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Abstract: Modern Intensive Care Units (ICUs) provide continuous monitoring of critically ill patients
susceptible to many complications affecting morbidity and mortality. ICU settings require a high
staff-to-patient ratio and generates a sheer volume of data. For clinicians, the real-time interpretation
of data and decision-making is a challenging task. Machine Learning (ML) techniques in ICUs
are making headway in the early detection of high-risk events due to increased processing power
and freely available datasets such as the Medical Information Mart for Intensive Care (MIMIC). We
conducted a systematic literature review to evaluate the effectiveness of applying ML in the ICU
settings using the MIMIC dataset. A total of 322 articles were reviewed and a quantitative descriptive
analysis was performed on 61 qualified articles that applied ML techniques in ICU settings using
MIMIC data. We assembled the qualified articles to provide insights into the areas of application,
clinical variables used, and treatment outcomes that can pave the way for further adoption of this
promising technology and possible use in routine clinical decision-making. The lessons learned from
our review can provide guidance to researchers on application of ML techniques to increase their
rate of adoption in healthcare.

Keywords: intensive care unit; critical care; MIMIC; machine learning; deep learning; systematic
review; sepsis; acute kidney injury

1. Introduction

Artificial intelligence (AI) encompasses a broad-spectrum of technologies that aim
to imitate cognitive functions and intelligent behavior of humans [1]. Machine Learning
(ML) is a subfield of AI that focuses on algorithms that allow computers to define a
model for complex relationships or patterns from empirical data without being explicitly
programmed [2]. ML, powered by increasing availability of healthcare data, is being used
in a variety of clinical applications ranging from diagnosis to outcome prediction [1,3].
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The predictive power of ML improves as the number of samples available for learning
increases [4,5].

ML algorithms can be supervised or unsupervised based on the type of learning
rule employed. In supervised learning, an algorithm is trained using well-labeled data.
Thereafter, the machine predicts on unseen data by applying knowledge gained from the
training data [6]. Most adopted supervised ML models are Random Forest (RF), Support
Vector Machines (SVM), and Decision Tree algorithms [6]. In unsupervised learning, there is
no ground truth labeling required. Instead, the machine learns from the inherent structure
of the unlabeled data [7]. Either type of ML is an iterative process in which the algorithm
tries to find the optimal combination of both model variables and variable weights with the
goal of minimizing error in the predicted outcome [5,6]. If the algorithm performs with a
reasonably low error rate, it can be employed for making predictions where outputs are not
known. However, while developing a ML model, an optimal bias-variance tradeoff should
be selected to optimize prediction error rate [8]. Improper selection of bias and variance
results in two problems: (1) underfitting and (2) overfitting [9]. Finding the “sweet spot”
between the bias and variance is crucial to avoid both underfitting and overfitting [8,10].

Deep learning (DL), a subcategory of machine learning, achieves great power and
flexibility compared to conventional ML models by drawing inspiration from biological
neural networks to solve a wide variety of complex tasks, including the classification of
medical imaging and Natural Language Processing (NLP) [10–14]. Most widely used
DL models are variants of Artificial Neural Network (ANN) and Multi-Layer Perceptron
(MLP). In general, ML models are data driven and they rely on a deep understanding of
the system for prediction, thereby, empowering users to make informed decision.

To provide better patient care and facilitate translational research, healthcare institu-
tions are increasingly leveraging clinical data captured from Electronic Health Records
(EHR) systems [15]. Of these systems, the Intensive Care Unit (ICU) generates an immense
volume of data, and requires a high staff-to-patient ratio [16,17]. To avoid adverse events
and prolonged ICU stays, early detection and intervention on patients vulnerable to compli-
cations is crucial; for these reasons, the ML literature is increasingly using ICU patient data
for clinical event prediction and secondary usage, such as sepsis and septic shock [18]. ML
techniques in ICUs are making headway in the early detection of high-risk events due to
increased processing power and freely available datasets such as the Medical Information
Mart for Intensive Care (MIMIC) [19]. The data available in the MIMIC database includes
highly structured data from time-stamped, nurse-verified physiological measurements
made at the bedside, as well as unstructured data, including free-text interpretations of
imaging studies provided by the radiology department [13].

