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Abstract: Active learning is the category of partially supervised algorithms that is differentiated by
its strategy to combine both the predictive ability of a base learner and the human knowledge so as
to exploit adequately the existence of unlabeled data. Its ambition is to compose powerful learning
algorithms which otherwise would be based only on insufficient labelled samples. Since the latter kind
of information could raise important monetization costs and time obstacles, the human contribution
should be seriously restricted compared with the former. For this reason, we investigate the use
of the Logitboost wrapper classifier, a popular variant of ensemble algorithms which adopts the
technique of boosting along with a regression base learner based on Model trees into 3 different active
learning query strategies. We study its efficiency against 10 separate learners under a well-described
active learning framework over 91 datasets which have been split to binary and multi-class problems.
We also included one typical Logitboost variant with a separate internal regressor for discriminating
the benefits of adopting a more accurate regression tree than one-node trees, while we examined
the efficacy of one hyperparameter of the proposed algorithm. Since the application of the boosting
technique may provide overall less biased predictions, we assume that the proposed algorithm,
named as Logitboost(M5P), could provide both accurate and robust decisions under active learning
scenarios that would be beneficial on real-life weakly supervised classification tasks. Its smoother
weighting stage over the misclassified cases during training as well as the accurate behavior of M5P are
the main factors that lead towards this performance. Proper statistical comparisons over the metric of
classification accuracy verify our assumptions, while adoption of M5P instead of weak decision trees
was proven to be more competitive for the majority of the examined problems. We present our results
through appropriate summarization approaches and explanatory visualizations, commenting our
results per case.

Keywords: active learning; Logitboost wrapper classifier; M5P regressor; boosting technique; human
annotations; label and unlabeled data; weakly supervised learning

1. Introduction

Without a doubt, the last two decades have been characterized by massive production of data
with regards to the fields of Computer Science (CS) and Artificial Intelligence (AI). Several real-life
applications contribute to this phenomenon, operating as rich sources of data over all possible
kinds: structured, semi-structured or unstructured [1,2]. We distinguish the next fields: social media
platforms, economic transactions, medical recordings and Internet of Things (IoT) where Industry 4.0,
constitutes a highly affected application coming from the latter field [3–5]. Although these applications
offer advanced mechanisms for producing the necessary data under automated protocols and/or
mechanisms, they still, in their majority, cannot address the data annotation under a similar and still
accurate manner.
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Therefore, the most widely known variant of Machine Learning (ML) algorithms, the supervised
ones, do not stand as a proper solution for obtaining informative insights over the collected data,
since the restricted number of annotated examples that may be acquired, even by a manual procedure,
do not establish a sufficient training subset. Weakly Supervised Learning (WSL) and/or Partially
Supervised Learning (PSL) approaches tackle this problem, trying to exploit the existence of the clearly
larger amounts of non-annotated examples in order to mine useful information that might hide based
on the aforementioned available annotated examples [6,7].

Different approaches of WSL and/or PSL approaches have been recorded in the related literature
since their emergence. The common factor is the much smaller size of the labeled subset (L) against the
corresponding unlabeled subset (U), while the most important points over which they differentiate are
the following [8]:

• inductive/transductive approaches, where an explicit learning rule is formatted using the train set
during the former one, trying to apply this on a distinct test set, while these two sets are both
provided in advance during the latter;

• incomplete/inaccurate supervision, where both labeled and unlabeled examples are initially
gathered regarding the first category, on contrast with the second one which is distinguished
because of the noise that may govern the provided labeled examples, a fact that would cause
intense deterioration on learning a specific task; and

• active/semi-supervised learning, where there is a straightforward separation of the approaches
that need or demand human intervention so as to blend human’s knowledge into their total
learning kernel for acquiring safer decisions instead of being based solely on a base learner’s
predictions building a more automated learning chain but with greater risks.

Following the recipes of WSL/PSL approaches, the abundance of collected unlabeled data might
act as a valuable source of information, reducing the negative effect of the difficulty on obtaining much
labeled data, because of the inherent difficulties that take place on several domains. Ethical issues,
scarcity of specific incidents and highly expensive labeling procedures are some of the obstacles that
usually prevent us from handling successfully the creation of a large enough L per case [9]. However,
based on the assumption that both L and U are produced from the same underlying data distribution P,
the connection between the conditional distribution P

(
y
∣∣∣x) and the marginal distribution P(x) could

lead potentially to more accurate learning functions: f : X 7→ Y , where x = {x1, x2, . . . , xN} stands for
a typical example with N features while y symbolizes the label that accompanies any such sample,
being either known or unknown in the cases of L and U, respectively. Furthermore, through X, Y,
we depict the space of the examples and the labels.

In this work, we aim to propose an accurate and robust batch-based inductive Active Learning
(AL) algorithm for pool-based scenario, regarding the manner that the data are initially concerned.
The base learner of the proposed AL algorithm is based on the adoption of an ensemble learner into its
learning structure so as to cover efficiently the shortage of labeled data (li ε L) along with the existence
of a human oracle (Horacle) that may provide us with trustworthy annotations. At the same time, a quite
larger pool of unlabeled examples (ui ε U) is available for mining its context [10]. Since the need for
well-established predictions during the labeling stage of ui is one of the most crucial point during AL
strategies, the exploitation of ensemble learners seems mandatory in order to capture better the insights
of the examined data. Several recent works are also directed towards introducing ensemble learners
into AL or other WSL variants, such as Semi-supervised Learning (SSL) [11], Cooperative Learning
(CL) [12]—also known as AL + SSL [13,14]—or even Transfer Learning (TL) [15], while the field of
supervised ensemble learners is still in bloom [16].

In our case, we prefer the adoption of the Logitboost ensemble learner, a product of the well-known
procedure of generating ensemble learners through serially formatting a Generalized Additive Model
(GAM), which does not prevent us from adopting additive tree models, as follows:

fadditive(x) =
∑

M
w· f (x), (1)
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According to its strong theory, Logitboost manipulates the distribution of the training dataset
based on the errors that occur during their categorization, where M depicts the learning rounds of this
iterative procedure [17]. Following the generic concept of boosting, during the training stage, we fit a
number of learners f (·) which try to emphasize better on the instances that are misclassified. This is
made through the weighting vector w that enables the fitted learner to modify its decisions towards
covering the most difficult cases based on their weight factors. After M such rounds, we reach an
iteratively boosted learning function, which has ideally transformed to a strong learner by continuously
reducing the errors that the initial weak model and its previous variants faced.

Although the variant of AdaBoost is the most popular product of the boosting family algorithms,
Logitboost actually constitutes a choice that may reward us compared to some defects that AdaBoost
presents [18]. To be more specific, Logitboost uses a smoother weighting function than the default
AdaBoost classifier, a fact that allows to address better the examples that are highly misclassified
since the direction towards learning the proper mapping function per each learning round is not
heavily affected by them. Instead, their importance does not overwhelm the corresponding importance
of the examples with smaller misclassified errors, providing more robust confidence scores: p

(
y
∣∣∣x).

Taking into consideration that the choice of the most informative ui examples are more often than
not selected through suitable metrics that depend on p(yi

∣∣∣ui), such a behavior may be proven quite
successful in practice [19,20]. Additionally, the convergence of the Logitboost scheme is not violated,
as the general boosting procedure guarantees, since the logit-loss function which is described later is
asymptotically minimized.

The favoring properties of the Logitboost ensemble learner have also been noticed in the related
literature, although their cardinality is restricted. To be more specific, apart from using only univariate
regressors inside this scheme, generalized functions could also be applied, increasing thus the total
predictive ability but probably disrupting interpretability [21]. Otero and Sanchez proposed the
use of descriptive fuzzy learners inside Logitboost, modifying slightly the usual structure of default
fuzzy learners and overpassing the behavior of a similar fuzzy-based AdaBoost version [22], while a
modification of the internal scoring mechanism based on distance from the decision regions using
weak learners under Logitboost scheme was tested in [23]. Naive Bayes (NB) has also been combined
appropriately with this scheme, improving its total performance against other popular variants of
Bayesian Networks [24], while Logitboost’s operation was totally matched into the learning procedure
proposed by Leathart et al., introducing Probability Calibration Trees (PCT) in the context of regression
task, separating the input task space and fitting local predictors [25].

