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Abstract: Human Pose Estimation (HPE) is defined as the problem of human joints’ localization (also
known as keypoints: elbows, wrists, etc.) in images or videos. It is also defined as the search for a
specific pose in space of all articulated joints. HPE has recently received significant attention from the
scientific community. The main reason behind this trend is that pose estimation is considered as a key
step for many computer vision tasks. Although many approaches have reported promising results,
this domain remains largely unsolved due to several challenges such as occlusions, small and barely
visible joints, and variations in clothing and lighting. In the last few years, the power of deep neural
networks has been demonstrated in a wide variety of computer vision problems and especially the
HPE task. In this context, we present in this paper a Deep Full-Body-HPE (DFB-HPE) approach from
RGB images only. Based on ConvNets, fifteen human joint positions are predicted and can be further
exploited for a large range of applications such as gesture recognition, sports performance analysis,
or human-robot interaction. To evaluate the proposed deep pose estimation model, we apply it to
recognize the daily activities of a person in an unconstrained environment. Therefore, the extracted
features, represented by deep estimated poses, are fed to an SVM classifier. To validate the proposed
architecture, our approach is tested on two publicly available benchmarks for pose estimation and
activity recognition, namely the J-HMDBand CAD-60datasets. The obtained results demonstrate
the efficiency of the proposed method based on ConvNets and SVM and prove how deep pose
estimation can improve the recognition accuracy. By means of comparison with state-of-the-art
methods, we achieve the best HPE performance, as well as the best activity recognition precision on
the CAD-60 dataset.

Keywords: human pose estimation; human activity recognition; deep learning; ConvNets; SVM

1. Introduction

Currently, the amount of available video data is explosively expanding due to the
pervasiveness of digital recording devices. Estimating human poses in those videos is one
of the longstanding research topics in the computer vision community, which has been
extensively studied in recent years. Scientifically speaking, Human Pose Estimation (HPE)
refers to the the method of localizing the human body parts (3D pose) or their projection
onto a picture plane (2D pose). Video-based HPE has attracted increasing interest in recent
years thanks to its wide range of applications including: human-computer interaction [1,2],
sports performance analysis [3], and video surveillance [4–6]. Although the research has
advanced in this field, there are still many remaining challenges such as: the high changes
in human body shapes, clothing and viewpoint variations, and the conditions of system
acquisition (day and night illumination variations, occlusions, etc.).

Previous works on HPE have commonly used graphical models for estimating human
poses. Generally, those models are composed of joints and rigid parts. Using image-based
observations, most of these classic methods follow a two step framework. The first step
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is based on the extraction of hand-crafted features from raw data, and the second one
consists of learning classifiers on the obtained features. In [7], the authors presented a
graphical model for HPE with image-dependent pairwise relations. They used the local
image measurements, not only to detect joints, but also to predict the spatial relationships
between them. This aims to learn conditional probabilities for the presence of parts and
their spatial relationships. After that, another approach was proposed using puppets [8]. It
estimates the body poses at one frame, then checks its performance in neighboring ones
using the optical flow.

Recently, following their significant progress in static image classification, Convo-
lutional Neural Networks (CNNs/ConvNets) have been extended to take into account
motion information in order to be exploited in video-based HPE. Compared with the
conventional machine learning methods, deep learning techniques have a more power-
ful learning ability. They have shown remarkable progress due to their high precision
and robustness.

In this work, we are particularly interested in estimating human poses and detecting
different body parts under challenging conditions. Those human poses, which represent
extracted features, will be fed to a classification stage using SVM in order to recognize daily
activities. This paper presents the following novel contributions:

• We present an end-to-end CNN that exploits RGB data only for a full-body pose
estimation. The estimated person poses are then considered as discriminative features
to recognize different human activities.

• We extensively evaluate various aspects of our HPE architecture: We test different
model parameters (including: iteration number, data augmentation techniques, and
heat map size). We compare the proposed model with previous approaches on
common benchmark datasets (i.e., J-HMDBand CAD-60) for which interesting results
for HPE and activity recognition are reported.

• We recognize human activities using human poses rather than RGB informa-
tion. We conclude that the quality of the estimated poses significantly affects the
recognition performance.