The primary aim of this study was to conduct a systematic literature review on the ef-
fectiveness of applying ML technologies using MIMIC dataset. Specifically, we summarized
the clinical area of application, disease type, clinical variables, data type, ML methodology,
scientific findings, and challenges experienced across the existing ICU-ML literature.

2. Methods

This systematic literature review followed the guidelines of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) framework for preparation
and reporting [20].

2.1. Eligibility Criteria

This study focused on peer-reviewed publications that applied ML techniques to
analyze retrospective ICU data available from publicly available MIMIC dataset, which in-
cludes discrete structured clinical data, physiological waveforms data, free text documents,
and radiology imaging reports.
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2.2. Data Sources and Search Strategy

Three search engines were used: PubMed, Web of Science, and the CINAHL. We
restricted our search to research articles published in English and in peer-reviewed journals
or conferences available from the inception of each database through 30 October 2020. The
search syntax was built with the guidance of a professional librarian and included search
terms: “Machine Learning”, “Deep Learning”, “Artificial Intelligence”, “Neural Network”,
“Supervised Learning”, “Support Vector Machine”, “SVM”, “Intensive Care Unit”, “ICU”,
“Critical Care”, “Intensive Care”, “MIMIC”, “MIMIC-II”, “Medical Information Mart for
Intensive Care”, “Beth Israel Deaconess Medical Center”. Figure 1 illustrates the process of
identifying eligible publications.

 Informatics 2020, 7, x 

Three search engines were used: PubMed, Web of Science, and the CINAHL. We re-
stricted our search to research articles published in English and in peer-reviewed journals 
or conferences available from the inception of each database through 30 October 2020. The 
search syntax was built with the guidance of a professional librarian and included search 
terms: “Machine Learning”, “Deep Learning”, “Artificial Intelligence”, “Neural Net-
work”, “Supervised Learning”, “Support Vector Machine”, “SVM”, “Intensive Care 
Unit”, “ICU”, “Critical Care”, “Intensive Care”, “MIMIC”, “MIMIC-II”, “Medical Infor-
mation Mart for Intensive Care”, “Beth Israel Deaconess Medical Center”. Figure 1 illus-
trates the process of identifying eligible publications.  

 
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of systematic 
identification, screening, eligibility, and inclusion of publications that applied Machine Learning (ML) techniques in In-
tensive Care Unit (ICU) settings using Medical Information Mart for Intensive Care (MIMIC) dataset. 

2.3. Study Selection  
Following the systematic search process, 322 publications were retrieved. Of that, 113 

duplicate publications were removed, leaving 209 potentially relevant articles for the title 
and abstract screening. Two teams (HB, SS and MS, SB) screened these articles inde-
pendently, leading to the removal of another 89 publications, and 120 publications were 
retained for a full-text assessment. These were assessed for eligibility, resulting in 61 total 
publications that were included in the final analysis. Disagreements were resolved by an 
independent review by third person (AS). 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of systematic
identification, screening, eligibility, and inclusion of publications that applied Machine Learning (ML) techniques in
Intensive Care Unit (ICU) settings using Medical Information Mart for Intensive Care (MIMIC) dataset.

2.3. Study Selection

Following the systematic search process, 322 publications were retrieved. Of that,
113 duplicate publications were removed, leaving 209 potentially relevant articles for
the title and abstract screening. Two teams (HB, SS and MS, SB) screened these articles
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independently, leading to the removal of another 89 publications, and 120 publications
were retained for a full-text assessment. These were assessed for eligibility, resulting in
61 total publications that were included in the final analysis. Disagreements were resolved
by an independent review by third person (AS).

2.4. Data Collection and Analysis

A quantitative descriptive analysis was performed on the qualified studies that had
applied ML technique in the ICU settings using MIMIC database. Data elements extracted
for this analysis included: (a) type of disease (b) type of data (c) clinical area of application
(d) ML techniques and (e) year of publication. After the extraction and analysis, we
summarized and reported the findings in tables in accordance with the aim of the study.

3. Results

The search strategy yielded a total of 322 articles, which were published and made
available as of 30 October 2020. Of which, 61 publications were selected for further
analyses. These publications were categorized into seven themes based on the effectiveness
of applying ML techniques in various ICU settings. These themes are identified based on
ML algorithms to predict, monitor, and improve patient outcomes. Descriptions of each
theme and related publications are listed in Table 1.

