1) the target is unstable, where the objective function/loss function for training
DNN parameters depends on these parameters themselves; (2) these training samples are strongly
correlated instead of independent (for example, samples of playing video games are generated from
continuous frames), which makes the gradient descent towards a deterministic direction then the
training process has a high risk to be not convergent. To deal with the aforementioned problems,
DQN takes two measures accordingly: (1) Freezing target DNN Q′, in Figure 5, we put a lock symbol,
indicating the parameters are fixed during several training steps, to keep the learning objective steady;
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(2) Experience replay memory D, which consists of interactions between the client and the environment.
Initially, the target DNN Q′ is a replica of DNN Q. In each training episode, the client observes a
current state from the environment, executes an action depending on the estimation of Q, and receives
a reward. Those interactions (i.e., the current state s, action a, reward r, and state after transition ss) are
stored in D. Then, target DNN Q′ samples random batches of interactions from D and calculates the
reward value q′ as follows:

q′ =

{
r, if ss is a terminated state

r + γ ·maxa′ Q′(ss, a′), otherwise
. (2)

The loss function is defined as the mean square error: (q′−Q(s, a))2. After several steps, the parameters
of Q′ would be updated by the setting from Q.

Figure 5. Deep Q Networks (DQN) and Dueling DQN.

In Formula (2), the target DNN Q′ is responsible for both actions selection and evaluation. If any
Q′(ss, a′) is overestimated, the entire evaluation is overestimated accordingly since we always tend to
select the action argmaxa′Q′(ss, a′). To avoid this upward bias, Double DQN decouples the calculation
operation by applying the training DNN Q to selection actions, while employing the target DNN
Q′ to evaluate actions. If Q is overestimated and select an improper action, Q′ will rectify the bias.
As shown in the right side of Figure 5, the Dueling DQN modifies the DNN structure by splitting the
Q evaluation into two channels: a scalar V representing the contribution of state only and a vector
A describing the reward from both state and action. It is worth noting that the expectation of A is
limited to be 0. From the view of network training, the original DQN’s output contains |A| numbers
with the range [0, ∞] and now it switches to one scalar with range [0, ∞] and |A| numbers with zero
expectation, which is more efficient to train. Moreover, both two outputs have practical meanings
and can be used for further analysis. Another aspect of enhancing DQN performance is changing the
uniform sample from memory pool D by considering their significance, which is called prioritized
experience replay. More details can be found in Reference [54].

3.5.2. DNN as Actor (Policy-Based)

In policy-based method, DNN gets involved in the action selection directly instead of via
Qπ(s, a). The policy can be viewed as an optimization problem, where the objective function is
maximizing reward expectation and the search space is policy space. The input of DNN is current
state and output is the probability distribution of potential actions. By employing gradient ascent,
we can update the DNN to provide better action then maximize total reward. Compared with
value-based approaches, policy-based algorithms have better convergence and are more efficient
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in dealing with high dimensional or continuous actions tasks. Additionally, policy-based algorithms
can learn stochastic policies, while value-based schemes choose actions deterministically, like the
action maximum Q value in Formula (2). On the other hand, the enormous solution space of policy
makes it difficult to sample sufficiently, which results in large variance and local optimal solution.

3.5.3. Actor-Critic Model

Generally, compared with policy-based approach, the value-based method is less stable and suffer
from poor convergence since the policy is derived based on Qπ(s, a) approximation. But a value-based
method is more sample efficient, while a policy-based method is easier to fall into local optimal solution
because the search space is vast. The actor-critic model combines these two approaches, i.e., the agent
contains two DNNs named actor and critic, respectively. In each training iteration, the actor considers
current state s and policy π for deciding action a. Then, the environment changes to state s′ and
returns reward r. The critic updates its own parameters based on the feedback from the environment
and output a mark for the actor’s action. The actor updates policy π depending on the critic’s mark.
Some typical algorithms have been proposed recent years, like Deep Deterministic Policy Gradient
(DDPG) [55] and Asynchronous Advantage Actor-Critic (A3C) [56], as Figure 6 illustrates.

Figure 6. Deep Deterministic Policy Gradient (DDPG) and Asynchronous Advantage Actor-Critic (A3C).

Similar to Double DQN, DDPG also utilizes the idea of target DNN and experience replay memory.
In DQN, the action is determined via trained DNN Q, while, in DDPG, the action is selected by actor
DNN. Initially, target critic Q′ and actor P′ are the replicas of Q and P, respectively. In each training
step, actor P plays with the environment and store its experience in-memory buffer D. The target actor
P′ samples batches of experiences randomly and selects action a′. Then, the target critic Q′ evaluates
the expected reward q′ on action a′. Meanwhile, the trained critic Q also estimates the expected reward
q but is based on the recorded action a. The critic Q and actor P are updated via square error and policy
gradient, respectively, while the target network Q′ and actor P′ are also updated in a little progress.