The remainder of this paper is organized as follows. In Section 2, we review recent
work on 2D HPE, which can be divided into two main classes: traditional HPE approaches
(Section 2.1) and deep learning-based ones (Section 2.2). Recent deep learning-based HAR
approaches are explored in Section 2.3. Then, we describe the proposed DFB-HPE (Deep Full-
Body-HPE) approach in Section 3 where different training details are explained. In Section 4,
we present the datasets used (Section 4.1) and different evaluation metrics (Section 4.2). After
that, we discuss the obtained results on the benchmarks used. Finally, we conclude our work
in Section 5, where potential future studies are proposed.

2. Related Work

Human poses are important cues for video analysis in a variety of tasks such as
activity/action recognition [9,10], multi-object detection [11], and sign language processing
and recognition [12]. Generally, HPE approaches can be divided into two main groups:
traditional HPE approaches and deep learning-based ones. For more details on pose-based
HAR, you can refer to our review [13].

2.1. Traditional HPE Approaches

Past work on HPE has been basically founded on hand-crafted features extracted from
raw data. At first, the traditional approaches frequently utilized graphical structure models
for recovering human poses using image-based observations. Generative approaches
(referred to as model-based or top-down) aim to locate different body parts in video
frames [7]. Based essentially on joints and rigid parts, those techniques use a priori
information such as motion [14] and context [15]. Thus, an HPE process based on a
generative approach is principally composed of two levels: modeling the human body
explicitly and then estimating the different joint positions. Depicted as a skeleton, the
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human body is represented through a collection of parts connected by a set of constraints
imposed by different joints (Figure 1).

Figure 1. Example of a human skeleton body model with 19 joints.

For example, Ferrari et al. [16] proposed a methodology dependent on a conventional
detector, which uses an upper-body pose estimation model from TV and movie video
shots. Unless they exploited the belief propagation technique to refine estimated poses,
the suggested detector seemed to be sensitive to self-occlusions. To solve this problem,
Shotton et al. [17] proposed a new technique to reformulate the pose estimation problem
into a simpler per-pixel classification task. This method was based on a human body-
part segmentation from depth frames. In order to reduce the over-fitting problem, the
authors exploited a randomized decision forest. Later on, Chen et al. [7] used the local
image measurements, not only to detect joints, but also to predict the spatial relationships
between them. The types of part relations were learned with K-means clustering in the
experiments and governed spatial connections between the parts. Besides, a new approach
was put forward in [8] utilizing puppets. The solution was to estimate the pose of the
body only at one frame and then use the optical flow technique to check its performance in
neighboring ones.

Unlike generative approaches, the discriminative ones are model-free and do not
assume any particular human skeleton structure constraint. They are based essentially on
learning a mapping between image observations and body poses. For example, Poppe [18]
presented an example-based approach to pose recovery using histograms of oriented
gradients as image descriptors. Niyogi and Freeman [19] estimated the pose of human
heads using a nonlinear mapping from the input image to an output parametric description.
The mapping was calculated through examples from a training set, where the output pose
was presented as that of the nearest example input neighbor.