Table 1. An overview of the 61 publications in the literature, classified into seven themes and their descriptions. The themes
are listed according to the frequency of publication (percentage and absolute count).

S.NO Theme Description Publication
References

Publications
Count (%)

1 Mortality Prediction Publications focused on prediction hospital and ICU mortality. [21–41] 21 (34.4)

2 Risk Stratification Publications focused on assessing the risk of treatments. [17,42–50] 10 (16.4)

3 Sepsis and Septic Shock
Prediction Publications focused on prediction of sepsis or septic shock. [51–58] 8 (13.1)

4 Cardiac episodes
Prediction

Publications focused on predicting cardiac events such as
cardiac disease, myocardial infarction. [59–65] 7 (11.5)

5 Acute Kidney Injury
Prediction

Publications focused on early prediction and onset prediction
of acute kidney injury. [66–70] 6 (9.8)

6 Resource Management Publications focused on ICU staff and resource management
by suppressing false alarms in ICU. [71–75] 5 (8.2)

7 ICU Readmission Publications focused on prediction of discharge and
readmission. [76–79] 4 (6.6)

Majority of the studies in our review focused on predicting mortality (21 studies) and
followed by risk stratification (10 studies). Multiple studies focused on predicting the onset
date of specific diseases such as sepsis and septic shock (eight studies), cardiac diseases
(seven studies), and acute kidney injury (AKI) (six studies).

Details of each study including clinical applications, ML models and clinical variables
used, sample size, and model performance of the qualified studies is provided in the
Supplementary Table S1.

In our review, both traditional ML and DL models were used in the classification tasks.
Based on best-performing models reported by the studies, traditional ML was used in 36
studies and DL was used in 25 studies, respectively. In traditional ML algorithms, SVM
and RF were most commonly used whereas in DL, Long Short-Term Memory (LSTM) was
employed. Majority of the studies have used discrete clinical variables, and eight publi-
cations used both discrete and unstructured data such as discharge summaries, nursing
notes, radiology reports, etc. as an input.
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Thirty-six studies applied imputation methods, and the remaining 25 either completely
removed the records with missing data or did not mention it. Fifty-two studies used cross-
validation to evaluate model performance. Forty-eight studies used feature identification
to improve accuracy.

4. Discussion

The aim of this systematic review was to provide an up-to-date and holistic view of
the current ML applications in ICU settings using MIMIC data in the attempt to predict
clinical outcomes. Our review revealed ML application was widely adopted in areas such
as mortality, risk stratification, readmission, and infectious disease in critically ill patients
using retrospective data. This review may be used to provide insights for choosing key
variables and best performing models for further research.

The application of ML techniques within the ICU domain is rapidly expanding with
improvement of modern computing, which has enabled the analysis of huge volumes
of complex and diverse data [1]. ML expands on existing statistical techniques, utilizing
methods that are not based on a priori assumptions about the distribution of the data, but
deriving insights directly from the data [80,81].

With ICUs being complex settings that generate a variety of time-sensitive data, more
and more ML-based studies have begun tapping the openly available, large tertiary care
hospital data (MIMIC). Our screening resulted in 61 publications that utilized MIMIC data
to train and test ML models enabling reproducibility. The majority of these publications
focused on predicting mortality, sepsis, AKI, and readmissions.

4.1. Mortality Prediction

Mortality prediction for ICU patients is critical and crucial for assessing severity of
illness and adjudicating the value of treatments, and timely interventions. ML algorithms
developed for predicting mortality in ICUs focused mainly on in-hospital mortality and
30 days mortality at discharge. Studies by Marafino et al. [22], Pirracchio et al. [23],
Hoogendoorn et al. [24], Awad et al. [26], Davoodi et al. [29], and Weissman et al. [31]
predicted in-hospital mortality, whereas Du et al. [25] predicted 28 days mortality at
discharge, and Zahid et al. [30] predicted both 30 days and in-hospital mortality. Most
studies focusing on predicting in-hospital mortality looked at mortality after 24 h of ICU
admission. However, one in particular, Awad et al. [26], predicted mortality within 6 h
of admission. Marafino et al. [22] predicted mortality using only nursing notes from the
first 24 h of ICU admission, whereas Weissman et al. [31] improved mortality prediction
by combining structured and unstructured data generated within the first 48 h of the ICU
stay. Davoodi et al. [29] and Hoogendoorn et al. [24] predicted after 24 h and within a
median of 72 h, respectively. Studies by Tang et al. [33], Caicedo-Torres et al. [36], Sha
et al. [38], and Zhang et al. [41] predicted in-hospital mortality irrespective of the admission
or discharge time.

