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Abstract: Regional rainfall forecasting is an important issue in hydrology and meteorology. Machine
learning algorithms especially deep learning methods have emerged as a part of prediction tools
for regional rainfall forecasting. This paper aims to design and implement a generic computing
framework that can assemble a variety of machine learning algorithms as computational engines
for regional rainfall forecasting in Upstate New York. The algorithms that have been bagged in
the computing framework include the classical algorithms and the state-of-the-art deep learning
algorithms, such as K-Nearest Neighbors, Support Vector Machine, Deep Neural Network, Wide
Neural Network, Deep and Wide Neural Network, Reservoir Computing, and Long Short Term
Memory methods. Through the experimental results and the performance comparisons of these
various engines, we have observed that the SVM- and KNN-based method are outstanding models
over other models in classification while DWNN- and KNN-based methods outstrip other models in
regression, particularly those prevailing deep-learning-based methods, for handling uncertain and
complex climatic data for precipitation forecasting. Meanwhile, the normalization methods such as
Z-score and Minmax are also integrated into the generic computing framework for the investigation
and evaluation of their impacts on machine learning models.

Keywords: rainfall forecasting; k-nearest neighbors; support vector machine; deep neural network;
wide neural network; deep and wide neural network; reservoir computing; long short term memory;
gated recurrent unit

1. Introduction

The global climate changes and the uneven weather conditions in different spatial-
temporal scales are causes for severe problems like droughts and floods [1]. As droughts
and floods become more frequent in the changing climate, accurate rainfall forecasting
becomes more important for planning in agriculture and other relevant activities. Al-
though several modern algorithms and models have been used to forecast rainfall, the very
short-term rainfall is still one of the most difficult tasks in hydrology due to the high spatial
and temporal variability in the complex physical process [2].

Regional rainfall forecasting constrains the spatial variable to local or a particular
region, making the prediction processing relatively controllable comparing with the globe
weather prediction. However, the regional rainfall forecasting is still a problem controlled
by many variables. This study aims to utilize machine learning methods to solve the
problem. The problem of regional rainfall forecasting can be briefly described as follows:
Given a number of historical weather data including rainfall information in a particular
place or a region, one tries to devise a computational model that can predict and tell the
rainfall status either categorically or quantitatively in the period of time in the future. That
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is, it can be either a classification problem or a regression problem from the perspective
of prediction.

There are two main categories of approaches for solving the problem. The first cate-
gory models the underlying physical principles of the complex atmospheric processing.
Although it is thought feasible, it is limited by the complex climatic system in various
spatial and temporal dimensions over short time frames of days to a few weeks. The second
category is based on data mining models. Depending on the disciplines, this category
has two branches: statistical models and machine learning models. Both subcategories
of methods are fed with a large volume of the historical meteorological data including
precipitation information. It does not require a thorough understanding of the climatic laws
but it does need the data modeling for data mining and pattern recognition [3]. Statistical
methods attempt to mine rainfall patterns and learn the knowledge from statistical per-
spectives. Those mostly utilized statistical methods for rainfall forecasting include Markov
model [4–9], Logistic model [10–13], Exponential Smoothing [14–16], Auto Regressive Inte-
grated Moving Average (ARIMA) [17–20], Generalized Estimating Equation [21–24], Vector
Auto Regression (VAR) [25–28], Vector Error Correction Model (VECM) [29–31], and so
forth. In the recent decade, with the advent of artificial intelligence and machine learning
technologies, the machine learning based methods have emerged as an important direction
for data-driven rainfall forecasting, which has drawn broad attention from researchers.
There are a number of published research that have used machine learning algorithms
to solve problems in hydrology. These modern machine learning algorithms include K-
Nearest Neighbors (KNN), Support Vector Machine (SVM), Deep Neural Network (DNN),
Wide Neural Network (WNN), Deep and Wide Neural Network (DWNN), Reservoir Com-
puting (RC), Long Short Term Memory (LSTM), and so forth. As the statistical methods are
not the focus of this paper, we put most effort into machine learning based methods.