2.2. Deep HPE Approaches

The classical pipeline of HPE has shown some limitations. Recently, this domain has
been greatly reshaped by new deep learning techniques. This new type of technology
no longer needs hand-crafted features. They provide several layers of feature extractors,
which make it easier to implicitly learn the patterns of each joint. With the introduction of
“DeepPose” by Toshev et al. [20], researchers of HPE began to shift from classic approaches
to deep learning. Most of the recent pose estimation systems have adopted ConvNets as
their main building block, largely replacing hand-crafted features and graphical models.
This technique has yielded great improvements on standard benchmarks. DeepPose was
the first work that benefited from deep learning for HPE. In this approach, pose estimation
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was formulated as a CNN-based regression problem towards body joints. The authors
used a cascade of DNN regressors to refine the estimated pose. Gkioxari [21] used a
CNN architecture for both pose estimation and action detection. In order to determine
different human attributes, a collection of CNNs was trained in [22], where each one
learned a poselet [23] from a set of image patches. The architecture consisted of four stages
of convolution-normalization-pooling layers, one fully connected layer, and a logistic
regression one utilized as a classifier of a linear nature. Poselets have been commonly used
in conjunction with CNNs for people detection and pose estimation as well. Later on, in [24],
the authors introduced a new top-down procedure, called iterative error feedback, which
allowed error predictions to be fed back in the CNN to progressively change the initial
solution. Another study [25] proposed to apply the convolutions and pooling steps in a
way that would permit the image to be processed repeatedly in a bottom-up and top-down
manner with intermediate supervision. Later, Belagiannis and Zisserman [26] combined
feed forward and recurrent modules in a CNN-based HPE model. In [27], the authors
suggested to integrate a consensus voting scheme within a CNN, where votes gathered
from every location per keypoint were aggregated to obtain a probability distribution
for each keypoint location. Another CNN was trained in [28] to infer 3D human poses
from uncertainty maps of 2D joint estimates. To estimate human poses in videos, the
authors in [29] exploited the ability of CNNs to benefit from temporal context, which was
established by combining information between successive time frames using an optical
flow. Recently, Nibali et al. [30] proposed some improvements in the HPE domain. They
extended the heat map-based output strategies commonly used in 2D pose estimation to
the task of 3D HPE. They predicted three two-dimensional marginal heat maps per joint
under an augmented soft-argmax scheme. Using post-data augmentation techniques to
improve the quality of extreme/wild motions’ pose estimation, Toyoda et al. [31] proposed
a method that augmented the input data with rotation augmentation, then applied the pose
estimation technique multiple times for every frame. The most consistent pose was then
selected followed by a motion reconstruction for smoothing. In [32], Kreiss et al. proposed
a new bottom-up method for multi-person 2D human pose estimation that was particularly
well suited for urban mobility such as self-driving cars and delivery robots. Their method
was based on two parts: the PIF (Part Intensity Field) to localize different body parts
and the PAF (Part Association Field) to associate body parts with each other and form
full human poses. All models used were based on ImageNet pretrained base networks.
Gartner et al. [33] proposed a fully trainable deep reinforcement learning-based active pose
estimation architecture, which learns to select appropriate views, in space and time, to
feed an underlying monocular pose estimator: “Pose-DRL”. Considering the progress in
computer vision for HPE, the authors in [34] showed how new deep learning architectures
can influence animal pose estimation, which encourages neuroscience laboratories to
leverage these tools for better quantification of behavior.

2.3. Deep HAR Approaches

For Human Action Recognition (HAR) (such as “walking”, “open door”, “sit down”, etc.),
many approaches based on deep learning techniques have been proposed in the last few
years. Those approaches can be classified according to the DL model used: 2D or 3D. In the
following, we present a selection of deep learning-based research works for HAR. For 2D
CNN-based HAR approaches, Simonyan et al. [35] implemented a two stream ConvNet
where the spatial stream recognizes the action from still frames and the temporal stream
performs recognition from the motion in the form of dense optical flow. This method
achieved good results on the UCF-101 and HMDB-51 datasets. However, according to the
authors, the proposed model may not be suitable for real-time applications due to its com-
putational complexity. Moreover, in [36], the authors adapted the successful deep learning
architectures to the design of a two stream ConvNet for action recognition in videos, which
they called “very deep two stream ConvNets”. They empirically studied both GoogLeNet
and VGG-16 for the design of the proposed model. In relation to [35], they presented two
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novelties: (i) they extended the famous Caffe toolbox into a multi-GPU implementation
with high efficiency and low memory consumption and (ii) proposed several good practices
for the training of the ConvNet architecture (learning rate arrangement, data augmentation
techniques, etc.). For evaluation, the UCF101 dataset was used with which they achieved
a recognition accuracy of 91.4%. Later on, Ijjina et al. [37] proposed a new approach for
HAR based on Genetic Algorithms (GAs) and CNNs. They demonstrated that initializing
the weights of a CNN classifier based on solutions generated by the GA minimized the
classification error. To demonstrate the efficacy of the proposed classification system, they
evaluated their CNN-GA model on the UCF50 dataset, achieving 96.88% as the average
accuracy rate.