In the scheme of A3C, the DNN structure is similar to dueling DQN. A3C does not apply
experience replay memory but employ asynchronous training method. As shown in the right side of
Figure 6, there are n global network’s replicas interacting with their environments and each local DNN
(including the actor and the critic) is trained independently. During the training episode, the local
DNN does not update its own parameters but renovate the global. The local model synchronizes
global DNN after several steps. So, the global network is the model we want and these independent
local models accelerate the training process.
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As a conclusion of this section, we summarize these illustrated DL schemes in Table 2 with their
advantages and disadvantages, classified by their training methods and DNN architectures.

Table 2. Comparison of deep learning (DL) architectures.

Training
Scenario Architecture Pros Cons

Super-
-vised

FNN

•any closed and bounded function
approximation

•model training and hyper parameter
tuning

•global spatial feature extraction •local spatial feature awareness

CNN

•weight sharing to reduce computation
complexity

•some info missing due to
downsampling

•local spatial feature awareness •hyper parameter tuning
•mainstream deep model in computer
vision, also be employed in speech and
text processing

•temporal-sequential task

RNN: ESN

•fast training process •hyper parameters tuning
•low dimensional temporal sequence
processing

•high dimensional temporal sequence
(like video) processing

•applied in speech processing, stock
price prediction, language modeling, etc.

RNN: LSTM
•easing gradient vanishing •computation complexity, not
•employed in sentiment analysis,
machine translation, dialog, etc. support parallel computing

RNN:GRU •easing gradient vanishing • not support parallel computing
•faster training than LSTM

Unsuper-
-vised

Auto
Encoder

•feature extraction •training complexity
•data visualization

Reinfor-
-cement

Value-based:
DQN

•general schemes, play different •the case of continuous actions
games •overestimation on reward values

Value-based:
Double DQN

•avoiding overestimation •the case of continuous actions
•faster convergence than DQN

Value-based:
Dueling DQN

•faster convergence than DQN and •the case of continuous actions
Double DQN •structure complexity
•practical meaningful separation •less efficient on small state spaces

Policy-based

•steady convergence •large variance
•high dimensional and continuous tasks •local optima
•stochastic policies learning

Actor-Critic:
DDPG

•discrete and continuous tasks •high complexity
•steady convergence •slow training

Actor-Critic:
A3C

•efficient learning on continuous tasks •high complexity
•parallel training •intensive requirements on hardware

4. Deep Learning for Data Caching

We divide the studies regarding deep learning for data caching in edge networks into four
categories depending on the DL tools employed: FNN and CNN, RNN, Auto Encoder, and DRL,
as summarized in Tables 3–6, respectively. Recently, many works utilize more than one DL techniques
for jointly considered caching problems. For instance, at the beginnin, we apply an RNN to predict
content popularity and then a DRL to find suboptimal solutions of content placement for the purpose
of reducing time complexity. In this case, we classify the related work into DRL since it represents the
caching allocation policy. Unless there is mention of the caching location (such as CRs, MBSs, FBSs,
EDs, and BBUs), the approaches in this section can be utilized for both Layer 1 and Layer 2 caching.
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Table 3. Summary of fully-connected neural network (FNN) and convolutiuonal neural network (CNN)
for data caching.

Study Caching
Problem DL Objective DL

Architecture Main Conclusions

[57] content delivery reduce feasible region of
time slot allocation CNN

The proposed method combine the
prediction from CNN with the optimal
branch & bound algorithm.

[58] where to cache,
content delivery

determine MBSs for caching
& delivery duration FNN A well-trained FNN can achieve around

90% approximation to the optimum.

[59] where to cache,
content delivery

nominate proper CRs
for caching

parallel
CNN

The optimization model is transformed to
a grayscale image and a cluster of CNNs
are trained to capture spatial features.

[60] where to cache,
content delivery

reduce feasible region
for caching

parallel
CNN

The proposed framework provides a
speed up by 75 times with an additional
cost of less than 5% in specific cases.

[61] what to cache extract video features 3D CNN
Both published and unpublished videos
are considered in the popularity
predicting scheme.

[62] what to cache predict requested content &
frequency FNN

The historical visiting records in a
metropolis-scale bus WiFi network help to
predict future events.

[63] what to cache predict requested content CNN The users’ interests are predicted by CNN
analysis on tweets.