However, most related literature focused on the particular method design and devel-
opment and many papers have some common drawbacks: (1) being specific and limited by
particular techniques such as neural networks or support vector machine and (2) lacking
the quantitative comparison and investigation over other existing machine learning models
on the same computing context [32–36]. Our study can make up the niche by providing
quantitative analysis and comparative investigation over a variety of existing machine
learning algorithms using the same computing framework and the same dataset. Moreover,
we have implemented a generic computing framework that can integrate various machine
learning algorithms as the prediction engines for forecasting regional precipitations over
different catchments in Upstate New York. Bolstered by the established framework, we
are able to quantitatively analyze and compare the performance of these machine learning
algorithms for rainfall forecasting on the same context. These algorithms were utilized
to forecast rainfall in Rochester and multiple other locations for the next hour based on
previously observed precipitation data from Upstate New York.

From the aspect of the dataset, we focus on the regional rainfall forecasting in Upstate
New York, a geographic region consisting of the portion of New York State lying north
of the New York City metropolitan area. Upstate New York historically had sufficient
precipitation until recently, with intense drought occurring over the recent years [37]. Our
study can benefit the rainfall forecasting for agriculture and economy-related activities in
Upstate New York over different catchments. Figure 1 shows the map of weather stations
on which the rainfall datasets were collected.
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Figure 1. Weather stations in Upstate New York. The blue circle indicates that ROC dataset is from
Rochester station and the red circles are Buffalo’s two stations, Syracuse’s two stations, and Albany’s
two stations. Both the blue and red circles contribute to the mixed dataset.

In summary, the contributions of this study are generalized as following thrusts. (1) We
proposed a generic computing framework that can integrate a variety of machine learning
models as engine options for regional rainfall forecasting in Upstate New York. It can
provide a practical open-source framework for modeling rainfall forecasting and benefit
the agriculture and related activities in Upstate New York. (2) Relying on the proposed
prediction framework, we are able to quantitatively analyze, compare, and evaluate a
variety of machine learning algorithms based on the same computing framework and the
same datasets. It is superior to the existing literature in depth (quantitative comparison)
and width (more algorithms involved). Meanwhile, (3) we integrate the most used normal-
ization methods Z-score and Minmax to investigate the impact of normalization methods
on those machine learning algorithms, which is unique over other similar literature.

The remaining sections are organized in the following way. In Section 2 we introduce
the related work to this study. After that, in Section 3.1 we depict the prototype of the
generic computing framework in which a variety of machine learning models are integrated
for regional rainfall forecasting. There are also other two important components in Section 3.
In Section 3.2 we show the datasets and how they are prepared for the models, and in
Section 3.3 we depict those machine learning models and related algorithms that are bagged
into the framework. Subsequently, in Section 4 we show the experimental performances of
those bagged models in the computing framework for classification and regression. At last,
in Section 5 we give the further discussion about the results and conclude the paper.

2. Related Work

As one of the machine learning models, the K-nearest neighbors model has shown
a promising performance in climate prediction [38–41]. For example, Jan et al. applied
KNN for climate prediction by using the historical weather data of a region such as rain,
wind speed, dew point, and temperature [42]. However, until the recent years starting
from 2017, the KNN related methods for rainfall forecasting have drawn more attention
from researchers. Huang et al. developed a KNN-based algorithm to offer robustness in
the irregular class distribution of the precipitation dataset and made a sound performance
in precipitation forecast [43]. However, they did not show the comparison with other
advanced machine learning algorithms such as deep learning, limiting its application on
the rainfall forecasting. Yang et al. developed an Ensemble–KNN forecasting method based
on historical samples to avoid uncertainties caused by modeling inaccuracies [44]. Hu et al.
proposed a model that combined empirical mode decomposition (EMD) and the K-nearest
neighbors model to improve the performance of forecasting annual average rainfall [45].
A KNN-based hybrid model was used to improve the performance in monthly rainfall
forecasting [46].

Like multi-layer perceptrons and radial basis function networks, support vector
machines can be used for pattern classification and nonlinear regression. SVM has been
found to be a significant technique to solve many classification problems in the last couple
of years. Hasan et al. exhibited a robust rainfall prediction technique using Support Vector
Regression (SVR) [47]. Support Vector Machine based approaches also have illustrated
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quite the capability for rainfall forecasting. Support vector regression combined with
Singular Spectrum Analysis (SSA) has shown its efficiency for monthly rainfall forecasting
in two reservoir watersheds [48]. Yu et al. conducted a comparative study and revealed
that a single-mode SVM-based forecasting model can have a better performance than
multiple-mode forecasting models [49]. Tao et al. adopted a hybrid method that combined
SVM and an optimization algorithm to improve the accuracy of regional rainfall forecasting
in India [50].