Logitboost autoregressive networks made use of the same scheme for modeling conditional
distributions, offering a procedure that could be parallelized, exploiting the advantages of boosting
ensembles for which the hyperparameters are clearly less than that of Neural Networks (NNs) and
appeared to converge for several examined cases into same values, at least for the shrinkage factor [26].
More sophisticated multi-class expansions of Logitboost could further improve its applicability as it
has been mentioned by the corresponding authors. This direction has been actually studied recently
by some works, providing interesting expansions of the default multi-class operation of Logitboost
scheme: Adaptive Base class (ABC) [27] and Adaptive One vs. One (AOSO) Logitboost [28].

Moreover, since the pool-based inductive AL strategies are inherently iterative procedures which
are based on a few initially provided data, exploiting appropriately at least one Horacle for detecting the
most informative ui—further analysis is presented on the next Section—the importance of obtaining
accurate predictions is highly considered, but time limitations may occur when much complex learning
models are embedded into these strategies. Trying to satisfy this trade-off under the Logitboost wrapper,
we propose the use of M5P, a model tree regressor that tackles efficiently high-dimensional data since
it builds linear models after having grown its preferred decision tree structure, taking advantage of its
widely accepted decent learning performance over various scientific fields [29,30]. On the other hand,
with the greedy manner under which Logitboost acts, although it is applied under a number of learning
rounds (M), its total complexity does not differentiate heavier than other state-of-the-art classification
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algorithms [27]. Thus, its integration under AL strategies would not induce prohibitive time response
in practice. Furthermore, since we maintain a regression tree as its base learner, both binary and
multi-class classification problems can be addressed efficiently without inserting further modifications
that would probably raise the computational complexity of the total algorithm.

Consequently, we propose the adoption of Logitboost(M5P) under pool-based AL classification
problems, exploiting its favoring properties both for selecting informative unlabeled instances and
for evaluating the final learning hypothesis, built into the gradually augmented L, based on the
annotations that a powerful human oracle provides us. This combination has been recently examined
in the scenario of SSL [31], presenting remarkable performance. For investigating the overall ability of
Logitboost(M5P) under AL scenario, we examined 91 different datasets, separated into binary and
multi-class under 3 different query strategies against the baseline strategy of Random Sampling (RS),
comparing its performance against 10 other well-known learning algorithms as well as the default
use of weak Decision Trees (DTs)—to be more particular, one-node trees [32]—into Logitboost, as it is
usually met in the literature and related ML packages [33]. A further study tuning one hyperparameter
of the proposed algorithm was also made, proving that its learning performance may still improve
under suitable preprocess stages which however are not easy to trust under the existence of limited
training instances.

More details regarding AL and a description of the proposed framework for examining the efficacy
of Logitboost(M5P) in the case of an AL ecosystem are provided in the next two sections, along with the
experimental procedure, the results and our comments, following the structure of the current journal.
The last section summarizes our contributions and the pros and cons of our proposed combination,
based mainly on our results, while future directions are posed.

2. Materials and Methods

The main reason that we resort to PSL methods is the coexistence of both L and U, while the
amount of the latter (size(U)) is much larger than of the former (size(L)): size(U)� size(L) [6]. One of
the subcategories of PSL algorithms is AL, where Settles has demonstrated a great survey work on this
kind of algorithms [10]. Trying not to present many details, we highlight the most important parts of
such a learning strategy.

First of all, we employ a probabilistic classifier (f ) acting towards two different directions:
searching for the most compatible uis and evaluating the final model after a predefined number of
iterations is reached or until any other set stopping criterion is satisfied. The first part is handled
by exploiting a proper sampling Query Strategy (QS) which defines a specific criterion or metric(
metricuse f ulness

)
, so as to measure the informativeness or the utility of all the available uis. In order to

detect the most convenient of them for creating a batch (B) of potentially informative uis so as to increase
the learning ability of the total AL learning procedure, we select the top b highly ranked instances:

QS : U ×Rnumber o f classes
→ B, with B ⊆ U, (2)

B : select top− b uis ∈ U from vector rank
(
metricuse f ulness(U, f (U))

)
, (3)

where B is actually a subset of the applied U during each iteration. The second is resolved through
employing one or more human oracles or sources of information, like known crowdsourcing platforms,
e.g., Amazon Mechanical Turk and CrowdFlower [34].

This means that, after having detected the B, we ask the available Horacle to assign the corresponding
label based on its knowledge background. Then, we merge the pairs of {B, Horacle(B)} with the initially
collected L during the first iteration or the current version of L for next iterations Liter, where iter
depicts the current iteration. Then, we refine f and repeat this procedure until a terminating condition
is satisfied. In contrast with pure SSL approaches or in general with the wide spectrum of WSL
approaches, the terminating condition of the empty U pool is not a realistic one here, since this would
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demand much effort on the side of the human factor. The participation of the latter introduces several
trade-off situations that should be considered carefully.

According to the related literature [20], there are 3 general kinds of QS models on the field of
pool-based AL and a group of hybrid ones that combine more than one strategy:

• heterogeneity-based,
• performance-based,
• representativeness-based, and
• hybrid ones,

where more details are provided in [35]. A quite important research orientation of the related
community is the proposal of a new QS, either introducing new metrics which may measure a behavior
that seems more favorable for specific tasks [36,37] or trying to capture better the reasoning of some
choices made by similar methods [38]. One representative work related to this last category is the work
of Vu-Linh Nguyen et al. [39], exploring further Uncertainty Sampling (UncS) QS, discriminating this
into epistemic and aleatoric sampling strategies, highlighting their differences and proposing the first
variant as more promising.

We actually adopted UncS in our AL framework, which tries to distinguish the ui instances for
which the applied learning algorithm being trained on Liter is less confident. For a binary problem,
such an instance would induce p(yi = 0

∣∣∣ui) ≈ p(yi = 1
∣∣∣ui) ≈ 0.5. This strategy favors time-efficient

solutions for the majority of ML algorithms because its time complexity demands a training stage of
f over Liter and an evaluation stage of Uiter. Since the cardinality of the former is smaller than the
latter, especially for low labeled Ratios (R)—where R is defined as the ratio of the initial L’s cardinality
against the total amount of both L and U—the needed computational resources can be bounded based
on the computational complexity of the base learner. Of course, the size of the batches (b) and the
number of executed iterations (k) also play important roles.

In order to investigate the efficiency of Logitboost(M5P) under UncS, we employed 3 separate
metrics inside this wrapper strategy, comparing them each time with the baseline of RS, where no
sophisticated criterion was assessed for selecting the participant ui of each batch but a random pick took
place before the corresponding batch was provided to Horacle. This strategy comes with no time costs
during the mining of U. This means that any examined QS should outreach this performance for being
qualified as a valid one for the concept of AL. The relationship of each of the utilized metricuse f ulness
(Least Confident: LConf, Smallest Margin: SMar and Ent: Ent) is given here:

fLCon f (ui) = arg min
ui ∈U

p(y
∣∣∣ui), (4)

fSMar(ui) = arg min
ui ∈U

[
p
(
y1

∣∣∣ui
)
− p

(
y2

∣∣∣ui
)]

, (5)

fEnt(ui) = arg max
ui ∈U

−

∑
y

p(y
∣∣∣ui) log p(y

∣∣∣ui), (6)

where p(y
∣∣∣ui) is the confidence of the base learner on the examined ui, while Equation (5) computes

the difference between the two most probable classes y1 and y2 of the same ui so as to return the most
compatible choice from the available into U.

With regards to the proposed base learner, Logitboost(M5P), more details are given here.
Logitboost is an additive logistic regression algorithm that can be seen as a convex optimization
problem. An additive model, like simple linear models or regression trees, for solving a binary problem
has the function of the following form:

fLogitboost(x) = sign( fadditive(x)) = sign
(∑M

m=1
wm·hm(x;γm)

)
, (7)
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where m is the number of classifiers, wm is the constants to be determined and hm is the chosen base
functions along with their internal parameters γm. Assuming now that fadditive(x) is the mapping
that we need to fit our strong aggregate hypothesis and hm is the separate weak hypotheses, then the
two-class boosting algorithm is fit by minimizing the next criterion:

JLogitBoost( fadditive(x)) = ε
[
−log

(
1 + e−2∗(y∗ fadditive(x))

) ]
, (8)

where y is the true class label and y· fadditive(x) is the voting margin term [40], while ε[·] denotes the
expected value.