For mortality prediction, all of the studies used three main categories of clinical
variables: (1) demographics, (2) vital signs, and (3) laboratory test variables. In addition to
the most commonly used data elements, other clinical information such as medications,
intake/output variables, risk scores, and comorbidities were also utilized. Weissman
et al. [31] and Zhang et al. [41] used clinical variables from both structured and unstructured
data types for mortality prediction.

Multiple studies predicted mortality on disease-specific patient cohorts. Celi et al. [21]
and Lin et al. [35] predicted in-hospital mortality on AKI patients. Lin et al. [35] pre-
dicted mortality based on five important variables (urine output, systolic blood pressure,
age, serum bicarbonate level, and heart rate). In addition, the study by Lin et al. [35]
also revealed that the effect of kidney injury markers, such as cystatin C and neutrophil
gelatinase-associated lipocalin on subclinical injury, had not yet been analyzed, which can
provide AKI prognostic information. This is due to lack of data availability in MIMIC.
Garcia-Gallo et al. [37] and Kong et al. [40] predicted mortality on sepsis patients, and
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specifically, Garcia-Gallo et al. [37] identified patients that are on 1-year mortality trajectory.
Anand et al. [34] claimed that the risk of mortality in diabetic patients could be better
predicted using a combination of limited variables: HbA1c, mean glucose during stay,
diagnoses upon admission, age, and type of admission. To compute the “diagnosis upon
admission” variable, the study utilized Charlson Comorbidity Index, Elixhauser Comor-
bidity Index, and Diabetic Severity Index. The authors further claimed that combining
diabetic-specific metrics and using the fewest possible variables would result in better
mortality risk prediction in diabetic patients.

In our review, studies have used both traditional ML (10 studies) and DL methods
(11 studies) to predict mortality. In traditional ML techniques, Random Forest, Decision
Tree, and Logistic Regression were the most commonly used algorithms. However, recent
studies by Caicedo-Torres et al. [36], Du et al. [25], and Zahid et al. [30] have used DL
methods for mortality prediction with a promising accuracy ranging from 0.86–0.87 as
reported in the Supplementary Table S1. Traditional ML models can be easily interpretable
when compared to DL models that have many levels of features and hidden layers to
predict outcomes. Understanding the features that contribute towards the prediction
plays an important role for clinical decision-making [82,83]. For example, one of the most
cited studies by Pirracchio et al. [23] developed a mortality prediction algorithm (Super
Learner) using a combination of traditional ML models; the results of which were easily
interpretable by clinical researchers. In general, DL techniques are employed to improve
prediction accuracy by training on large volumes of data [12]. Zahid et al. [30] developed a
DL model (Self-Normalizing Neural Network (SNN)) that performed marginally better
than the Pirracchio et al. [23] mortality prediction rate (Area Under the Receiver Operating
Characteristic curve (AUROC) of SNN: 0.86 and Super Learner: 0.85). However, interpret-
ing the results of DL models is challenging because of multiple hidden layers and they are
often treated as black-box models. To address this limitation, Caicedo-Torres et al. [36] and
Sha et al. [38] demonstrated the interpretability of the model in visualizations that will
allow clinicians to make informed decisions.

4.2. Acute Kidney Injury (AKI) Prediction

AKI is one of the common complications among adult patients in the intensive care
unit (ICU). AKI patients are at risk for adverse clinical outcomes such as prolonged ICU
and hospitalization stays, high morbidity, and mortality. Application of ML in AKI care
has been mainly focused on early prediction of an AKI event and risk stratification. In our
review, studies employed traditional ML techniques to predict AKI events and XGBoost
was the most commonly used algorithm.