As a type of Artificial Neural Networks (ANN), DNN can emulate the process of the
human nervous system and have proven to be very powerful in dealing with complicated
problems, such as computer vision and pattern recognition. Moreover, DNN are compu-
tationally robust even when input data contains lots of uncertainty such as errors and
incompleteness. Such examples are very common in rainfall data.

A pioneer two-dimensional ANN model [51] was used to simulate complex geophysi-
cal processes and forecast the rainfall. Howevr, it was limited by many aspects including
insufficient neural network configurations and a mathematical rainfall simulation model
that was used to generate the input data. More applications of NN models were devel-
oped later. Koizumi utilized an ANN model for radar, satellite, and weather-station data
together to provide better performance than the persistence forecast, the linear regression
forecasts, and the numerical model precipitation prediction [52]. By comparing several
short-time rainfall prediction models including linear stochastic auto-regressive moving-
average (ARMA) models, artificial neural networks (ANN), and the non-parametric nearest-
neighbors method, a significant improvement on those ANN-based models were demon-
strated in real-time flood forecasting [53,54]. Luk et al. developed several types of Artificial
Neural Networks and revealed that rainfall time series have very short-term memory char-
acteristics [3]. The performance of three Artificial Neural Network (ANN) approaches were
evaluated in the forecasting of the monthly rainfall anomalies for Southwestern Colom-
bia [55]. The combination of ANN approaches had demonstrated the ability to provide
useful prediction information for the decision-making. A similar case study conducted by
Hossain et al. uncovered that the non-linear model ANN can beat multiple linear models
in rainfall forecasting in western Australia [56]. Similarly, Jaddi and Abudullah utilized
optimization techniques [57] to choose and optimize the weights in neural networks [58].
Hung et al. applied ANN model for real time rainfall forecasting and flood management in
Bangkok, Thailand [59].

Cheng et al. proposed Wide & Deep Neural Network (WDNN or DWNN) model
for recommender systems originally, where it contains two components: wide neural
network and deep neural network [60]. The wide neural network (WNN) was designed to
effectively memorize the feature interactions through a wide set of cross-product feature
transformations. The deep neural network (DNN) was used to better generalize hidden
features through low-dimensional dense embeddings learned from the sparse matrix [60].
DWNN has been used in various applications, such as clinical regression prediction for
Alzheimer patients [61]. In the latest publication, Bajpai and Bansal analyzed and evaluated
three deep learning approaches, one dimensional Convolutional Neutral Network, Multi-
layer Perceptron, and Wide Deep Neural Networks for the prediction of regional summer
monsoon rainfall in India and found that DWNN can achieve the best performance over
the rest two deep learning methods [62].

The Reservoir Computing framework has been known for over a decade as a state-
of-the-art paradigm for the design of RNN [63]. Among the models of RC instances,
the echo state network (ESN) represents a type of the most widely known schemes with a
strong theoretical support and various applications [64]. Yen et al. used the ESN and the
DeepESN algorithms to analyze the meteorological hourly data in Taiwan and showed
that DeepESN was better than that by using the ESN and other neuronal network algo-
rithms [65]. Backpropagation algorithms and Reservoir Computing in Recurrent Neural
Networks were adopted to predict the complex spatio-temporal dynamics [66]. An ESN-
based method was proposed by Ouyang and Lu to better forecast the monthly rainfall
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while a SVM regressor was used as a reference for the comparison [67]. Coulibaly utilized
Reservoir Computing approach to forecast the Great Lakes water level and achieved the
better forecasting performance over other two neural networks including recurrent neural
network [68]. A similar approach was used by De Vos to investigate the effectiveness of
neural networks in rainfall-runoff modeling [69]. Bezerra et al. took advantage of the
characteristic of dynamic behavior modeling in RC and combined RC with trend infor-
mation extracted from the series for short-term streamflow forecasting, achieving better
generalization performance than linear time series models [70].