Adopting the negative binomial log-likelihood does not affect the minimizer of Equation (8)
compared with the typical boosting function, enabling at the same time a smoother weighting of
examples for which predictions of Logitboost learner are far away from the discriminating decision
threshold, constituting a great asset. This procedure takes place using the Newton-like steps, a more
complicated optimization process than in the case of exponential loss function of AdaBoost algorithm.
However, this fact does not affect the ambition of minimizing the set loss function during the
training process.

Regression trees are known for their ability to deal efficiently with large datasets in terms of both
features and instances, added to their simplicity and robustness [41]. The M5P regressor is a recreation
of M5 algorithm [42], where the portion of the dataset that reaches the leaf is classified by a linear
regression model stored in each branch of the tree. For the dataset split, certain attributes are chosen
using the standard deviation error (SDR) as a criterion for the best attributes to split the dataset at each
node. The chosen attribute is the one with the maximum expectation to error reduction:

SDR = SD(Tree) −
∑ Treei

Tree
∗ SD(Treei), (9)

where Treei refers to the subset of examples that have the ith result of the potential test and SD(·) refers
to the standard deviation of its argument. The stopping criteria is either the number of remaining
instances to reach a certain number or a very small change in class value.

The successful competition of M5P against other regression trees or other conventional ML learners
has been stated in recent literature [30,43,44]. Its exploitation under the wrapper scheme of Logitboost
could lead to a robust classifier that operates on the field of AL, both for choosing informative ui
instances and for providing remarkable classification performance. Moreover, possible inaccurate
predictions that would appear because of either a shortage of li that covers the total range of the output
values or weak indicators originally existing in the feature space of a dataset could be alleviated by the
smooth weighting function that Logitboost applies, avoiding the overfitting phenomena that might
discard its decisions [45].

The last mechanism that needs to be described before more technical details of the experimental
procedure is the increase in L during the iterative process of a typical AL environment. To be more
specific, the queried instances (b) are chosen in batches. The size of each batch relies on the size of the
initial labeled set of each dataset and the number of predefined iterations (k). This happens because
we adopted an augmenting strategy that aims to double the size of the labeled instances at the final
(kth) iteration of the experiment. According to this concept, the steady value of the parameter b per
dataset is computed as follows:

b =

⌊
size(L)

k

⌋
, (10)

Thus, to execute a complete AL experiment fairly, we adopted a flexible process for which the
pseudocode is placed in Algorithm 1. Initially, we start with size(L) collected labeled instances, and before
the final evaluation, 2*size(L) instances are gathered, where the additional labeled instances have been
assigned with pseudo-labels by Horacle after their selection through the combined interaction of any
chosen QS and our selected base learner. During each iteration, a batch B that consists of b instances is
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extracted from the U subset and is added along with the decisions of the employed Horacle into the current
L subset. For the evaluation process, a test set is used to examine the accuracy of the Logitboost(M5P),
which is now trained on the augmented labeled set through the process of the AL. The total procedure is
as follows:

Algorithm 1 Active learning scheme

1: Mode:
2: Pool-based scenario over a provided dataset D = Xn x N

⋃
Yn x 1

3: xi—i-th instance vector with N features xi: <x1, x2, . . . xN> ∀ 1 ≤ i ≤ n
4: yi—scalar class variable with yi ∈ {0, 1} or unknown ∀ 1 ≤ i ≤ n
5: n—number of instances n = size(L) + size(U)
6: B—batch of unlabeled samples that are labeled per iteration
7: Input:
8: Liter (Uiter)—(un)labeled instances during the iter-th iteration, Liter

⊂ D, Uiter
⊂ D

9: k—number of executed iterations
10: base learner—the selected classifier
11: QS(metric)—the selected Query Strategy along with its embedded metric
12: Preprocess:
13: b—size of batch B computed by Equation (10)
14: Main Procedure:
15: Set iter = 1
16: While iter < k do

17: Train base learner on Liter

18: Assign class probabilities over each ui ∈ Uiter

19: Rank ui according to QS(metric)
20:Select the top-b ranked ui formatting current B
21: Provide batch B to human oracle and obtain their pseudo-labels: Horacle(B)
22: Update L: Liter+1

← Liter ⋃
{B, Horacle(B)}

23: Update U: Uiter+1
← Uiter

\{B}
24: iter = iter + 1

25: Output:
26: Train base learner on Lk for predicting class labels of test data

3. Results

More technical details are revealed in this section to both describe better the volume of our
executed experiments trying to better clarify the importance of the Logitboost(M5P) as a robust
inductive learner under the AL concept and to favor the reproducibility of the total experimental
procedure. Therefore, we firstly describe the basic properties of the examined datasets, providing later
the details of the experimental phase regarding mainly the parameters of the compared algorithms as
well as the open-source platform that we utilized to execute them. Finally, we share a link with all the
produced results and visualizations due to lack of space.

3.1. Data

All of the mined datasets come from the well-known University of California-Irvine (UCI)
repository [46]. The next two figures represent their formulation, having separated them based on the
number of class into binary and multi-class datasets. Thus, in Figure 1, the third column—depicting the
number (#) of classes—contains recordings equal to 2 for all datasets, while in Figure 2, this parameter
varies from 3 to 28 for our case. The last column depicts the ratio that the class with the most instances
(majority class) and the class with the least instances (minority class) capture against the rest ones.
In the former case (Table 1), these two values sum up to 100%, while in the latter case, we added the
corresponding ratios of the two most minor classes, since some datasets contain some extremely rare
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classes, and depicting only their contribution to the total instances would be neither convenient nor
informative for the reader. Therefore, the last column of all datasets with exactly 3 classes presented in
Table 2 sums up also to 100% (contribution of largest class/contribution of the two most minor classes),
while for the rest multiclass datasets, these values are not constrained. The fact that the majority of the
datasets are imbalanced sets some kind of difficulty over the examined AL algorithms, but this property
at the same time is met in the most remarkable challenging real-life problems. Thus, no preprocess
stage was applied for balancing the datasets based on the cardinality of their classes. One exception is
the “texture” dataset, which contains 11 classes with exactly 500 instances per each class, leading to
perfect balance.
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Table 1. Formulation of the examined binary class datasets.

Dataset n # of Classes N Categorical/Numerical Features Majority/Minority Class

appendicitis 106 2 7 0/7 80.189/19.811%
banana 5300 2 2 0/2 55.17/44.83%
bands 365 2 19 0/19 63.014/36.986%

breast-cancer 286 2 9 9/0 70.28/29.72%
breast-w 699 2 9 0/9 65.522/34.478%

breast 277 2 9 9/0 70.758/29.242%
bupa 345 2 6 0/6 57.971/42.029%
chess 3196 2 36 36/0 52.222/47.778%

coil2000 9822 2 85 0/85 94.034/5.966%
colic 368 2 22 15/7 63.043/36.957%

colic.orig 368 2 27 20/7 66.304/33.696%
credit-a 690 2 15 9/6 55.507/44.493%
credit-g 1000 2 20 13/7 70.0/30.0%

crx 653 2 15 9/6 54.671/45.329%
diabetes 768 2 8 0/8 65.104/34.896%
german 1000 2 20 13/7 70.0/30.0%

haberman 306 2 3 0/3 73.529/26.471%
heart-statlog 270 2 13 0/13 55.556/44.444%

heart 270 2 13 0/13 55.556/44.444%
hepatitis 155 2 19 13/6 79.355/20.645%

housevotes 232 2 16 16/0 53.448/46.552%
ionosphere 351 2 34 0/34 64.103/35.897%

kr-vs-kp 3196 2 36 36/0 52.222/47.778%
labor 57 2 16 8/8 64.912/35.088%
magic 19,020 2 10 0/10 64.837/35.163%

mammographic 830 2 5 0/5 51.446/48.554%
monk-2 432 2 6 0/6 52.778/47.222%

mushroom 8124 2 22 22/0 51.797/48.203%
phoneme 5404 2 5 0/5 70.651/29.349%

pima 768 2 8 0/8 65.104/34.896%
ring 7400 2 20 0/20 50.486/49.514%

saheart 462 2 9 1/8 65.368/34.632%
sick 3772 2 29 22/7 93.876/6.124%

sonar 208 2 60 0/60 53.365/46.635%
spambase 4597 2 57 0/57 60.583/39.417%

spectfheart 267 2 44 0/44 79.401/20.599%
tic-tac-toe 958 2 9 9/0 65.344/34.656%

titanic 2201 2 3 0/3 67.697/32.303%
twonorm 7400 2 20 0/20 50.041/49.959%

vote 435 2 16 16/0 61.379/38.621%
wdbc 569 2 30 0/30 62.742/37.258%

wisconsin 683 2 9 0/9 65.007/34.993%

Table 2. Formulation of the examined multi-class datasets.