Using the MIMIC dataset, Zimmerman et al. [68], Sun et al. [69], and Li et al. [84]
predicted AKI after 24 h of ICU admission. Sun et al. [69] and Li et al. [84] used clinical
unstructured notes generated during the first 24 h of ICU stay, whereas Zimmerman
et al. [68] used structured clinical variables for prediction. The AUROC of predicting AKI
within the first 24 h in Sun et al. [69], Zimmerman et al. [68], and Li et al. [84] was reported
as 0.83, 0.783, and 0.779, respectively. Additional details on the type of clinical variables,
sample size, and ML model are listed in Supplementary Table S1.

To define and classify AKI, three standard guidelines have been published and used
in clinical settings: (1) Risk, Injury, Failure, Loss, End-Stage (RIFLE), (2) Acute Kidney
Injury Network (AKIN), and (3) Kidney Disease: Improving Global Outcomes (KDIGO).
In our results, most studies used KDIGO guidelines to create ground truth labels and
is based on serum creatinine (SCr) and urine output. The SCr is one of the important
predictor variables in AKI; however, it is a late marker of AKI, which delays diagnosis
and care [85]. In clinical settings, it is highly desirable to early predict the AKI event for
better intervention strategies. To address the aforementioned clinical need, Zimmerman
et al. [68] predicted SCr values for 48 and 72 h based on 24 h SCr values and other clinical
variables. Li et al. [84] extracted key features from clinical notes, such as diuretic and
insulin medications using NLP instead of completely depending on SCr. Even though
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urine output is one of the defined metrics of AKI, Zimmerman et al. [68] reported it as not
a significant predictor [86]. Further investigation should focus on the effect of urine output
on predicting AKI and its impact.

4.3. Sepsis and Septic Shock

Sepsis is one of the leading causes of death among ICU patients and hospitalized
patients overall [87]. As sepsis progresses, patients from pre-shock state are highly likely to
develop septic shock. Early recognition of sepsis and initiation of treatment will reduce
mortality and morbidity [88]. In our review, eight studies applied ML techniques to predict
sepsis or septic shock events. Of these, four applied traditional ML algorithms and the other
four used DL methods. XGBoost and LSTM were the most commonly used algorithms, of
which the details of variables, sample size, and model performances are provided in the
Supplementary Table S1.

The Scherpf et al. [55] model predicted sepsis 3 h prior to the onset with an AUROC
of 0.81. The results of our review also reveal that most studies focused on early predicting
of pre-shock state using hemodynamic measurements. The common variables used in ML
models are arterial pressure, heart rate, labs, risk scores including Glasgow Coma Scores
(GCS) and Sequential Organ Failure Assessment (SOFA) scores, and respiratory rate.

For predicting pre-shock state, Liu et al. [54] and Kam et al. [53] used a combination of
these variables along with lab findings with the Area under the Curve (AUC) performance
reported as 0.93 and 0.929, respectively. One of the interesting findings of the Liu et al. [54]
study was that serum lactate was the primary predictor variable indicating a patient’s
risk level of entering septic shock, and is used as a biomarker for sepsis patient risk
stratification. The study also reported, “A patient with serum lactate concentration one
standard deviation above the population mean is approximately five times as likely to
transition into shock than a patient with average serum lactate concentration” [54]. The
hemodynamic measurements can be derived from waveform data or can be extracted as
discrete data elements from EHR. Ghosh et al. [52] used three waveforms: mean arterial
pressure, heart rate, and respiratory rate to derive hemodynamic predictor variables,
whereas Liu et al. [54] and Kam et al. [53] used discrete measurements.

4.4. ICU Readmission

Intensive Care Units (ICU) provide care to critically ill patients, which is often costly
and labor-intensive. Prolong ICU stays increases cost burden to both patients and hospi-
tals. Early predicting unplanned readmissions may help in ICU resources allocation and
improve patient health outcomes. Details of the studies qualified in this theme are listed
in the Supplementary Table S1. Desautels et al. [76] identified patients who are likely to
suffer unplanned ICU readmission: his model reported an AUROC of 0.71. Rojas et al. [78]
and Lin et al. [79] focused on identifying patients that were re-admitted within 30 days of
discharge. The best AUROC reported by Lin et al. [79] and Rojas et al. [78] is 0.791 and 0.78,
respectively. The common predictor variables used in all three studies include: vital signs,
demographics, comorbidities, and labs. Our findings revealed that there has been limited
research done on predicting readmissions and the reported model AUROCs in literature
are not promising (less than 80%) using MIMIC data.