[64] what to cache predict content popularity FNN This paper questions the role of DNN in
caching applications.

Table 4. Summary of recurrent neural network (RNN) for data caching.

Study Caching
Problem DL Objective DL Architecture Main Conclusions

[65] what to cache
predict requested
content & user
mobility

ESN

The proposed method combine the ESN
framework with sublinear algorithms and the
simulation is based on real data from content
provider YouKu, as well as university BUPT.

[66] what to cache
predict requested
content & user
mobility

ESN

A conceptor-based ESN approach is proposed
for users’ behavior prediction and this paper
analyze the caching application at the level of
UAVs.

[67] what to cache predict content
popularity

CNN,
Bidirectional
LSTM& FNN

This paper tracks the association of temporal
requests and achieves above 60% prediction
accuracy.

[68] what to cache predict content
popularity GRU

The proposed framework combines RNN with
the hedge strategy and the training data is from
content provider iQiYi.

[69] what to cache predict content
popularity LSTM

The proposed scheme can learn the content
popularity at long and short time scales.
The experiments on iQiYi and Movielens
dataset show it improves the hit ratio by
20∼32%.

[70] what to cache predict content
popularity LSTM The paper proposes a LSTM model to predict

content popularity and user mobility.

[71] what to cache predict content
popularity LSTM Seq2Seq

The content popularity prediction is recognized
as a seq2seq model and a general framework for
end-to-end cache making is created.

[72] content
delivery

reduce traffic load,
select optimal BS
subset

Auto Encoder&
Bidirectional GRU
Seq2Seq

A new coded caching approach using auto
encoder to reduce network load and a learning
model to solve the cover problem with attention
scheme and beam search.
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Table 5. Summary of auto encoder for data caching.

Study Caching
Problem DL Objective DL Architecture Main Conclusions

[73] what to cache predict content
popularity

stacked sparse
auto encoder

An distributed auto encoder model is
constructed by SDN/NVF technical to
predict data packet popularity in WSN.

[74] what to cache predict content
popularity

stacked sparse
auto encoder

This paper proposes a method of
deploying auto encoder and softmax
distributed DNN in the 5G core network.

[75] what to cache predict content
popularity

auto encoder &
stacked denoising
auto encoder

This article employs two auto encoders
to extract hidden features of users and
contents, which is utilized for further
popularity estimation.

[76] what to cache predict content
popularity

stacked auto
encoder

This paper generates a distributed
and reconfigurable prediction model
via SDN.

[77] what to cache predict top popular
contents

collaborative
denoising auto
encoder

An auto encoder model using a
clustering method is proposed to
improve the prediction accuracy and the
performance is checked on ITRI and
Netflix datasets.

Table 6. Summary of deep reinforcement learning (DRL) for data caching.

Study Caching
Problem DL Objective DL Architecture Main Conclusions

[78] what to cache decide cache placement
prioritized
experience replayed,
dueling & RNN DQN

This paper consider a scenario
where the popularity is dynamic
and unknown in ultra dense
network, from the view of
energy efficiency.

[79] what to cache decide cache
replacement DDPG

The framework is constructed
based on the Wolpertinger
architecture and the results show
it improves performance on both
short-term and long-term.

[80] what to cache decide cache
replacement

DDPG& multi-agent
actor-critic scheme

This paper provides a DRL
scheme for both centralized and
decentralized caching, with the
training of DDPG and temporal
differences respectively.

[81] what to cache decide cache placement DQN This article proposes an online
caching scheme for 360◦ videos.

[82] what to cache decide cache placement
& service allocation DQN

This paper pays attention to the
issue of caching with QoE in
edge-enabled IoT environment.

[83] what to cache decide cache placement Q learning& DQN

An RL scheme for D2D-assisted
cache-enabled IoT is proposed,
where Q learning and DQN are
utilized for user and SBS
caching respectively.
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Table 6. Cont.

Study Caching
Problem DL Objective DL Architecture Main Conclusions

[84] what to cache decide cache placement external
memory-based DQN

The proposed algorithm can
achieve an improvement in cache
hit rate and long-term reward in
a single BS scenario.

[85] what to cache decide cache placement A3C

The IoT data transiency and
dynamic context characteristics
are jointly considered under data
freshness and
communication cost.

[86] what to cache decide cache placement hyper DQN
This paper tackle a two-timescale
caching task with employing
DQNs in parallel.

[87] what to cache decide cache placement DQN

A chunk-based caching scheme
in data processing network
considers network performance
and processing efficiency.

[88] what to cache
decide cache
replacement& power
allocation

DQN
This paper tries to minimize
latency in a downlink of F-RAN
in a centralized mode.