Dataset n # of Classes N Categorical/Numerical Features Majority /Minority Class

abalone 4174 28 8 1/7 16.507/0.048%
anneal 898 6 38 32/6 76.169/0.891%

anneal.orig 898 6 38 32/6 76.169/0.891%
audiology 226 24 69 69/0 25.221/0.884%

automobile 159 6 25 10/15 30.189/10.063%
autos 205 7 25 10/15 32.683/1.463%

balance-scale 625 3 4 0/4 46.08/53.92%
balance 625 3 4 0/4 46.08/53.92%

car 1728 4 6 6/0 70.023/7.755%
cleveland 297 5 13 0/13 53.872/16.162%
connect-4 67,557 3 42 42/0 65.83/34.17%

dermatology 358 6 34 0/34 31.006/18.995%
ecoli 336 8 7 0/7 42.56/1.19%
flare 1066 6 11 11/0 31.051/12.946%
glass 214 7 9 0/9 35.514/4.206%

hayes-roth 160 3 4 0/4 40.625/59.375%
heart-c 303 5 13 7/6 54.455/0.0%
heart-h 294 5 13 7/6 63.946/0.0%

hypothyroid 3772 4 29 22/7 92.285/2.572%
iris 150 3 4 0/4 33.333/66.666%

kr-vs-kp 28,056 18 6 6/0 16.228/0.374%
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Table 2. Cont.

Dataset n # of Classes N Categorical/Numerical Features Majority /Minority Class

led7digit 500 10 7 0/7 11.4/16.4%
letter 20,000 26 16 0/16 4.065/7.34%

lymph 148 4 18 15/3 54.73/4.054%
lymphography 148 4 18 15/3 54.73/4.054%

marketing 6876 9 13 0/13 18.252/15.008%
movement_libras 360 15 90 0/90 6.667/13.334%

newthyroid 215 3 5 0/5 69.767/30.232%
nursery 12,960 5 8 8/0 33.333/2.546%

optdigits 5620 10 64 0/64 10.178/19.716%
page-blocks 5472 5 10 0/10 89.784/2.102%

penbased 10,992 10 16 0/16 10.408/19.196%
post-operative 87 3 8 8/0 71.264/28.735%
primary-tumor 339 22 17 17/0 24.779/0.295%

satimage 6435 7 36 0/36 23.823/9.728%
segment 2310 7 19 0/19 14.286/28.572%
shuttle 57,999 7 9 0/9 78.598/0.039%

soybean 683 19 35 35/0 13.47/3.221%
tae 151 3 5 0/5 34.437/65.563%

texture 5500 11 40 0/40 9.091/18.182%
thyroid 7200 3 21 0/21 92.583/7.417%
vehicle 846 4 18 0/18 25.768/48.581%

As it concerns the rest of the information that characterizes the structure of our examined datasets,
we mention that their cardinalities range from 57 (“labor”) to 67,557 instances (“connect-4”), while their
feature space ranges from 2 (“banana”) to 90 (“movement-libras”), covering thus a wide spectrum
of cases regarding these two properties. Additionally, the 5th column distinguishes and counts
accordingly the number of categorical and numerical features. Analogous to their participation,
there are datasets for which features are related solely with one category (numerical or nominal) or
with both of them, usually called mixed.

3.2. Active Learning Components

3.2.1. Classifiers

In order to investigate properly the distinguishing ability of the proposed combination of
Logitboost with the M5P under the AL concept, 7 different classifiers have been selected so as to
operate under the same AL framework, as this was combined in Algorithm 1. Some brief details of
these classifiers along with their original references are recorded here:

• k-Nearest Neighbors [47], the most representative classification algorithm from the family of lazy
learners, also referred to as an instance-based algorithm since it does not consume any resources
during the training stage. Instead, it computes based on appropriate distance metrics the k-nearest
neighbors of each test instance and exports its decision through a simple majority vote about the
class of the latter one. Three different variants of this algorithm were included: 1-NN, 3-NN and
5-NN, increasing the value of the k parameter;

• Decision Trees (DTs) [48], where J48 and Random tree algorithms from this category were preferred.
The first one constitutes a popular implementation of C4.5 generating a pruned variant that
exploits Gain Ratio to determine how to split the tree, while the second one considers just a
randomly chosen subset of the initial feature space before growing an unpruned decision tree.
Logistic Model Trees (LMT) [49] was also employed as a powerful ensemble algorithm. Based on
this, a tree structure is suitably grown, but proper logistic regression models are built at its leaves,
exploiting in this manner only the most relevant attributes;

• JRip [50], a rule-based learner that tries to produce rules so as to capture all the included instances
into the provided training set;
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• Naive Bayes (NB) [51], a simple Bayesian-based method that assumes that all the features inside
the original feature space are independent. Although this assumption seldom holds, especially in
real-life cases, this generative approach has found great acceptance at the literature; and

• AdaBoost (Ada) [18], the most popular boosting algorithm that minimizes exponential loss.

As all the mentioned algorithms as well as the proposed combined Logitboost(M5P) learner
were considered, they were mined from the Waikato Environment for Knowledge Analysis (WEKA)
environment [33], keeping the default parameters of all their original implementations, enforcing the
reproducibility and conducting fair comparisons.

3.2.2. Experiment Details

Considering the evaluation of our results, we applied a 3-fold-cross-validation procedure (3-CV)
where the 2 out of three folds were held for the training data and the rest was for testing. Afterwards,
the training data were split to L and U under 4 different R values: 5%, 10%, 15% and 20%. After executing
15 iterations, the size of the labeled data compared to the total training data increased to 10%, 20%,
30% and 40%, respectively. This procedure was repeated 3 times per case, executing a 3 × 3-CV
evaluation stage. For implementing our pool-based experiments with the UncS and the aforementioned
metrics, along with the RS strategy, we used the ‘Java Class Library for Active Learning’ (JCLAL)
library, a Java-based library that interacts directly with the WEKA facilitating the use of the algorithm
classifiers in this framework [52]. Furthermore, we conducted the next comparisons (the proposed
learner versus 1. simple or 2. ensemble learners) regarding the classification accuracy (Acc%) metric,
verified later by a nonparametric statistical comparison process:

1. Logitboost(M5P) vs. 1-NN vs. 3-NN vs. 5-NN vs. J48 vs. JRip vs. NB vs. RandomTree
2. Logitboost(M5P) vs. Logitboost(DStump) vs. Bagging(J48) vs. Ada(DStump) vs. LMT

The second set of comparisons is an investigation between the learning behavior of the proposed
combination of M5P under the Logitboost scheme with the default Logitboost, which exploits the
Decision Stump algorithm (DStump) [32], a simple one-node tree that discriminates each example using
only one feature which acts as the root of this simplified tree. Additionally, the well-known Bagging
scheme along with the J48 algorithm has been also examined for consistency reasons, comparing our
proposed base learner with another ensemble approach, based again on DTs [53,54] along with the
Ada and LMT learning approaches that have found great acceptance in practice.

3.3. Figures, Tables and Schemes

Here, we record the results of the smallest R-based scenario (R = 5%) only for the UncS(Ent) QS.
We provide two tables for each comparison setting, separating thus on binary and multi-class datasets
(Tables 3–6).

Table 3. Classification accuracy of the Logitboost(M5P) against the selected simple base learners for
binary datasets under UncS(Ent) strategy with R = 5%.