4.5. ML Model Optimization

The performance of a given model heavily depended on data pre-processing, feature
identification, and model validation. The missing data problem is arguably the most
common issue encountered by machine learning practitioners when analyzing real-world
healthcare data [89]. Researchers in general choose to address the missing data by either
imputing or removing the observations [89]. The imputation can be done using simple-to-
complex techniques: for example, in the study done by Lin et al. [35], missing observations
were imputed using the mean value of the variable, whereas Davoodi et al. [29] and Zhang
et al. [67] used sophisticated imputation techniques, Gaussian and Multivariate Imputation
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by Chained Equation (MICE), respectively. Substituting observed values with estimated
observations introduces bias that may distort the data distribution or introduce spurious
associations influencing model accuracy. To minimize this, imputation methods should
be carefully selected, especially for prospective data. Imputation methodology depends
on aim of the study, importance of data elements, percentage of missing data, and ML
model used.

Feature importance technique is often employed to identify the highest ranked features.
ML models with only important features improve the accuracy and computing time [90].
Cross-validation (CV) of a ML algorithm is vital to estimate a model’s predictive power
and generalized performance on the unseen data [91,92]. K-fold CV is often used to reduce
the pessimistic bias by using more training data to teach the model. Our analysis found
52 studies used various validation techniques. Five-fold and 10-fold CV were the most
common validation method used.

This review has some inherent limitations. First, there is the possibility of studies
missed due to the search methodology. Second, we removed sixteen publications where
full text was not available, and this may have introduced bias. Finally, a comparison of ML
model performance was not possible in the quantitative analysis even though the studies
used the MIMIC dataset for training and validating ML models. This is due to the fact
that ML performance is dependent on the data elements selected for prediction, model
parameters used, and size of the dataset.

4.6. Key Points and Recommendations

The aim of the study was to perform a comprehensive literature review on ML appli-
cation in ICU settings using MIMIC dataset. The key points of our review and recommen-
dations for future research provided therein are enlisted below.

Recent proliferation of publicly available MIMIC datasets allowed researchers to
provide effective ML-based solutions in an attempt to solve complex healthcare prob-
lems. However, reproducibility of ML models is lacking due to inconsistent reporting
of clinical variables selected, data pre-processing, and model specifications during the
development. Future studies should follow standard reporting guidelines to accurately
disclose model specifications.

Significant work has been done in predicting mortality within 6 to 72 h of hospital
admission on retrospective data. However, prospective implementation is lacking. To
adapt to dynamics of clinical events, we recommend exposing these models to prospective
trials before moving it to routine clinical practice.

ML model performance heavily depends on clinical variables utilized. We identified
and summarized the variables used by different model across the themes. Future studies
should focus on performing a detailed analysis of these variables for improved performance.

Unstructured clinical notes have valuable and time-sensitive information critical for
decision-making. Eight studies in our review taped into clinical notes to mine important
information. However, recent advancements in NLP techniques like Bidirectional En-
coder Representations from Transformers (BERT) and Embeddings from Language Models
(ELMo) have not been explored.

Interpretable ML models allow clinicians to understand and improve model perfor-
mance. However, only two studies have resorted to visualization-based interpretations in
the review.

5. Conclusions

ML is gaining traction in the ICU setting. This systematical review aimed to assemble
the current ICU literature that utilized ML methods to provide insights into the areas of
application and treatment outcomes using MIMIC dataset. Our work can pave the way for
further adoption and overcome hurdles in employing ML technology in clinical care. This
study identified the most important clinical variables used in the design and development
of ML models for predicting mortality and infectious disease in critically ill patients, which
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can provide insights for choosing key variables for further research. We also discovered
that predicting disease classification and treatment outcomes using supervised and un-
supervised ML is possible with high predictive value on retrospective data. Prospective
validation is still lacking, possibly due to the limitations with implementation and real-time
disparate data processing.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-970
9/8/1/16/s1, Table S1: Summary of 61 studies qualified for quantitative descriptive analysis.
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