[89] what to cache predict popularity&
model tuning

CNN, LSTM,
Convolutional RNN&
Q Learning

The DNN model is proposed to
predict request demand and
content popularity with Q
learning for model selection.

[90] where to
cache

service allocation,
computation
offloading& cache
placement

dueling DQN

The authors provide a social trust
scheme with both direct and
indirect observation in mobile
social networks for edge
computing, caching, and D2D.

[91] content
delivery users grouping dueling DQN

This paper considers both
caching and interference
alignment under
time-varying channel.

[92]

where to
cache
&content
delivery

BS connection,
computation
offloading& cache
location

double dueling DQN

The authors propose an
integrated scheme for dynamic
orchestration of networking,
caching and computing in
vehicle networks.

[93]

what to
cache,
content
delivery

decide caching &
bandwidth allocation DDPG

A cooperative caching policy
among base station, roadside
units and vehicles is proposed.

[94]

what to
cache,
content
delivery

caching, computing
offloading& radio
allocation

actor-critic model
with natural policy
gradient

This article provides a joint
method for caching, computing
and radio allocation in the
fog-enabled IoT to minimum
average latency for all requests.

[95]

what to
cache,
content
delivery

schedule multicast&
replace cache

variational
auto-encoder&
double DQN

A double coded caching
algorithm is proposed to increase
the robustness of
wireless transmission.

[96] where &
what to cache

predict popularity,
decide caching & task
offloading

GRU& multi-agent
DQN

This paper proposes a joint
caching and offloading algorithm
in multi-user non-orthogonal
multiple access mobile edge
computing system.

[97]

where&what
to cache,
content
delivery

predict user mobility&
content popularity,
D2D link

ESN, LSTM&actor-
critic model

A joint content placement and
delivery scheme is proposed to
solve the medium access
contention in the cache-enabled
D2D network.
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4.1. FNN and CNN

In Reference [57], the content delivery problem in wireless network is formulated as two
MILP optimization models with the aims of minimum delivery time slot and energy consumption,
respectively. Both models consider the data rate for content delivery. Considering the computational
complexity of solving MILP, CNN is introduced to reduce the feasible region of decision variables,
where the input is a channel coefficients matrix. The FNN in Reference [58] plays a similar role as in
Reference [57] to simplify the searching space of the content delivery optimization model.

For resource allocation problems, the authors of Reference [98] model it as linear sum assignment
problems then utilize CNN and FNN to solve the model. The idea is extended in Reference [59,60],
where the authors consider where to cache problem among potential CRs and content delivery jointly,
which is modeled as MILP for the sake of balancing caching and transmission cost by considering
the user mobility, space utilization and bandwidth limitations. The cache allocation is viewed as
a multi-label classification problem and is decomposed into several independent sub-problems,
where each one correlates with a CNN to predict assignment. The input of CNN is a grey-scale image
which combines the information of user mobility, space and link utilization level. In Reference [59],
a hill-climbing local search algorithm is provided to improve the performance of CNN, while,
in Reference [60], the prediction of CNN is used to feed a smaller MILP model.

For these above works [57–60,98], the FNN or CNN input is extracted from the optimization
model. The work in Reference [99] trains a CNN via original graph instead of parameters matrix/image,
which makes the process human recognizable and interpretable. Though the authors take the
traveling salesman problem not data caching as an example, the method can be viewed as a potential
research direction.

In Reference [61], an ILP model is proposed to minimize the backhaul video-data type load by
determining the portion of cached content in BSs. Since the mobile users covered by a BS change
frequently, therefore predicting user preference is unnecessary. Instead, the authors concentrate on
popular content in general. In the beginning, a 3D CNN is introduced to extract spatio-temporal
features of videos. The popularity of new contents without historical information is determined via
comparing similar video features. The authors of Reference [62] also considers the spatio-temporal
features among visiting contents in a mobile bus WiFI environment. By exploiting the previous 9 days
collecting data, the content that the user may visit on the last day and corresponding visiting frequency
can be forecast. The social property is taken into account in Reference [63]. By observing users interests
on tweets during the 2016 U.S. election, a CNN based predicted model can foresee the content category
that is most likely to be requested. Such kind of content would be cached in MBSs and FBSs.

The work of Reference [64] examines the role of DNN in caching from another aspect. The authors
propose an FNN to predict content popularity as a regression problem. The results show that FNN
outperforms RNN, though the later is believed to be effective to solve sequential predictions. Moreover,
replacing the FNN by a linear estimator does not devalue the performance significantly. The author
provides an explanation that FNN would work better than linear predictor in the case of incomplete
information, and RNN has more advantages to model the popularity prediction as a classification
rather than a regression problem.