As a type of recurrent neural network (RNN), Long Short-Term Memory neural net-
works (LSTM) have been studied by many researchers in recent literature. Liu et al. used
LSTM to simulate rainfall–runoff relationships for catchments with different climate con-
ditions [71]. The LSTM model then was coupled with a KNN algorithm as an updating
method to further boost the performance of LSTM method. LSTM-KNN model was vali-
dated by comparing the single LSTM and the recurrent neural network (RNN). Chhetri et al.
studied LSTM, Bidirectional LSTM (BLSTM), and Gated Recurrent Unit (GRU), another
variant of RNN [72]. LSTM recorded the best Mean Square Error (MSE) score which out-
performed the other six different existing models including Linear Regression, Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN), GRU, and BLSTM. They further
modified the model by combining LSTM and GRU to carry out monthly rainfall prediction
over a region in the capital of Bhutan.

As an emerging technology, deep learning based methods have embarked as a trend for
weather forecasting or rainfall forecasting in recent years [65,73–75]. Klemmer et al. utilized
Generative Adversarial Networks (GAN) to generate the spatio-temporal weather patterns
for the extreme weather event [76]. Hossain et al. employed a deep neural network with
Stacked Denoising Auto-Encoders (SDAE) to predict air temperature from historical dataset
including pressure, humidity, and temperature data gathered in Northwestern Nevada [77].
Karevan and Suykens developed a 2-layer spatio-temporal stacked LSTM model in an
application [78] for regional weather forecasting in 5 cities including Brussels, Antwerp,
Liege, Amsterdam, and Eindhoven. A deep LSTM network on the Spark platform was
developed by Mittal and Sangwan for weather prediction using historical datasets collected
from Brazil weather stations [79]. Qiu et al. elaborated a multi-task model based on
convolutional neural network (CNN) to automatically extract features and predict the short-
term rainfall from sequential dataset measured from observation sites [80]. Hewage et al.
proposed a data-driven model using the combination of long short-term memory (LSTM)
and temporal convolutional networks (TCN) for weather forecasting over a given period
of time [31].

However, as we discussed in Section 1, most literature were specific and limited
to only particular techniques such as deep learning, neural networks, or support vector
machine and lacked the quantitative comparison and investigation over a wide range of
existing machine learning models. Our study can make up this niche by developing a
generic framework based on machine learning models and quantitatively comparing a
variety of models through the same computing framework and datasets.

In addition, we also investigated the impact of normalization on machine learning
algorithms, as normalization has shown its important impact as part of data representation
for feature extraction [81]. The purpose of normalization is to convert numeric values in
the dataset to the ranges of values in a common scale without erasing differences or losing
significant information. Normalization is also required for some algorithms to model the
data correctly [82,83]. Normalization issues have drawn broad attention from researchers
in machine learning [84–87]. For example, batch normalization becomes a technique widely
adopted in machine learning modeling [82,88,89]. One of its fundamental impacts is that
normalization makes the optimization landscape significantly smoother and it further
induces a more predictive and stable behavior of the gradients and results in a faster
training [90]. Some experiments were conducted to contrast the performance between
normalization and non-normalization [91,92]. However, they involved only a few machine
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learning algorithms. Our study can make up this niche by integrating the normalization
methods to a variety of machine learning models in a generic framework to test the impacts
of non-normalization and normalization and the difference between the commonly used
normalization methods Z-score and Minmax.

3. Methods
3.1. A Generic Framework

Figure 2 illustrates the generic computing framework for regional rainfall forecasting
in Upstate New York. This framework is an abstract software environment that can provide
generic functionality and easily launch specific models according to additional needs.
The framework contains four main components: precipitation data preprocessing, data
normalization, forecasting engines, and results assessment, as shown in Figure 2.

Figure 2. The illustration of a generic computing framework for regional rainfall forecasting.