Datasets Logitboost
(M5P) 1NN 3NN 5-NN J48 JRip Random

Tree NB

appendicitis 75.84 80.56 82.07 81.13 80.16 80.47 79.59 78.63
banana 87.06 84.86 84.69 86.64 71.54 78.87 83.30 83.08
bands 58.63 46.76 40.08 39.00 50.96 39.09 42.56 46.76

breast-cancer 66.08 72.15 70.63 69.82 70.15 70.40 67.03 67.84
breast-w 95.66 88.75 93.66 94.90 87.94 86.55 88.08 90.10

breast 69.92 72.31 71.71 72.68 69.67 69.18 69.32 69.47
bupa 61.26 48.21 44.25 44.06 49.37 43.29 52.17 52.24
chess 97.68 80.44 79.81 79.62 92.98 88.64 82.64 89.66

coil2000 92.63 92.49 93.71 93.99 94.03 94.02 91.54 92.73
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Table 3. Cont.

Datasets Logitboost
(M5P) 1NN 3NN 5-NN J48 JRip Random

Tree NB

colic.ORIG 66.39 64.77 66.75 65.67 66.13 69.85 67.21 67.82
colic 78.54 72.47 66.56 69.84 63.05 64.95 62.05 68.51

credit-a 81.74 67.83 63.86 67.54 84.30 70.58 64.30 72.21
credit-g 69.47 69.43 70.53 70.13 67.27 69.87 67.27 68.87

crx 79.48 68.30 62.62 67.59 86.17 70.48 60.59 70.18
diabetes 71.22 67.62 65.93 65.67 68.32 66.62 68.84 68.89
german 69.23 69.34 70.57 70.47 69.97 69.83 67.14 68.73

haberman 72.22 43.14 32.57 31.92 42.16 31.70 40.74 48.22
heart-c 77.23 68.32 66.12 70.85 64.25 58.64 60.62 65.49
heart-h 73.36 73.47 74.94 69.05 65.99 67.12 66.78 69.09

heart-statlog 75.06 72.96 63.21 63.95 70.25 59.26 65.68 66.67
heart 74.81 72.35 61.98 65.93 63.95 62.35 63.58 66.91

hepatitis 78.28 59.84 61.76 64.37 54.01 46.23 44.93 56.48
housevotes 96.11 90.51 89.50 90.80 88.49 93.81 87.04 92.32
ionosphere 84.52 79.68 73.03 69.80 65.62 53.37 59.45 65.78
kr-vs-kp 97.48 80.09 80.03 80.04 90.93 91.28 83.07 90.61

labor 76.02 53.80 74.27 49.71 42.69 44.44 52.05 57.50
magic 84.53 76.82 74.21 77.20 80.64 79.67 79.44 81.21

mammographic 81.65 65.46 63.38 61.21 66.75 64.58 70.20 72.14
monk-2 98.30 73.53 71.60 70.14 97.22 95.52 81.40 91.74

mushroom 99.77 99.98 99.98 99.98 98.52 99.20 99.10 99.36
phoneme 81.49 78.23 74.17 76.17 73.30 72.48 76.49 76.82

pima 71.09 65.45 66.71 65.58 66.84 65.32 69.70 68.71
ring 89.20 76.50 73.08 69.57 81.28 65.74 79.53 78.16

saheart 62.63 63.35 65.44 66.09 64.86 66.02 63.28 63.97
sick 98.37 94.72 95.23 95.09 95.64 96.34 94.87 96.53

sonar 65.71 55.77 49.35 48.56 56.89 48.22 56.07 56.67
spambase 90.80 75.26 71.53 71.03 85.87 84.48 79.52 84.93
spectfheart 73.03 47.44 49.56 44.57 56.05 45.44 49.94 56.14
tic-tac-toe 83.61 76.23 71.99 70.84 65.62 68.23 68.09 73.31

titanic 77.92 77.62 77.09 77.16 73.80 73.30 77.34 76.19
twonorm 96.23 91.39 91.25 93.58 78.45 79.34 77.03 84.20

vote 95.10 92.03 93.33 93.87 93.03 89.35 88.58 91.01
wdbc 95.66 88.69 88.70 91.04 84.29 81.43 86.18 87.76

wisconsin 96.10 87.85 95.17 95.90 87.26 87.94 88.96 91.00

Bold: the best value per dataset (row) achieved by all the included algorithms (columns).

Table 4. Classification accuracy of the Logitboost(M5P) against the selected simple base learners for
multi-class datasets under UncS(Ent) strategy with R = 5%.

Datasets Logitboost
(M5P) 1NN 3NN 5NN J48 JRip Random

Tree NB

abalone 22.03 17.42 17.38 21.92 20.84 11.48 17.25 16.92
anneal.ORIG 84.71 83.93 84.52 83.48 75.54 73.64 81.99 80.12

anneal 92.80 75.24 82.14 86.23 85.86 84.59 86.37 87.92
audiology 48.84 34.93 39.56 34.67 55.76 26.72 32.02 35.86
automobile 47.59 34.38 33.54 26.21 36.27 17.82 39.83 35.08

autos 43.74 28.61 21.95 18.84 37.88 11.21 35.93 30.29
balance-scale 85.60 73.39 77.60 79.78 64.37 61.55 67.68 71.61
balance 87.62 71.57 77.39 79.68 65.23 64.47 67.89 73.33

car 89.91 79.24 80.71 80.34 71.74 71.28 73.53 78.24
cleveland 50.84 55.44 55.56 55.22 52.97 53.20 52.19 52.08
connect-4 76.32 70.65 72.57 73.07 71.36 69.24 64.40 69.99
dermatology 93.95 80.43 90.79 91.72 66.88 53.79 63.98 70.57

ecoli 73.12 58.83 69.35 69.44 62.00 52.08 57.84 61.01
flare 72.95 66.57 67.10 63.44 61.92 67.86 64.20 68.33
glass 51.87 39.38 38.13 40.96 36.93 36.47 41.00 43.11

hayes-roth 51.89 44.54 43.13 40.61 41.69 41.88 49.64 47.80
hypothyroid 99.43 91.25 92.82 92.54 97.92 97.68 94.29 97.13

iris 83.78 85.33 85.11 83.56 64.22 43.78 71.56 66.37
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Table 4. Cont.

Datasets Logitboost
(M5P) 1NN 3NN 5NN J48 JRip Random

Tree NB

kr-vs-kp 47.88 39.74 40.16 39.96 30.66 15.50 28.88 30.75
led7digit 56.00 61.34 51.48 47.53 41.33 25.39 47.40 42.93

letter 88.49 79.07 75.23 73.98 62.63 58.19 56.75 67.81
lymph 74.77 65.51 69.82 69.57 55.90 55.64 61.49 63.96

lymphography 70.72 66.41 72.29 69.45 59.46 57.19 61.71 63.21
marketing 26.88 26.87 25.16 26.84 26.52 23.27 25.56 25.24
movement_libras38.15 39.54 33.98 32.22 24.44 10.37 20.56 23.02
newthyroid 83.84 81.87 83.41 85.86 76.87 71.48 79.86 78.39
nursery 99.57 85.59 87.92 86.25 88.12 82.81 83.16 88.51

optdigits 97.16 92.89 96.52 97.11 72.25 68.79 61.92 75.96
page-blocks 96.52 93.07 94.67 94.54 94.35 94.24 93.75 94.84
penbased 99.05 95.60 98.39 98.38 86.70 82.17 82.27 87.83
post-operative 68.20 68.58 70.88 71.26 71.26 71.26 67.43 68.97
primary-tumor 30.29 29.99 29.79 27.63 24.29 25.66 28.12 28.02
satimage 87.38 68.38 85.92 85.39 70.01 64.72 61.53 71.21
segment 94.49 86.81 88.74 86.58 85.11 77.52 78.14 83.38
shuttle 99.98 99.72 99.83 99.79 99.79 99.81 99.69 99.82

soybean 76.53 78.67 66.96 57.30 46.18 46.91 47.28 56.91
tae 45.26 38.41 34.24 37.95 36.41 33.80 40.59 39.88

texture 98.21 90.79 94.53 95.28 80.82 75.14 70.76 81.37
thyroid 99.60 62.75 81.70 87.46 98.92 98.60 93.14 97.11
vehicle 70.57 45.90 40.70 45.11 45.63 39.95 46.22 52.25
vowel 49.43 26.33 14.04 15.79 35.35 18.72 26.73 31.63

waveform-5000 82.65 63.79 68.40 75.93 68.51 62.35 59.89 68.30
wine 96.63 77.70 84.62 86.15 60.07 46.28 55.10 66.00

winequalityRed 51.53 33.25 47.07 47.59 37.92 35.81 31.08 39.48
winequalityWhite49.16 37.31 45.12 45.15 41.00 35.08 34.18 39.47

yeast 51.84 37.71 39.92 46.45 36.07 30.21 33.76 38.61
zoo 26.43 75.55 81.55 68.26 60.24 41.24 50.69 39.45

banana 87.06 84.48 83.35 59.25 71.91
bands 58.63 49.32 47.21 55.14 57.90

breast-w 95.66 91.28 90.32 92.61 95.52
chess 97.68 90.00 95.78 84.38 98.14

Bold: the best value per dataset (row) achieved by all the included algorithms (columns).