Most of the current CNN methods use architectures with 2D convolutions, enabling
shift-invariant representations in the image plane. However, the invariance to translations
in the time axis is also important for HAR since the beginning and the end of the action
are generally unknown. Thus, a CNN with 3D spatio-temporal convolutions addresses
this issue and provides a natural extension of a 2D CNN to video. In [38], the authors
developed a novel deep model for automatic activity recognition from RGB-D videos. Each
human activity was presented as an ensemble of cubic-like video segments and learned to
discover the temporal structures for each category of activities. Their proposed ConvNet-
based model consisted of 3D convolutions and max-pooling operators over the video
segments. Later, Shao et al. [39] mixed appearance and motion features for recognizing
group activities in crowded scenes collected from the web. For the combination of the
different modalities, the authors applied multitask deep learning. By these means, they
were able to capture the intra-class correlations between the learned attributes while they
proposed a novel dataset of crowed scene understanding called the “WWWcrowd” dataset.
Another approach using spatio-temporal features with a 3D convolutional network was
proposed in [40]. Experimentally, the authors showed that 3D CNNs are more suitable
for spatio-temporal features than 2D CNNs. Furthermore, they empirically demonstrated
that the CNN architecture with small 3× 3× 3 kernels was the best choice for spatio-
temporal features. Achieving 52.8% accuracy on the UCF101 dataset, their model was
computationally efficient due to the fast inference of ConvNets. Just recently, Varol et al. [41]
proposed the LTC-CNN model: a combination of Long-term Temporal Convolutions (LTC)
with CNN in order to learn video representations. They investigated multi-resolution
representations of both motion and appearance. They demonstrated the importance of
high-quality optical flow estimation on action recognition accuracy. The model was tested
on two recent and challenging human action benchmarks: UCF101 and HMDB51 and
reported state-of-the-art performance. Shou et al. [42] also designed a novel 3D CNN
model named the Convolutional-De-Convolutional (CDC) network, where CDC filters
were implemented prior to a 3D ConvNet. Shou et al. were the first to combine two reverse
operations (convolution and de-convolution) into a joint CDC filter. The proposed CDC
conducted down-sampling in space and up-sampling in time simultaneously to infer both
high-level action semantics and temporal dynamics.

3. Materials and Methods

The proposed DFB-HPE approach was basically inspired by [29]. The basic HPE
architecture consists of a two stage process for upper-body pose estimation: (i) spatial
layers and (ii) temporal layers. The first stage is used to calculate different upper joint
positions from RGB video frames. The heat map joints are then fed to the second stage,
the “temporal pooler”, in order to consider the temporal dimension with the optical flow
technique.

In order to take into account the full-body pose estimation, we modified the already
mentioned architecture considering the fact that adding the lower-body joints should
improve the pose estimation results as far as the activity recognition rate [43], opening up
other possibilities for applications. Indeed, the suggested architecture consists of several
convolution, pooling, and loss layers. As depicted in Figure 2, the overall network is
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composed of two levels: (i) fully-convolutional layers and (ii) fusion layers. The input
is a set of RGB video frames with a 320 × 240 resolution. For each frame, fifteen key
joint positions are predicted. The output of the last loss layer (loss2) represents the 2D
coordinates of the full-body joint positions. Later, those positions will be the input to the
SVM classifier in order to recognize the human activity. The first stage of the proposed
architecture is fully convolutional: eight convolution layers with a stride equal to 1, where
the first two layers are followed by a 2× 2 max-pooling layer with a stride equal to 2. The
output of the “conv8” layer is a set of heat maps with a fixed size i× j× k, where i and j
represent the heat map size and k is the number of joints to regress (here, 60× 60× 15). In
order to learn the dependencies between the locations of human body parts, the convolution
layer “conv7”, which shows pre-heat map activations, is concatenated with “conv3”, which
represents a skip layer. In fact, training deep networks especially with a small amount
of data can lead to many problems, namely vanishing and exploding gradients. In order
to deal with this issue, we used a specific layer named the skip connection/layer, where
activations are taken from one layer and fed to another one that is deeper in the network.
This concatenation represents the input of the second stage of the fusion layers. We should
note that the proposed network architecture is based on regressing heat maps for each joint
instead of directly regressing the positions of the joints as this is a highly non-linear problem.