Data Preprocessing: In the first step of data preprocessing, a rainfall data acquiring
and generating process is conducted. We have developed an automatic data acquiring
tool to acquire and generate data from the online data source. After data acquiring and
generating, raw data are fed further to three parts: cleaning, interpolating, and splitting.
There are some empty items and some duplicates existing in the raw datasets. We delete
those empty and duplicated items. Data interpolating is used to handle many empty
values spread around the entire dataset. We calculate the average value from its chronicle
neighbors and interpolate it as the estimated value. As a necessary step for training and
testing in machine learning models, we adopt 70/30 ratio in dataset splitting to meet the
need. The detailed process is described in Section 3.2.

Data Normalization: Two important normalization methods, Z-score and Minmax,
are used to evaluate the impact of normalization and non-normalization in the framework.
The Z-score value zi is calculated in terms of Equation (1):

zi =
xi − µ

δ
, (1)

where xi is the i-th observed value, µ is the mean of all values in the variable and δ is
the standard deviation in the variable. The Minmax value mi is computed in terms of
Equation (2):

mi =
xi −min

max−min
, (2)

where min is the minimum value and max is the maximum value in the variable respec-
tively.

Forecasting Engines: The computing framework provides the options of machine
learning models and algorithms for either classification or regression. The technical details
of models and algorithms are described in Section 3.3.
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Result Assessment: Different assessment metrics are used for evaluating classifica-
tion and regression respectively. In classification, accuracy is the most used to measure the
classifier’s performance, which can greatly manifest the capability of predictive models.
In regression, the coefficient of determination (R2), Mean Square Error (MSE), Root Mean
Square Error (RMSE), and Pearson Correlation Coefficient (Pcc) are adopted to measure
the fitness of a regression model to the dataset. After the experimental results are ob-
tained and saved in the local storage, a comparison based on these assessment metrics will
be conducted.

3.2. Data Preprocessing

The data was obtained from Iowa State University’s Iowa Environmental Mesonet
which has a portal to download Automated Surface Observing System (ASOS) data (avail-
able online: https://mesonet.agron.iastate.edu/ASOS/, accessed on 10 May 2021) from
weather stations around the US [93]. Four regional data sets were collected as illustrated in
Figure 1: Rochester data came from the ROC weather station; Buffalo data came from the
BUF and IAG weather stations; Syracuse data came from the SYR and FZY weather stations;
and Albany data came from the ALB and SCH weather stations. We designed an online
tool that enables us to collect 11 years of historical hourly weather data automatically from
the locations we needed for our project. The features/variables of the climatic data that we
collected from each location and used for this study were: hourly precipitation in inches
(p01i), temperature in fahrenheit (tmpf), dew point in Fahrenheit (dwpf), relative humidity
as a percent (relh), wind direction in degrees from North (drct), wind speed in knots (sknt),
Pressure altimeter in inches (alti), sea level pressure in millibar (mslp), and visibility in
miles (vsby). The regression target was the precipitation in inches for the next hour.

Take the Rochester Dataset as an example, the plot matrix shown in Figure 3 virtually
indicates the relationships between the numeric features. There are two sets of features with
clear linear correlations, that being Temperature and Dew Point as well as Pressure and
Sea Level Pressure. Temperature and Dew point are commonly used in calculating Heat
Index, so it makes sense that they are strongly related. The two different measurements
of air pressure seem nearly identical but as you can see in the chart, they are positively
correlated but not exactly the same. Besides the two sets of strongly correlated features,
the other features present a more complicated relationship. In this plot matrix, the data
points in which the following day had precipitation are marked in green while the rest of
the data points are blue.

After the raw dataset was acquired, it was grouped into hour intervals starting with 0
on 1 January 2010, at midnight. These groups were averaged into a single row for all the
features except p01i. That is one hour precipitation for the period from the observation time
to the time of the previous hourly precipitation reset. p01i is specifically the accumulated
precipitation within an hour so the max was taken for each group for the p01i feature.
All missing p01i values were set to 0. The decision was made after looking at random
hour intervals whose p01i value was missing and cross-referencing that time frame with
Available online: Weather.com (accessed on 10 May 2021). For the rest of the features,
missing values were interpolated from their previous and future hour interval values.

From the cleaning and interpolating, two separate datasets were created. One dataset
had only data from Rochester (ROC). The second dataset had the mixed data from Rochester
as well as corresponding data from Buffalo, Syracuse, and Albany (Mixed or ROC + BUF +
SYR + ALB). The second dataset was created by performing a left join of the Rochester data
with a union of the rest of the data. Intervals where Rochester had data but the others did
not, had their values interpolated by the same method that was used to previously remove
missing values.