Table 5. Classification accuracy of the Logitboost(M5P) against the selected ensemble base learners for
binary datasets under UncS(Ent) strategy with R = 5%.

Datasets Logitboost
(M5P)

Logitboost
(DStump)

Bagging
(J48)

Ada
(DStump) LMT

coil2000 92.63 92.30 93.49 94.03 94.03
credit-a 81.74 72.75 81.06 84.88 79.76
credit-g 69.47 68.53 69.53 70.63 69.80
german 69.23 68.37 68.73 70.47 69.47

heart-statlog 75.06 69.14 60.25 70.49 70.25
housevotes 96.11 91.82 94.67 94.82 95.25
ionosphere 84.52 69.92 62.20 74.45 83.86

kr-vs-kp 97.48 90.39 95.58 86.57 98.04
magic 84.53 81.73 82.88 77.14 84.33

mammographic 81.65 74.66 79.52 79.92 80.97
monk-2 98.30 90.48 97.22 95.76 93.98

mushroom 99.77 99.41 99.36 97.58 99.60
phoneme 81.49 78.26 80.47 72.25 79.42

pima 71.09 69.84 69.01 70.66 73.13
ring 89.20 82.30 87.62 49.51 83.88
sick 98.37 96.59 98.12 97.52 98.34

sonar 65.71 59.48 52.57 60.73 60.28
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Table 5. Cont.

Datasets Logitboost
(M5P)

Logitboost
(DStump)

Bagging
(J48)

Ada
(DStump) LMT

spambase 90.80 85.08 89.66 83.76 92.70
spectfheart 73.03 59.70 49.44 69.91 72.28
tic-tac-toe 83.61 75.01 67.40 69.07 72.41

titanic 77.92 77.15 78.27 77.66 77.56
twonorm 96.23 85.82 86.36 84.81 97.79

vote 95.10 91.56 88.35 92.72 85.06
wdbc 95.66 89.87 85.76 94.38 97.01

wisconsin 96.10 92.02 92.97 92.97 96.58

Bold: the best value per dataset (row) achieved by all the included algorithms (columns).

Table 6. Classification accuracy of the Logitboost(M5P) against the selected ensemble base learners for
multi-class datasets under UncS(Ent) strategy with R = 5%.

Datasets Logitboost
(M5P)

Logitboost
(DStump)

Bagging
(J48)

Ada
(DStump) LMT

abalone 22.03 18.73 19.94 16.73 22.73
anneal.ORIG 84.71 82.27 76.80 75.57 82.75

anneal 92.80 89.03 85.15 77.02 92.28
audiology 48.84 38.91 49.10 33.90 54.27

automobile 47.59 40.83 37.11 23.48 43.40
balance-scale 85.60 74.96 71.84 49.81 84.00

balance 87.62 76.28 66.98 55.90 85.49
car 89.91 80.56 78.34 70.79 87.29

cleveland 50.84 51.70 53.87 53.98 53.20
connect-4 76.32 70.24 72.67 65.83 73.44

dermatology 93.95 76.17 86.31 48.70 93.02
ecoli 73.12 63.99 68.15 62.00 71.73
flare 72.95 68.49 68.73 53.47 69.20
glass 51.87 45.33 40.80 38.95 42.39

hayes-roth 51.89 49.78 45.24 48.12 46.27
hypothyroid 99.43 96.95 99.51 93.83 99.11

iris 83.78 73.90 70.22 80.00 73.56
kr-vs-kp 47.88 35.84 33.56 10.04 40.32
led7digit 56.00 48.78 47.00 14.94 57.00

letter 88.49 71.02 68.15 6.91 78.27
marketing 26.88 25.89 26.59 18.64 29.35

movement_libras 38.15 27.24 24.35 10.93 40.37
newthyroid 83.84 80.70 78.79 81.26 89.15

nursery 99.57 90.41 90.74 64.54 95.40
optdigits 97.16 78.35 81.60 18.74 95.07

page-blocks 96.52 95.04 96.06 92.60 96.64
penbased 99.05 89.72 91.95 20.52 97.45

primary-tumor 30.29 28.81 24.39 25.86 24.98
satimage 87.38 73.37 81.66 33.63 83.01
segment 94.49 85.34 89.25 28.51 91.53
shuttle 99.98 99.83 99.96 84.23 99.92

soybean 76.53 60.24 43.88 13.47 74.73
tae 45.26 41.91 35.76 35.74 37.08

texture 98.21 83.45 84.93 16.08 99.59
thyroid 99.60 96.62 99.36 96.87 99.54



Informatics 2020, 7, 50 15 of 24

Table 6. Cont.

Datasets Logitboost
(M5P)

Logitboost
(DStump)

Bagging
(J48)

Ada
(DStump) LMT

vehicle 70.57 56.34 52.44 26.04 68.36
vowel 49.43 35.93 39.66 14.14 50.10

waveform-5000 82.65 70.28 75.00 55.37 86.33
wine 96.63 72.58 64.28 69.14 80.56

winequalityRed 51.53 40.70 46.32 42.21 50.49
winequalityWhite 49.16 40.94 47.39 31.19 49.24

yeast 51.84 41.40 47.15 21.29 54.09

Bold: the best value per dataset (row) achieved by all the included algorithms (columns).

Due to the volume of produced results and to maintain a balance between the extension of the
presented results and the main body of the rest manuscript, our included tables and figures present
our results only for a small portion of our total experiments. The following link contains all results:
http://ml.math.upatras.gr/wp-content/uploads/2020/10/MDPI_Informatics_AL_Logitboost_M5P.7z.

In the preceding 4 tables, we highlighted the best value per dataset (row) achieved by all the
included algorithms (columns) in bold format to facilitate visualization of these results. However,
some implications occurred during our experiments and we have to record them here. Initially, it has
to be mentioned that the JRip algorithm did not manage to export decisions for the majority of the
datasets under the SMar metric. This behavior is recorded because of JRip’s inherent inability to
produce rules for all the existing classes, especially when the training data are not sufficient. Thus,
we have removed this algorithm from the corresponding files, but it is still included for the other QSs.
Furthermore, the LMT algorithm as well as Ada(DStump) did not manage to export predictions for
20 (15 binary and 5 multi-class) datasets, which made us remove all of them from the second set of
comparisons: the proposed algorithm versus the ensemble ones.

Continuing with our results, in order to present some better insights into the total experiments,
we have gathered the victory frequencies for these two cases into Tables 7 and 8, separated internally
depending on the number of the existing classes and summarizing the performance per learner for all
the examined R-based scenarios and the distinct query strategies applied. We have ignored the RS case,
since this acts as the baseline in the AL concept, but we have taken into consideration this strategy in
the statistical comparisons that follow. In the aforementioned case of JRip under UncS(SMar) strategy,
we did not record any value since it has been rejected by this kind of experiments.

Considering the statistical comparison of the first part of the results, we have applied the
well-known nonparametric Friedman test, which examines if the null hypothesis about the similarity
of the participating algorithms as it considers their performance holds [55]. Since both Friedman and
Iman–Davenport statistics highly favored the rejection of the null hypothesis, a proper post hoc test
was applied to investigate further the statistical importance of the acquired results. In our case, the post
hoc of Nemenyi was selected using an alpha level parameter equal to 0.05 [56]. The value of the critical
difference (CD) that should be overpassed between the learning behavior of two algorithms for being
considered as statistically different is 1.21. The next figure depicts the achieved scores per base learner
for both the binary and multi-class datasets, discriminating the performance of the 3 examined metrics
under UncS against the RS. A violin plot was chosen.