[320*240] Conv_1 Conv_2Pool_1 Conv_6Conv_5Conv_4Conv_3 Conv_7Pool_2

K=5*5
S=1
P=2

K=2*2
S=2

Input

K=5*5
S=1
P=2

K=2*2
S=2

K=5*5
S=1
P=2

K=9*9
S=1
P=4

K=9*9
S=1
P=4

K=1*1
S=1
P=2

K=1*1
S=1
P=2

Conv_8Loss-1

K=1*1
S=1
P=2

Concat_fusionConv1-fConv2-fConv4-f Conv3-fConv5-fLoss-2

K=7*7
S=1
P=3

K=13*13
S=1
P=6

K=13*13
S=1
P=6

K=1*1
S=1
P=0

K : kernel size
S : stride
P : padding

SVM classifier

Activity class

Estimated 

joint positions

Figure 2. Overview of our Deep Full-Body (DFB)-Human Pose Estimation (HPE) architecture from
RGB frames.

As a loss function, the suggested architecture uses the Euclidean loss layer, which com-
putes the sum of squares of differences between its two inputs, as shown in Equation (1).
As our network is trained to regress the location of the human full-body joints, the l2 loss
layer penalizes the l2 distance between the predicted joint positions and the Ground Truth
(GT) ones.

loss =
1

2N

N

∑
i=1
‖(y1

i − y2
i )‖2 (1)

where N is the number of samples, yi
1 represents the ith predicted joint location, and yi

2 is
the ith GT joint location.

For the classification of different human activities, we used the multi-class “one-
against-one” SVM classifier. We used the LIBSVM implementation with the polynomial
function as a kernel. The SVM’s input is the vector of the 2D positions of all fifteen joints
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calculated in the previous pose estimation stage. Each frame is associated with its fifteen
2D joint positions and its activity label. In order to have the best SVM configuration,
we utilized the 10-fold cross-validation process for the training and testing splits. Then,
the predicted SVM model was tested, and the accuracy rate, as well as confusion matrix
were calculated.

In order to find a good enough set of weights for the specific mapping function from
inputs to outputs, we used the stochastic optimization algorithm of Stochastic Gradient
Descent (SGD). It is based on randomness in selecting a starting point for the search where
all the weights were initialized to small random values. This process was repeated multiple
times in order to have the most effective configuration. For that goal, we chose to train
our network not just by fine-tuning with the pre-trained model available, but from scratch,
which allowed us to control all parameters’ initialization. We began with a number of
iterations equal to 150 K and increased it to view its effect on the convergence of the loss
to 0. The network weights were learned using a mini-batch stochastic gradient descent
with the momentum set to 0.95. In each training iteration, fourteen training frames were
taken randomly and used as a mini-batch. To present maximally varying input data to
the network and avoid the over-fitting problem, some data augmentation techniques were
used. Each frame, with a 320× 240 input size, was randomly shuffled prior to training and
randomly cropped to a 232× 232 sub-image to be then fed forward through the network
to compute human joint locations. The validation set was used for hyper-parameter
estimation. At training time, the GT labels were heat maps synthesized for each joint
separately by placing a Gaussian with a fixed variance at the ground truth joint position.
We then utilized an l2 loss, which penalized the squared pixel-wise differences between
the predicted heat map and the synthesized ground truth one. In order to determine the
best ConvNet parameter initialization, a 4-fold cross-validation was applied on the used
dataset. The ConvNet training was performed on a single NVIDIA GTX Titan GPU using
the Caffe framework [44].

4. Results
4.1. Datasets

We utilized two public well-known datasets: J-HMDB [45] and CAD-60 [46].
J-HMDB: Extracted from the HMDB51 dataset, J-HMDB contains 928 clips comprising

21 action categories. It is not only a human action dataset, but also a good benchmark for
pose estimation and human detection. Each frame was annotated using a 2D articulated
human puppet model [47] providing: a scale, a pose, a segmentation, a coarse viewpoint,
and a dense optical flow for humans in action.