At this point in the data’s life, two separate versions of the two datasets were made:
one for classification where an interval’s target was a binary 0/1 of whether the next
interval’s p01i value exceeded 0.01 inches; another for the regression where an interval’s
target was the next interval’s p01i value. According to the categories in hydrology, hourly

https://mesonet.agron.iastate.edu/ASOS/
Weather.com
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rainfall in 0.01 inches is a very small amount that can be ignored and eliminating the
smallest of the values also can reduce noise.

For both ROC and Mixed datasets, a Minmax normalized version, a Z-score normal-
ized version, and a non-normalized version were made. This resulted in 6 datasets for
classification and 6 datasets for regressors. For all the classifiers and regressors, the 11
years of hourly data was split into 70% for training and 30% for testing. For all except
LSTM, the split was made by shuffling the data by a given random state and split after
shuffling. In the cases where random states were used to shuffle the data, the random
states considered were 0, 42, and none (0 and none are the first values that can be chosen
but 42 is a special choice made by many, which comes from the book The Hitchhiker’s Guide
to the Galaxy). The use of none for a random state indicates that the data was not shuffled
before the split.

Figure 3. The feature matrix in ROC dataset. Notation: tmpf, air temperature in Fahrenheit typically
at 2 m; dwpf, dew point temperature in Fahrenheit typically at 2 m; relh, relative humidity in %; drct,
wind direction in degrees from north; sknt, wind speed in knots; alti, pressure altimeter in inches;
mslp, sea level pressure in millibar; vsby, visibility in miles.

3.3. Models and Algorithms

A set of algorithms of SVM, KNN, DNN, WNN, DWNN, RC, and LSTM, are used to
forecast regional rainfall. These models and algorithms are provided as forecasting engines
in our integrated framework. We describe these models and algorithms as follows.
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3.3.1. K-Nearest Neighbors

KNN algorithm is a robust method that can approximate its outcome by averaging
the observations in the same neighborhood. The neighborhood is determined by the
distance between the observations and the input point [40]. The distance can be mea-
sured by many methods such as Manhattan distance, Euclidean distance, and Minkowski
distance. Euclidean distance is calculated as the square root of the sum of the squared
differences between a new point x and an existing point x′. Equation (3) shows the distance
measurement:

D(x, x′) =

√
n

∑
i=1

(xi − x′i)
2, (3)

where i is the i-th feature of nodes x and x′. KNN can be used for both classification and
regression. In KNN regression, the output value is the average of the values of k nearest
neighbors. In KNN classification, the output value is the most common class among k
nearest neighbors. The value of k can be chosen manually or using cross-validation to
select the size that minimizes the mean-squared error or maximize the accuracy.

3.3.2. Support Vector Machine

Support vector machine (SVM) or support vector regressor (SVR) aims to find the
hyperplane [94]. The difference between SVM and SVR is that one segregates the nodes for
classification while the other finds the decision boundary along with hyperplane and has
the least error rate to fit the model. The hyperplane in a SVM is shown in Equation (4):

y = wT · x + b, (4)

where x is a vector of features, w is a vector of normalized direction to the hyperplane,
and b is a form of threshold.

SVM has a powerful way to project dataset into higher dimension by using kernels.
A common kernel function K can be linear such as dot product, or non-linear such as Radial
basis function kernel (rbf) as shown in Equation (5):

K(x1, x2) = e−γ‖x1−x2‖2
, (5)

where γ is a parameter for rbf kernel, and ‖x1 − x2‖2 is the Euclidean distance. In this
study, we utilize four kernels: linear kernel, polynomial kernel, rbf/Gaussian kernel,
and sigmoid kernel.

3.3.3. Deep Neural Network

Artificial neural Networks are generalized models of biological neuron systems. Deep
neural networks are a type of artificial neural network, which contains a number of layers
and can massively distribute processing over layers of neurons or perceptrons [56]. Each
neuron or perceptron is the elementary unit containing a simple linear summing function
and an activation function as shown in Figure 4. The summing function is shown in
Equation (6):

sk =
m

∑
j=1

wkjxj + bk, (6)

where k denotes the identifier of the k-th layer, xj is the input of node j, and bk is the
bias of layer k. The sigmoid function is often used as an activation function as shown in
Equation (7):

yk(s) = ϕ(sk) =
1

1 + e−sk
. (7)
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Figure 4. An illustration of perceptron structure.