Regarding the second part of the experiments, a more targeted comparison was made to verify
the predictive ability of the proposed variant of Logitboost against its default setup, as has been
implemented on WEKA API, which actually uses a one-node tree as a weak learner, while the other
3 ensemble learners have been included. Therefore, we applied a twofold comparison, examining their
efficacy on both the binary and multi-label datasets, following the same statistical verification as
previously. We have already measured the frequency of the best achieved performance for all examined
datasets per ensemble learner, QS and R-based scenario in Table 9, while in Table 10, we present
the corresponding Freidman rankings. For acquiring better insight of the relative importance of the

http://ml.math.upatras.gr/wp-content/uploads/2020/10/MDPI_Informatics_AL_Logitboost_M5P.7z
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learning performances of this kind of comparison, we recorded the corresponding statistical ranking
per separate R-based scenario.

Table 7. Number of best achieved performances over the examined datasets per base learner for the
included query strategies and R-based experiments the comparison of simple learners.

QS
(metric)

Logitboost
(M5P) 1NN 3NN 5NN J48 Random

Tree JRip NB

Binary Datasets
R = 5%

UncS(Ent) 32 2 4 3 3 0 1 0
UncS(LConf) 33 2 4 3 2 0 1 0
UncS(SMar) 33 2 4 3 2 1 0 0

R = 10%
UncS(Ent) 30 0 3 7 2 0 3 0

UncS(LConf) 30 0 3 7 2 0 3 0
UncS(SMar) 31 0 3 7 3 1 0 0

R = 15%
UncS(Ent) 26 0 6 8 3 0 2 0

UncS(LConf) 26 0 6 8 3 0 2 0
UncS(SMar) 27 0 6 9 3 0 0 0

R = 20%
UncS(Ent) 23 2 6 4 5 1 4 0

UncS(LConf) 23 2 6 4 5 1 4 0
UncS(SMar) 26 2 6 5 5 1 0 0

Multi-Class Datasets
R = 5%

UncS(Ent) 37 4 3 2 2 0 1 0
UncS(LConf) 38 3 3 1 2 1 1 0
UncS(SMar) 37 3 4 1 2 1 - 0

R = 10%
UncS(Ent) 36 2 4 5 0 0 0 0

UncS(LConf) 38 1 6 2 0 0 0 0
UncS(SMar) 38 0 7 1 1 0 - 0

R = 15%
UncS(Ent) 34 5 3 4 1 0 1 0

UncS(LConf) 35 3 6 2 1 0 1 0
UncS(SMar) 35 3 3 5 1 0 - 0

R = 20%
UncS(Ent) 35 1 3 3 4 1 0 0

UncS(LConf) 35 1 4 2 5 1 0 0
UncS(SMar) 36 2 2 2 4 1 - 0

Total 774 40 105 98 61 10 24 0

Table 8. The number of best achieved performance over the examined datasets per base learner for the
included query strategies and R-based experiments compared to ensemble learners.

QS
(metric)

Logitboost
(M5P)

Logitboost
(DStump)

Bagging
(J48)

Ada
(DStump) LMT

Binary Datasets
R = 5%

UncS(Ent) 17 0 1 4 8
UncS(LConf) 16 0 1 2 10
UncS(SMar) 16 0 1 2 10

R = 10%
UncS(Ent) 16 0 3 3 9

UncS(LConf) 18 0 3 3 7
UncS(SMar) 18 0 2 4 7
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Table 8. Cont.

QS
(metric)

Logitboost
(M5P)

Logitboost
(DStump)

Bagging
(J48)

Ada
(DStump) LMT

R = 15%
UncS(Ent) 14 0 4 3 9

UncS(LConf) 12 0 4 4 11
UncS(SMar) 12 0 4 3 12

R = 20%
UncS(Ent) 10 1 1 3 14

UncS(LConf) 10 1 1 3 14
UncS(SMar) 12 0 1 3 14

Multi-Class Datasets
R = 5%

UncS(Ent) 28 1 0 1 12
UncS(LConf) 27 1 0 1 13
UncS(SMar) 27 1 0 0 14

R = 10%
UncS(Ent) 28 5 0 0 9

UncS(LConf) 28 3 0 0 11
UncS(SMar) 26 2 0 0 14

R = 15%
UncS(Ent) 29 1 0 1 12

UncS(LConf) 26 1 0 0 15
UncS(SMar) 27 2 0 0 13

R = 20%
UncS(Ent) 28 1 0 0 13

UncS(LConf) 26 4 0 0 12
UncS(SMar) 28 3 0 0 11

Total 499 51 2 40 274

Table 9. Freidman ranking scores of the second experimental setup.

Active Learning Approaches Binary Multiclass Average

R(%) 5% 10% 15% 20% 5% 10% 15% 20%
UncS(Logitboost(M5P)) 2.138 2.511 2.477 3.040 2.270 1.948 1.921 2.270 2.322

UncS(LMT) 3.787 3.000 2.563 2.328 3.321 2.813 2.528 3.321 2.958
RS(LMT) 4.437 4.230 4.540 3.632 3.468 3.603 3.659 3.468 3.880

RS(Logitboost(M5P)) 4.851 5.109 4.839 4.983 3.079 3.016 3.452 3.079 4.051
RS(Ada(DStump)) 5.437 6.132 6.943 6.977 8.238 8.889 9.246 8.238 7.513
RS(Bagging(J48)) 5.833 6.672 6.483 6.316 5.921 6.298 6.286 5.921 6.216

UncS(Ada(DStump)) 6.626 5.707 5.931 6.575 9.381 9.381 8.937 9.381 7.740
UncS(Bagging(J48)) 6.339 5.282 4.695 4.908 6.560 5.583 5.440 6.560 5.671

RS((Logitboost(DStump))) 7.080 7.678 7.793 8.241 5.516 6.111 6.214 5.516 6.769
UncS((Logitboost(DStump))) 8.471 8.678 8.736 8.000 7.246 7.357 7.317 7.246 7.881

Bold: the best value per dataset (row) achieved by all the included algorithms (columns).

Indeed, we can verify that different behaviors are recorded in the largest R-based scenario
compared with the rest ones during the binary datasets, a fact that would not have been noticed under
an average of the separate rankings, being merged and leading to erroneous conclusions. Despite this
fact, the underlying CD value for this set of experiments is equal to 0.568, a score that settles that the
proposed approach is significantly superior against the other examined algorithms under the same AL
framework in 5 out of the 8 cases.

Meanwhile, the next 3 figures depict the performance of the Logitboost(M5P) against its 4 ensemble
opponents for the 9 largest datasets, across both kind of datasets, through compatible error-bar plots
that summarize the performance on each evaluation during the 3-fold-CV process as well as the
corresponding average value for each iteration.



Informatics 2020, 7, 50 18 of 24

Table 10. Freidman ranking scores for hyperparameter tuning of the Logitboost scheme.

Active Learning Approaches Binary Multiclass Average

R(%) 5% 10% 15% 20% 5% 10% 15% 20%
Ent(5 iterations) 3.32 3.88 3.69 3.50 3.94 3.82 3.95 3.83 3.74
Ent(10 iterations) 3.38 2.86 3.09 2.93 2.47 3.07 2.89 3.39 3.01
Ent(15 iterations) 3.01 2.98 2.58 3.20 3.15 3.07 3.02 2.60 3.00
Ent(20 iterations) 2.36 2.75 2.74 2.51 2.73 2.74 2.66 2.78 2.66
Ent(25 iterations) 2.93 2.53 2.90 2.85 2.71 2.29 2.48 2.40 2.64

LConf(5 iterations) 3.39 3.83 3.65 3.51 3.46 4.00 3.95 3.86 3.71
LConf(10 iterations) 3.31 2.95 3.05 3.18 2.90 2.82 2.99 2.66 2.98
LConf(15 iterations) 3.02 2.93 2.94 2.94 3.20 2.88 3.20 3.59 3.09
LConf(20 iterations) 2.30 2.77 2.63 2.51 2.81 2.73 2.51 2.60 2.61
LConf(25 iterations) 2.99 2.51 2.74 2.85 2.63 2.56 2.35 2.30 2.62

SMar(5 iterations) 3.35 3.78 3.65 3.47 3.83 3.99 3.82 3.89 3.72
SMar(10 iterations) 3.33 2.95 3.09 2.90 2.98 2.95 3.17 3.23 3.08
SMar(15 iterations) 3.03 2.93 2.60 3.15 2.72 2.80 2.63 2.57 2.80
SMar(20 iterations) 2.30 2.80 2.73 2.49 2.78 2.83 3.07 2.76 2.72
SMar(25 iterations) 2.99 2.53 2.93 3.00 2.69 2.44 2.31 2.54 2.68

Bold: the best value per dataset (row) achieved by all the included algorithms (columns).