4.2. RNN

Considering RNN is superior in dealing with sequential tasks, the work [67] applies a bidirectional
RNN for online content popularity prediction in mobile edge network. Simple RNN’s output depends
on previous and current storage, but the bidirectional can also take future information into account.
The forecast model consists of three blocks cascadingly: a CNN reads user requests and extracts
features; bidirectional LTSM learns association of requests over time step; FNN is added in the end to
improve the prediction performance. Then, content eviction is based on the popularity prediction.

The authors in Reference [65] utilize ESN to predict both content request distribution and end user
mobility pattern. The user’s preference is viewed as a context which links with personal information



Informatics 2020, 7, 43 19 of 29

combining gender, age, job, location, etc. For the request prediction, the input of ESN is user’s
information vector and the output represent the probability distribution of content. For mobility
prediction, the input includes historical and present user’s location and the output is the expected
position for next time duration. Eventually, the prediction influences the caching content decisions in
BBUs and RRHs for the purpose of minimizing traffic load and delay in CRAN. The authors extend
their work in Reference [66] by introducing conceptor-based ESN which can split users’ context into
different patterns and learn them independently. Therefore, a more accurate prediction is achieved.

In Reference [68], a caching decision policy named PA-Cache is proposed to predict time-variant
video popularity for cache eviction when the space is full. The temporal content popularity is exploited
by attaching every hidden layer representation of RNN to an output regression. In order to improve
the accuracy, hedge backpropagation is introduced during the training process which decides when
and how to adapt the depth of the DNN in an evolving manner. Similarly, the work in Reference [69]
also considers caching replacement of video content. A deep LSTM network is utilized for popularity
prediction consisting of stacking multiple LSTM layers and one softmax layer, where the input
of the network is request sequence data (device, timestamp, location, video’s title) without any
prepossessing and the output is estimated content popularity. Another work concentrates on prediction,
and interactions between user mobility and content popularity can be found [70].

The work of Reference [71] recognizes the popularity prediction as a Seq2Seq modeling problem
and proposes an LSTM Encoder-Decoder model. The input vector consists of past probabilities where
each vector is calculated during a predefined time window. In Reference [72], the authors focus on
caching content delivery with the aim of minimizing BSs to cover all requested users, i.e., set cover
problem, via coded caching. Unlike Reference [71], an auto encoder is introduced in coded caching
stage for file conversion to reduce transmission load. Additionally, an RNN model is employed to
select BSs for broadcasting.

Reference [100] shows the potential of RNN in solving where to cache problem. In Reference [100],
a task allocation model is formulated as a knapsack problem and the decision variables represent the
task is processed locally in mobile devices (MDs) or remotely in edge servers (ESs). The authors design
a multi-pointer network structure of 3 RNNs, where 2 encoders encode MDs and ESs, respectively,
1 decoder demonstrates ES and MD pairing. Considering the similarity of where to cache optimization
model and knapsack problem, the multi-pointer network can be transferred for caching location
decision after according parameter modifications.

4.3. Auto Encoder

Generally, the auto encoder is utilized to learn efficient representation or extract features of raw
data in an unsupervised manner. The work in Reference [73] considers the cache replacement in
wireless sensor network (WSN) based on content popularity. Considering sparse auto encoder (SAE)
can extract representative expression of input data, the authors employ an SAE followed by a classifier
where the input contains collecting user content requests and the output represents the contents
popularity level. The authors also think about the implementation in a distributed way by SDN/NFV
technical, i.e., the input layer is deployed on the sink node, while the rest layers are implemented on the
main controller. A related work applying auto encoder in 5G network proactive caching can be found
in Reference [74]. In Reference [75], two auto encoders are utilized for extracting the features of users
and content, respectively. Then, the extracted information is explored to estimate popularity at the
core network. Similarly, the auto encoder in Reference [76] is for spatio-temporal popularity features
extraction and auto encoders work collaboratively in Reference [77] to predict top K popular videos.