3.3.4. Wide Neural Network

The core of a wide neural network is a generalized linear model as shown in Equation (8):

y = wTx + b, (8)

where x is a vector of d features, w is the weights or parameters, and b is the bias. The d
feature set may be raw input features or transformed features. A cross-product transfor-
mation is utilized to capture the interactions between the binary features, which adds a
non-linear factor to the generalized linear model, as shown in Equation (9):

φk(x) =
d

∏
i=1

xcki
i , cki ∈ {0, 1}, (9)

where cki is 1 if the i-th feature is part of the k-th transformation φk and 0 if the i-th
feature is not part of the k-th transformation φk. The generalized linear models with cross-
product feature transformations can memorize these exception rules with much fewer
parameters [60].

3.3.5. Wide and Deep Neural Network

The Wide and Deep Neural Network is composed of a wide neural network and a
deep neural network using a weighted sum of their output log odds as the prediction and
a common logistic loss function for a joint training [60]. In the joint training, the wide
component uses a small number of cross-product feature transformations to complement
the weaknesses of the deep neural network.

The deep component is a feed-forward neural network, as shown on the right side of
Figure 5 while the wide component is a linear model based neural network, as shown on
the left side of Figure 5. The low-dimensional vectors are fed into the hidden layers of a
neural network in the forward pass according to Equation (10):

yk+1 = ϕ(wkyk + bk), (10)

where k is the layer number and ϕ is the activation function, yk, wk, and bk are the output,
model weights, and bias in the k-th layer respectively.
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Figure 5. An illustration of DWNN.

3.3.6. Reservoir Computing

The reservoir computing (RC) framework consists of three layers: input layer, reservoir
layer, and output layer, as depicted in Figure 6.

Figure 6. An illustration of reservoir computing [63].

The input layer consists of the input weights for each reservoir perceptron. It is a
randomly generated matrix with values uniformly distributed between 0 and δ, where δ is
a scaling factor that allows the reservoir computing to adjust the methods for training data
of various sizes. The input layer matrix of the weights is denoted as Win.

The reservoir layer is where the actual recurrent neural network is held. The current
i-th state of the reservoir is described as a vector, referenced as~r(i). The perceptron weights
are described by a connectivity/adjacency matrix, Wre. This matrix is an Erdös-Rényi
randomly generated matrix. The eigenvalues of the matrix are normalized, and scaled
by a factor, ρ, known as the spectral radius that determines how the reservoir adapts to
changing dynamics. The activation function for the reservoir is given in Equation (11):

~r(i) = tanh[~r(i− 1)×Wre + ~X(i)×Win], (11)

where~r(i− 1)×Wre represents the reservoir’s feedback and is what allows the reservoir to
attach to new input vectors and the ~X(i) represents the vector of new input to the reservoir.
The input term and activation function may vary in different implementations of reservoir
computing [63].

The output layer is how a prediction is obtained from the reservoir. The output layer
is a (# of perceptrons) × ( # of classes) matrix, referred to as Wout. The output is obtained
by Equation (12):

output =~r(i)×Wout. (12)

3.3.7. Long Short Term Memory

The LSTM network accepts the output of the previous moment, the current system
state, and the current system input. It then updates the system status through the input



Informatics 2021, 8, 47 12 of 27

gate, the forget gate, and the output gate. Then it finally outputs the result [95]. As shown
in Figure 7, the forget gate is f (t), the input gate is i(t), the output gate is o(t), and the cell
state is Ct.

Figure 7. An illustration of LSTM structure.

According to the network structure in Figure 7, the forget gate decides the information
forgotten and controls the transfer of information from the previous time as shown in
Equation (13):

ft = δ(U f xt + W f ht−1), (13)

where U f and W f are the weights of the recurrent and input connections accordingly in the
forget gate and δ is an activation function such as sigmod or hyperbolic tangent.