CAD-60: concerns 12 classes of daily-life actions (e.g., wearing contact glasses, opening
a pill container, brushing teeth) in addition to two non-action classes relative to still and
random behaviors. It was performed only by four actors and offers images relative to
the RGB and depth frames, besides the skeletal streams relative to 15 body joints. Its
main challenge is having one left-handed actor out of those present. The skeleton data are
illustrated in Figure 3.
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Figure 3. Key joint positions in the CAD-60dataset.

4.2. Evaluation Metrics

In all pose estimation experiments, we compared the estimated joints against the GT
ones. The GT joint positions were given in a real-world coordinate system. Thus, they
were converted into image-plane coordinates (x, y). For any particular joint localization
precision radius r (measured in a Euclidean pixel distance), we report the percentage of
correct joints in the test set within this radius. Indeed, for a test set of size N, radius r, and
a particular joint i, the accuracy is given by Equation (2):

acci(r) =
100
N

N

∑
t=1

1(
‖(yt∗

i − yt
i)‖

ht/100
≤ r) (2)

where yt∗
i is the ith predicted joint location on test sample t and ht represents the torso

height of the tth sample.
In addition to the accuracy evaluation metric, the Percentage of Correct Parts (PCP),

the Percentage of Correct Keypoints (PCK), and the Percent of Detected Joints (PDJ) have
been commonly used in recent pose estimation work:

• PCP: It describes a broadly-adopted evaluation protocol that measures the percentage
of correctly localized body parts. A candidate body part is labeled as correct if
its segment endpoints lie within 50% of the length of the ground-truth annotated
endpoints [20,48].

• PCK: It defines a candidate keypoint to be correct if it falls within α ×max(h, w)
pixels of the GT keypoint, where h and w are respectively the height and width of the
bounding box and α is the relative threshold for correctness [16].

• PDJ: A joint is considered detected if the distance between the predicted joint and the
true one is within a certain fraction of the torso diameter. By varying this fraction,
detection rates are obtained for varying degrees of localization precision. This metric
alleviates the drawback of PCP since the detection criteria for all joints are based on
the same distance threshold [20].

4.3. Results of J-HMDB Dataset

Based on the work of Charles et al. [48], a joint is considered to be correctly located
if it is within a set distance of d pixels from a marked joint center in the GT. Accordingly,
different results are presented as graphs that plot accuracy per joint type vs. distance from
the GT in pixels in Figure 4.

Those results are confirmed with those presented in Figure 5, which shows PDJ results
per joint type according to the normalized precision threshold. For upper-body joints, the
detection rate can achieve approximately 90% even from a 0.5 precision threshold. We note
that our pose estimator performs well for almost all action classes, although it is about
real-world occluded scenarios. For some actions as “brush hair” or “wave”, the accuracy
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rate is lower for principally the knee and ankle joints. Indeed, for those action classes, the
provided RGB frames are just upper-body, which makes it difficult to estimate lower-body
joints such as the ankle or the knee.

We compare the proposed approach with seven state-of-the-art methods tested on
the same dataset in Table 1. The first two methods: Dense Trajectories (DTs) [49] and the
Spatial Temporal “And/Or” Graph Model (STAOGM) [50] are hand-crafted. However,
the remaining approaches are CNN based: Pose-CNN (P-CNN) [51], Action-tubes (A-
tubes) [52], Semantic Region-based CNN (SR-CNN) [53], Motion-Salient Region CNN
(MSR-CNN) [54] and Human-Related Multi-Stream CNN (HR-MSCNN) [55]. From the
comparison with DTs and STAOGM, we find that the deep learned features outperform
the hand-crafted ones for action recognition. For P-CNN, the pose-estimator used does not
always perform well. Our method achieves close results to those A-tubes. However, the
authors used an empirically selected parameter α, which is fixed as constant and might not
be optimal for different kinds of videos. The two stream SR-CNN algorithm is similar to our
method. It incorporates semantic regions that are detected by Faster R-CNN [56] into the
original two stream CNNs. This method uses all detected regions, not only the human body,
but also other foreground and background regions. The extracted features in those regions
may negatively impact the performance of SR-CNN. In contrast, our method focuses on
the human body region where the features are beneficial for the task of action recognition.
Compared to MSR-CNN, the authors in [53] used a spatio-temporal 3D convolutional
method for fusion. Thus, their network performs a little better. Regarding the HR-MSCNN
results, the proposed architecture combines two traditional streams: appearance (R1) and
motion (R2), in addition to the captured tubes of the human-related regions (R3), which
can make the computation time a bit long. In fact, they achieve a 62.98% accuracy rate
when using only one region input (R1) and 71.17% when using all of them (R1 + R2 + R3).