4.4. DRL

In Reference [78], the authors concentrate on the influence of caching strategies on energy
consumption of ultra dense network in the scenario where the popularity is dynamic and unknown.
In order to associate contents and cache positions, a DRL algorithm with prioritized experience replay,
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dueling structure, as well as RNN, is proposed. Simulation indicates it is good at both stationary and
dynamic popularity scenarios. The authors in Reference [81] study the problem of caching 360◦ videos
and virtual viewports in FBSs with unknown content popularity. The virtual viewport represents the
most popular tiles of a 360◦ video over users’ population. A DQN is introduced to decide which tiles
of a video to be hosted and in which quality. Additionally, Reference [82] employs DQN for content
eviction decision offering a satisfactory quality of experience, and Reference [83] is for the purpose
of minimizing energy consumption. In Reference [84], the authors also apply DQN to decide cache
eviction in a single BS. Moreover, the critic is generated with stacking LSTM and FNN to evaluate Q
value and an external memory is added for recording learned knowledge. To improve the prediction
accuracy, the Q value update is determined by the similarity of the estimated value of critic and
recording information in the external memory, instead of critic domination. Reference [86] puts forth
DQN a two-level network caching, where a parent node links with multiple leaf nodes to cache content
instead of a single BS. In Reference [79], a DRL framework with Wolpertinger architecture [101] is
presented for content caching at BSs. The Wolpertinger architecture is based on actor-critic model
and performs efficiently in large discrete action space. Reference [79] employs two FNNs working
as actor and critic, respectively, where the former determines requested content is cached or not and
the later estimates the reward. The whole framework consists of two phases: in the offline phase,
these two FNNs are trained in supervised learning; in the online phase, the critic and actor update
via the interaction with environment. The authors extend their work to a multi agent actor-critic
model for decentralized cooperative caching at multiple BSs [80]. In Reference [85], an actor-critic
model is used for solving the cache replacement problem, which balances the data freshness and
communication cost. The aforementioned papers put attention on network performance while they
ignore the influence of caching on information processing and resource consumption. Therefore,
authors of Reference [87] design cache policy considering both network performance during content
transmission and processing efficiency during data consumption. A DQN is employed to determine
the number of chunks of the requested file to be updated. During the training process, the authors in
Reference [87] also compare the performance between dueling DQN and original DQN. According to
their simulations, dueling DQN does not outperform the original DQN but consumes more time to
convergence, which contradicts the cognition that dueling DQN accelerates the training [8]. One proper
reason is the action space is not large enough as shown in paper [53]. The paper [88] investigates a
joint cache replacement and power allocation optimization problem to minimize latency in a downlink
F-RAN. A DQN is proposed for finding a suboptimal solution. Though Reference [89] is regarded
as solving what to cache problem, like Reference [79–88,102], the reinforcement learning approach
plays a different role. In Reference [89], a DNN is utilized for content popularity prediction and then
an RL is used for DNN hyperparameters tuning instead of determining caching content. Therefore,
the action space consists of choosing model architectures (i.e., CNN, LSTM, etc.), number of layers,
and layer configurations.

In Reference [90], the authors generate an optimization model with the aim of maximizing
network operator’s utility in mobile social networks under the framework of mobile edge computing,
in-network caching and D2D communications (3C). The trust value which if estimated through
social relationships among users are also considered. Then, a DQN model is utilized for solving
the optimization problem, including determining video provider and subscriber association,
video transcoding offloading, and the video cache allocation for video providers. The DQN employs
two CNNs for the training process, where one generates target Q value and the other is for estimated
Q value. Unlike the conventional DQN, the authors in Reference [90] introduces a dueling DQN
structure, which helps achieve a more robust result. The authors also consider utilizing dueling
DQN model in different scenarios, like cache-enabled opportunistic interference alignment [91] and
orchestrating 3C in vehicular network [92]. Reference [93] provides a DDPG model to cope with
continuous valued control decision for 3C in vehicular edge networks. The work in Reference [102]
focuses on the cooperative caching policy at FBSs with maximum distance separable coding in ultra
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dense networks. A Q-learning model is utilized to determine caching categories and the content
quantity at FBSs during the off-peak duration. The authors also consider the performance of their
algorithm on continuous action cases because of action discretization. Compared with DDPG, there is
only a tiny performance gap in small-scale case. A very interesting result is that in large-scale case,
the proposed Q-learning model even slightly outperforms DDPG due to underfitting, which express
the complicated network structure of DDPG.