4. Discussion

In this section, we briefly discuss the obtained results from both comparisons to summarize the
overall results and to perceive better the assets of the proposed AL approach that is based on the
combination of Logitboost scheme with the M5P regressor. First, application of Logitboost under AL
has not been recorded in the literature in contrast to several other ML models [57]. Consequently, it was
reasonable to adopt a common AL framework to make fair comparisons with the selected approaches
that are based on state-of-the-art algorithms during both of the examined settings. Thus, no tuning
stages were inserted into the learning pipeline. The total experimental procedure was conducted
regarding 4 different values of the R (%) parameter, trying to investigate further the behavior of all
the examined approaches, assuming that the human oracle did not introduce any noisy decisions at
all. Thus, we do not insert noisy decisions during augmentation of the initial labeled set, which shifts
the responsibility of selecting informative instances to the learning ability of the base learner per
case. Additionally, we are more interested on the lowest R-based scenarios since they constitute more
realistic simulations of real-life WSL problems.

From the accuracy score recorded in Table 3 through Table 6, we can see that the proposed
combination highly outperformed its rivals on the majority of the 91 datasets. The aggregated number
of victories for both sets of comparisons—versus simple and ensemble base learners—have been
placed in Tables 7 and 8, where the proposed set managed to capture the best performance in 774 cases
out of 1112 (69.6%) against 6 approaches and in 499 out of 866 cases (57.6%) against 4 approaches.
Moreover, its defects seem to appear on specified datasets (e.g., “iris” and “post-operative” from binary
datasets as well as “heart-h”, “saheart” and “newthyroid” from multiclass ones). The structure of these
datasets should be examined further, but probably a tuning stage of Logitboost scheme, for which the
parameters could be expanded because of the presence of the internal regressor, might lead to better
performance against algorithms like kNN or learners that are based on DTs, either individually or
under an ensemble fashion.

As it concerns the first experimental scenario, the distribution of the number of victories of
the proposed AL approach was similar across the different query strategies and the labeled ratios,
denoting its general efficacy against the other approaches. The 3 distinct kNN learners also performed
cumulatively 243 victories, constituting a useful proof about their robustness despite the restricted
number of labeled examples [58]. On the other hand, the performance of NB as a base learner was
disappointing, affected by the aforementioned shortage of numerous initial examples since it did not
record any victory.



Informatics 2020, 7, 50 19 of 24

During the second and, of course, more challenging scenario against ensemble base learners,
the proposed algorithm was again more competitive and outperformed the rest in the majority of
the grouped experiments. However, LMT-based approaches managed also to score several winning
accuracies per dataset, especially in binary problems when larger R-based experiments were conducted.
In fact, LMT expands the Logitboost procedure internally into its main learning kernel but, at its final
stage, exploits only a subset of the initial feature space so as to build its logistic model. This property
seems favorable for the aforementioned case, as the statistical rankings placed in Table 10 prove.
Specifically, for binary problems, the proposed algorithm performed significantly better behavior
than the LMT-based AL approach only for the case of R = 5%, while for the next two comparisons,
no statistical difference was recorded, ranking Logitboost(M5P)-based approaches in first with a slight
lead, while in the last scenario, where R = 20%, the LMT significantly outperformed the proposed one.
However, in multi-class problems, this behavior was not repeated. This kind of result possibly denotes
the existence of noisy features that highly affect binary problems and/or highlights the overfitting
phenomena that Logitboost may face when outliers are inserted into its training stage.

Returning to the first set of experiments, a statistical comparison was executed for verifying the
results obtained from the examined query strategies against also the baseline of random sampling.
Figure 2 captures the performance per district learner, where the proposed base learner recorded a
statistically significant behavior against its baseline as well as the rest of the AL approaches, being ranked
always as the best across all the conducted scenarios. It is remarkable that the RS(Logitboost(M5P))
approach managed also to outreach the other simple algorithms on average, proving the overall
predictive ability of the proposed ensemble learner. This last note highlights also the implications
that may occur when ranking the available unlabeled examples, a fact that may deteriorate the total
learning behavior since the less informative the selected instances are labeled, the more redundancy
that occurs in the gradually augmented training subset.

Discussing again the second experiment setup, a similar procedure was implemented, where besides
a comparison with the LMT ensemble learner, useful conclusions were drawn through the conducted
comparisons. The replacement of a weak one-node tree with the M5P of model trees under the Logitboost
scheme was substantially examined, along with the use of the AdaBoost procedure. This amendment
helped us to clarify even better the overall benefits of the proposed boosting approach, since the
improvement that was noticed mainly against these two approaches was impressive. Additionally,
two separate figures (Figures 3 and 4) were produced to better visualize the discriminative ability of the
proposed approach against other ensemble learners, which is clearly formatted by the initial iterations in
8 out of 9 selected datasets, recording also more robust learning behavior judging by its fluctuations along
the iterative procedure of the applied AL framework. The instable behavior of AdaBoost(DStump) is also
remarkable, showing clearly its untrustworthy behavior compared with the proposed one, as intense
fluctuation was recorded.

Finally, we also conducted a study of one hyperparameter of the Logitboost scheme, without tuning
further the internal base learner of M5P, in order to verify its optimality regarding at least one parameter
of this scheme. This hyperparameter was selected to be the number of iterations that are executed
during its training stage, a property that affects both its spent computational resources and the main
drawback of boosting procedures: overfitting. We noticed that, more often than not, the default
approach with 10 internal iterations did not achieve the best performance. This fact leaves much space
for further investigation on the parameters of the Logitboost scheme under AL learning scenarios,
which is however not easy to shed light on because of the limited initial data that are in practice
provided. We pose the corresponding statistical rankings in Table 10.
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5. Conclusions

To sum up, in this work, we proposed the use of the Logitboost scheme along with an M5P
regressor under a properly designed pool-based AL learning scheme. We assumed that the smooth
learning behavior of Logitboost could lead to safer predictions, especially when it selects the most
informative unlabeled instances from the corresponding U pool, favoring thus the overall learning rates
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of an AL algorithm. Its combination with M5P managed to increase the overall accuracy compared with
the performance of simpler tree-based models, leading also to superior performance against various
ensemble state-of-the-art algorithms evaluated in the same AL framework over 4 R-based scenarios
under 3 separate metrics embedded into uncertainty sampling query strategy. The performed statistical
comparisons verified the significantly better performance of the proposed batch-based inductive active
learning algorithm, recording its better generalization ability through a wide range of experiments.

Our future directions are mainly related to internal investigation of the Logitboost scheme, since its
application on both the AL and SSL fields has been proven to be really promising, while at the same
time, the related community has not highly benefited by this. Feature selection could be really useful
in several real-life cases, since removing noisy or irrelevant variables would further improve the
predictive ability of the Logitboost scheme. A similar preprocessing strategy was considered in [59],
before creating an ensemble of Logitboost that exploits random forest as a base learner in the field of
anomaly detection. The use of metrics of informativeness that are popular in the field of AL could
boost the predictive performance of SSL methods and vice versa, as the authors of [60] demonstrated,
studying the exploitation of centrality measures that stem from graph-based representation of data for
capturing data heterogeneity. Use of AL + SSL based on ensemble learners either with UncS or with
more targeted query strategies could boost the overall performance on classification tasks without
demanding much effort from human annotators or reducing expenses induced by the corresponding
crowdsourcing services [14]. The aspect of applying query strategies that avoid using uncertainty-based
directions but prefer guidance by interactions among the decisions of multiple learners seems really
promising, either for obtaining decisions through distinct iterations of Logitboost-based classifiers or
for blending this powerful classifier into a pool of available classification algorithms [61].

Furthermore, a combination of the proposed base learner or adoption of the related boosting
learners [62] with more recently stated query strategies could help us reach competitive performance
in more complex tasks that stem from real-life applications [63]. Expansion also towards online AL
frameworks should be further investigated by our side [64].
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