Figure 4. Pose estimation results on J-HMDB: accuracy per joint type according to the allowed
distance from the GT.
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Figure 5. Percent of Detected Joints (PDJ) results on J-HMDB: detection rate per joint type according
to the normalized precision threshold.

Table 1. Comparison with state-of-the-art methods on the J-HMDB dataset. DTs, Dense Trajectories;
STAOGM, Spatial Temporal “And/Or” Graph Model; P-CNN, Pose-CNN; A-tubes, Action-tubes; SR,
Semantic Region; MSR, Motion-Salient Region; HR-MSCNN, Human-Related Multi-Stream CNN.

Reference Method Accuracy (%)

Wang 2011 [49] DTs 56.6
Nie 2015 [50] STAOGM 55.7

Cheron 2015 [51] P-CNN 61.1
Gkioxari 2015 [52] A-tubes 62.5

Wang 2016 [53] SR-CNN 65.51
Tu 2016 [54] MSR-CNN 66.02
Tu 2018 [55] HR-MSCNN 71.17

Ours DFB-HPE 62.07

4.4. Results of the CAD-60 Dataset

For the CAD-60 dataset, different pose estimation results are presented in Figure 6 as
accuracy graphs according to the allowed distance from the GT after applying the four-fold
cross-validation process.

In Table 2, we report the different PCK-0.5results on the CAD-60 dataset.

Table 2. PCK-0.5 resultsof CAD-60 dataset.

Iteration Head Neck Torso Shoulder Elbow Hip Knee Hand Foot Average

k= 1 63.9 69.0 52.9 51.7 59.2 18.3 16.9 33.8 18.4 38.8
k= 2 97.2 98.5 95.5 96.0 74.7 53.1 27.8 53.3 21.4 62.9
k= 3 82.5 67.2 44.7 57.3 44.0 32.2 63.5 35.1 83.2 55.0
k= 4 71.3 19.8 14.1 26.5 29.6 39.7 83.1 47.1 12.0 38.7

Average 78.7 63.6 51.8 57.8 51.8 35.8 47.8 42.3 33.7 51.5

For the upper-body parts of the CAD-60 dataset, the pose estimation results are good
enough for different joints. However, for lower-body parts, each iteration seems to be
effective for a well-defined part of the human body. For example, in the forth iteration
of the cross-validation process, the pose prediction reaches about an 83.1% accuracy rate
for “knee”. Despite being a left-handed person in the third iteration (k = 3), the estimation
seems to be more effective for “foot”: nearly 100% accuracy. This contrast is due mainly
to the joints provided with the CAD-60 dataset. In fact, coming from the Kinect (i.e., not
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manually calculated), the joints are generally sensitive to noise. In addition, their ability to
detect lower parts is almost non-existent, since the distance between the camera and the
person must not exceed a few meters. Those facts may explain the different failsobserved
especially for lower-body parts. Accuracy results are confirmed with the PCK ones in
Table 2, where the scores are reported for each key joint separately and for the whole body.
HPE algorithms can be useful for various tasks in many areas, such as action recognition,
human detection, human attribute recognition, and various gait processing tasks [57]. We
chose the HAR task as it represents many challenges due to occlusions and overlapping
scenes. For such a purpose, a multi-class one-against-one SVM classifier was used through
the LIBSVM (Library for Support Vector Machines) [58] to recognize different activities.
To determine the best configuration of such a classifier, a four-fold cross-validation was
applied. As a kernel function, we chose the polynomial one. The SVM input is the vector
of the 2D positions of all 15 joints calculated in the previous pose estimation stage. In the
training stage, we used 14,294 sample frames of 21,442 and left the rest for the testing stage.

Figure 6. HPE results on CAD-60 with four-fold cross-validation: accuracy per joint type according to the allowed distance
from the GT.