Reference [94] provides an optimization model which takes what to cache and content delivery
into consideration in the fog-enabled IoT network in order to minimize service latency. Since the
wireless signals and user requests are stochastic, an actor-critic model is engaged where the actor
makes decisions for requesting contents, while the critic estimates the reward. Especially, the action
space S consists of decision variables and reward function is a variant of the objective function.
In order to avoid converging to local optima, the nature policy gradient method is employed in
Reference [94]. A caching replacement strategy and dynamic multicast scheduling strategy are studied
in Reference [95]. In order to get a suboptimal result, an auto encoder is used to approximate the
state. Further, a weighted double DQN scheme is utilized for avoiding overestimation of Q value.
Reference [96] applies an RNN to predict content popularity by collecting historical requests and the
output represents the popularity in the near future. Then, the prediction is employed for cooperative
caching and computation offloading among MEC servers, which is modeled as an ILP problem.
For the purpose of solving it efficiently, a multi-agent DQN is applied where each user is viewed as
an agent. The action space consists of task local computing and offloading decision, as well as local
caching and cooperative caching determination. The reward is measured by accumulated latency.
The agent chooses its own action based on current state without cooperation. The where to cache,
what to cache, and content delivery decision of D2D network are jointly modeled in Reference [97].
Two RNNs, ESN and LSTM, are considered to predict mobile users’ location and requested content
popularity. Then, the prediction result is used for determining content categories and cache locations.
The content delivery is formulated as the actor-critic based DRL framework. The state spaces include
CSI, transmission distances, and communication power between the requested user and other available
candidates. The function of DRL is determining the communication link among users with the aim of
minimizing power consumption and content delay.

We notice that most papers prefer to use value-based model (critic) and value-policy-based
(actor-critic) model in DRL framework, but rare paper considers only the policy-based model
to solve data caching problem. One proper reason is that the search space of caching problem
is enormous so the policy-based model is easier to fall into local optimal solution, resulting in
poor performance. Though the value-based model is less stable, some variant structures are
utilized, like Double DQN, in Reference [95], to avoid value overestimation and dueling DQN,
in Reference [90–92], to improve robustness.

5. Research Challenges and Future Directions

A serious of open issues on content caching and potential research directions are discussed
in this section. We first extend the idea of content caching to virtual network function chain since
caching can be viewed as a specific network function. Then, we consider the caching for augmented
reality applications. Moreover, we notice that the cache dimensioning has not been covered yet by DL
methods. Finally, we debate the addition cost introduced by DL.

5.1. Caching as a Virtual Network Function Chain

The concept of Network Function Virtualization (NFV) has been firstly discussed and proposed
within the realms of the European Telecommunication Standardization Institute (ETSI) (Network
Functions Virtualization, An Introduction, Benefits, Enablers, Challenges, and Call for Action, ETSI,
2012 https://portal.etsi.org/NFV/NFV_White_Paper.pdf). The rationale is to facilitate the dynamic
provisioning of network services through virtualization technologies to decouple the service creation

https://portal.etsi.org/NFV/NFV_White_Paper.pdf
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process form the underlying hardware. The framework allows network services to be implemented
by specific chaining and ordering of a set of functions which can be implemented either on a more
traditional dedicated hardware, which, in this case, are called Physical Network Functions (PNFs),
alternatively, as Virtual Network Functions (VNFs), which is a software running on top of virtualized
general-purpose hardware. The decoupling between the hardware and the software is one of the
important considerations the other—equally important-—is that a virtualized service lend itself
naturally to a dynamic programmable service creation where VNF resources can be deployed as
required. Hence, edge cloud and network resource usage can be adapted to the instantaneous user
demand whilst avoiding more static over-provisioned configurations.

Within that framework, the incoming network service requests include the specification of the
service function chain that need to be created in the form of an ordered sequence of VNFs. For example,
different types of VNFs, such as a firewall or a NAT mechanism, need to be visited in a specific order.
In such a constructed service chain, each independent VNF requires specific underlying resources in
terms for example of CPU cycles and/or memory.

Under this framework, caching of popular content can be considered as a specialized VNF chain
function since inevitably delivery of the cached popular content to users will require a set of other
functions to be supported related to security, optimization of the content etc. However, the issue of
data caching and VNF chaining have evolved rather independently in the literature and the issue on
how to optimize data caching when seeing it as part of VNF chain is still an interesting open ended
issue. In this case, the aforementioned DL architectures can be applied to this augmented problem
where in addition to caching, the associated VNF issues need to be taken into account, such as VNF
chaining, routing, and hosting.

5.2. Caching for Mobile Augmented Reality (MAR) Applications and Digital Twins (DTs)

Mobile augmented reality (MAR) applications can be considered as a way to augment the physical
real-world environment with artificial computer-based generated information and is an area that has
received significant research attention recently. In order to successfully superimpose different digital
object in the physical world, MAR applications include several computationally and storage complex
concepts, such as image recognition, mobile camera calibration, and also the use of advanced 2D and
3D graphics rendering. These functionalities are highly computationally intensive and as such require
support from an edge cloud, in addition the virtual objects to be embedded in the physical world
are expected to be proactively cached closer to the end user so that latency is minimized. Ultra low
latency in these type of applications is of paramount importance so that to provide a photorealistic
embedding of virtual objects in the video view of the end user. However, since computational
and augmented reality objects need to be readily available, the caching of those objects should be
considered in conjunction with the computational capabilities of the edge cloud. In addition to the
above, when MAR is considered under the lenses of an NFV environment, the application might
inherently require access to some VNFs; therefore, the above discussion on VNF chaining for MAR
applications is also valid, in this case.

Recently, the concept of Digital Twin (DT) [103,104] has received significant research attention
due to the plethora of applications ranging from industrial manufacturing and health to smart cities.
In a nutshell, a DT can be defined as an accurate digital replica of a real world object across multiple
granularity levels; and this real world object could be a machine, a robot or an industrial process
or (sub) system. By reflecting the physical status of the system under consideration in a virtual
space open up a plethora of optimization, prediction, fault tolerance and automation process that
cannot be done using solely the physical object. At the core of DT applications is the requirement
of stringent two–way real time communication between the digital replica and the physical object.
This requirement inevitably requires support from edge clouds to minimize latency and efficient
storage and computational resources, including caching. In that setting, the use of the aforementioned
deep learning technologies will have a key role to play in order to provide high quality real time
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decision making to avoid misalignment between the digital replica of the physical object under
consideration. Efficient machine-to-DT connectivity would require capabilities similar to the above
mentioned augmented reality application, but, due to the continuous real-time control-loop operation,
DTs will require a completely new set of network optimization capabilities, and, in that frontier,
efficient caching and data-driven techniques will have a central role to play. Hence, as the research
regarding the inter-play between low latency communications and DTs is still in the embryonic stage,
there is significant scope in the investigation of suitable data-driven deep learning techniques to be
utilized for distributed allocation of caching and computing resources.

5.3. Deep Learning for Cache Dimensioning

As introduced in Section 2, cache dimensioning explores the appropriate cache size allocation for
content hosts, such as CRs and BSs. Disappointingly, there is rarely a paper that applies DL on cache
dimensioning decisions. One proper reason is lack of training data set in contrast to content popular
prediction, where we have historical user request log to train a DNN. In addition, the caching size
allocation affects the network performance and economic investment. Recently, network slicing has
been identified as an important tool to enable 5G to provide multi-services with diverse characteristics.
The slice is established on physical infrastructure including network storage. Therefore, it is a very
interesting topic to consider the allocation of the memory space to support content caching and
other storage services, which guarantees QoE and satisfies task requirements. Furthermore, for the
case lacking a training data set, DRL can be viewed as a promising technology to configure slicing
settings, as well as cache dimensioning. For the action space designing, it can be either discrete by
setting storage levels, or continuous which allocates the memory space directly. However, there are
requirements to design a caching-enabled network slicing model especially for dynamic allocation,
as well as associated DRL framework, including state space, detailed action space, reward function,
and agent structure.

5.4. The Cost of Deep Learning

Though the application of DL brings performance efficiency for caching policy, additional cost
introduced by DL is unneglected, since training and deploying the DL model require not only network
resources but also time duration. Naturally, there is a trade-off between the cost which DL-assisted
caching policy saved and the consumption which supports DL itself running, which indicates the
trading with DL results in either profit, loss, or break even. Therefore, where and when to apply DL
should be carefully investigated. This is especially the case for many deep learning frameworks that
utilize specialized processing cores in the form of Graphics processing units (GPUs) and for some
special scenarios, like DL on maritime IoT [105] and terrestrial satellite systems [106]. Moreover,
not only the DL architecture but also the implementation approach (i.e., centralized or distributed
deployment) would affect the balance between the cost saving and consuming, where the distributed
method can be supported by end user devices equipped with DL processing chip [107]. Besides, for the
purpose of reducing resource consumption and accelerating training process, some knowledge transfer
methods, like transfer learning [108], can be utilized, which can transform the knowledge already
learnt from the source domain to a relevant target domain.

6. Conclusions

This article presents a comprehensive study for the application of deep learning methods
in the area of content caching. Particularly, the data caching assignment is divided into two
classifications according to the caching location of edge network. Each category contains where
to cache, what to cache, cache dimensioning, and content delivery. Then, we introduce typical DNN
methods, which are categorized via training process into supervised learning, unsupervised learning,
and RL. Further, this paper critically compares and analyzes state-of-the-art papers on parameters,
such as DL methods employed, the caching problems solved, and the objective of applying DL.
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The challenges and research directions of DL on caching are also examined on the topic of extending
caching to VNF chains, the application of caching for MAR, as well as DTs, DL for cache size allocation,
and the additional cost of employing DL. Undoubtedly, DL is playing a significant role in 5G and
beyond. We hope this paper will increase discussions and interests on DL for caching policy design
and relevant applications, which will advance future network communications.
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