As the HAR results, we show the confusion matrix for the CAD-60 dataset in Figure 7.
In fact, we have some confusion errors between the “drinking water” and “talking on
phone” and between “rinsing mouth with water” and “talking on the phone” activities
with 0.02% and 0.03%, respectively. This is due to the great similarity existing between the
different activity classes (such as “drinking water” and “talking on phone”). We remember
that in our work, we estimate a full-body pose directly from RGB images and then recognize
the corresponding activity. Table 3 proves the competitiveness of our approach with the



Informatics 2021, 8, 2 12 of 16

CAD-60 dataset. Using the accuracy measure, our solution ranks in the first position and
demonstrates a robust precision/recall ratio (95.4% and 95.6%, respectively). It reaches
a higher value of 95.5% for the accuracy in terms of correctly labeled samples. Note that
it admits the highest recall of 95.6%, as shown on the confusion matrix in Figure 7. Our
approach achieves promising performance even in challenging cases (left-handed actor in
the CAD-60 dataset) and using only RGB frames as the system input.

Table 3. Comparison with state-of-the-art results on CAD-60. DBN, Dynamic Bayesian Network; MRF, Markov Random
Field; BOW, Bag Of Words; GMM, Gaussian Mixture Modeling; HMM, Hidden Markov Model; STIP, Spatio-Temporal
Interest Point. (* means which input data: Skeleton, RGB or Depth is used)

Algorithm Precision Recall Input Data MethodSkeleton RGB Depth

Sung 2012 [59] 67.9 55.5 * * * DBN
Koppula 2012 [60] 80.8 71.4 * * * MRF
Zhang 2012 [61] 86 84 * * * BOW + SVM
Yang 2013 [62] 71.9 66.6 * Eigenjoints
Piyathilaka 2013 [63] 70 78 * * * GMM+ HMM
Ni 2013 [64] 75.9 69.5 * * Latent SVM
Gupta 2013 [65] 78.1 75.4 * Codewords + Ensemble
Wang 2014 [66] 74.70 - * * * Fourier temporal pyramid
Zhu 2014 [67] 93.2 84.6 * * * STIP+ skeleton

Faria 2014. [68] 91.1 91.9 * Dynamic Bayesian, mixture model
Shan 2014 [69] 93.8 94.5 * Keypose, random forest, HMM
Gaglio 2015 [70] 77.3 76.7 * SVM, HMM
Parisi 2015 [71] 91.9 90.2 * Self-organizing neural
Cippitelli 2016 [72] 93.9 93.5 * Atomic motion, naive Bayes, nearest neighbor
Seddik 2017 [73] 92.4 93.6 * * * Bags of visual words, Fisher vectors, and SVM

Ours 95.4 95.6 * DFB-HPE (ConvNets + SVM)

Figure 7. CAD-60 confusion matrix for 12 activities.
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5. Conclusions

In this work, we put forward a new approach for 2D full-body HPE. As pose estimation
is a key step for a wide range of applications, the more precise it is, the more effective
the recognition will be. That is why we took advantage of a deep architecture: ConvNet,
given its precision and robustness. The main contribution of our work is to estimate
full-body human poses via a ConvNet architecture adapted to a regression problem. From
RGB frames only, we extracted deep features represented by 15 key joint positions of the
human body. In order to evaluate the proposed HPE model, we applied it to recognize
daily activities of a person in an unconstrained environment. Therefore, deep estimated
poses were fed to an SVM classifier. The evaluation on challenging datasets (J-HMDB
and CAD-60) and the comparison with the state-of-the-art demonstrate that our method
achieves competitive ranking for the benchmarks used. The obtained results show the
efficiency of using the ConvNet-based pose estimation technique to improve the activity
recognition rate.

However, the proposed approach can be further improved. First, an interesting direc-
tion is the investigation of more data augmentation techniques such as image translation,
color contrasting, and temporal variation [74,75]. Second, a straightforward perspective
is to use better performing methods to improve the pose estimation level. Therefore, we
can explore the temporal dimension of input videos via 3D CNNs, which show a better
adaptability to the data with continuous temporal and spatial domain characteristics of the
video [40].
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