The input gate determines the current time system input, which acts in front of the
forget gate to supplement the latest memory of the network, as shown in Equation (14):

it = δ(Uixt + Wiht−1), (14)

where Ui and Wi indicates the weights from the recurrent and the input connections
accordingly in the input gate.

The current cell memory Ct is defined in Equation (15):

Ct = ftCt−1 + itCt, (15)

where C is shown in Equation (16):

Ct = tanh(Ucxt + Wcht−1), (16)

where Uc and Wc are the weights of the connections to C accordingly.
The output gate Ot is shown in Equation (17):

Ot = δ(Uoxt + Woht−1), (17)

where δ is an activation function and Uo and Wo are the weights of the connections to the
output gate accordingly. The current cell output ht is shown in Equation (18):

ht = tanh(Ct)Ot. (18)

Bidirectional LSTM and Gated Recurrent Unit (GRU) are viewed as variants of LSTM.
Bidirectional LSTM can receive the input from two directions: one is from past to future
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and one is from future to past, which is different from unidirectional LSTM. GRU is similar
to a LSTM model but it lacks an output gate. Therefore, GRU has fewer parameters than
LSTM, and has demonstrated better performance in relatively small datasets [96].

4. Results Assessment
4.1. Running and Tuning

The KNN, SVM, Linear, and RC models for rainfall forecasting were implemented
based on SKLearn libraries, running on M1 Mac (Apple M1 chip, 8-core CPU, 8-core GPU,
16-core Neural Engine, 16.0 GB RAM, 1TB SSD HD). The DNN, WNN, DWNN, and LSTM
models for rainfall forecasting were implemented based on Tensorflow libraries, running on
Intel Xeon CPU (E3-1240 V2 @ 3.40 GHz, 16.0 GB RAM, NVIDIA GeForce GTX 1070 GPU,
TOSHIBA HDWD130 3TB Sata 6 Gbs 7200RPM). The software Github package as well as
the datasets can be found online: https://github.com/Oeathus/ANNSIM21 (accessed on
10 May 2021).

To ensure a fair comparison between the models, each model was given the same data
as all other models. Also, where a parameter was required that was specific to any of the
models, like layers for DNN and DWNN or Kernels for SVM and SVR, there was a loop
made to test multiple values for that model. In the case of SVM and SVR, there were only
four possible values for the parameter so they were all tried. For models whose parameter
had a virtually unlimited set of possible values, like the number of layers for DNN or
DWNN, we tried multiple values spaced apart in such a way to try and capture the best
that could be done in a reasonable amount of time. For models that could train and infer
quickly, more values were tested and for models that took more time to train and infer,
fewer values were tested. With that said, for all but the Linear Regressor, WNN Classifier,
and WNN Regressor, only the main parameter was different. For the aforementioned
models, there was no main defining parameter. Outside of the one different parameter,
all other settings such as normalization, random state, and features were the same for all
models in each combination of settings.

4.2. Classification

Accuracy is the metric to measure the classifier’s performance. It is expressed in
Equation (19):

Accuracy =
TP + TN

TP + TN + FP + FN
, (19)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative
according to the confusion matrix shown in Figure 8.

Figure 8. The illustration of confusion matrix.

KNN: Six datasets were crossed with the 3 different random seeds for a total of 18
forms of data. These 18 forms were iterated through a KNN Classifier 25 times to find
the best n_neighbor value. After 450 iterations the best accuracy was 96.09% which was
obtained from the Rochester, Buffalo, Syracuse, and Albany dataset, normalized by Z-score,
a random state of 0, and 9 n_neighbors.

SVM: There were 72 unique Support Vector Machine Classifiers by training against
the cross of 6 premade datasets, 4 kernels, and the same 3 random states as before. The best

https://github.com/Oeathus/ANNSIM21
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accuracy for SVM, and ultimately the best accuracy for all classifiers, was 96.22% obtained
from the ROC + BUF + SYR + ALB, normalized with Z-score, using 0 as random state and
the rbf kernel.

DNN: 126 DNN Classifiers were tested and used by training against the cross of the
6 premade datasets, 7 different amounts of hidden layers, and the 3 random states used
from before. The 7 different hidden layers were: 2, 3, 4, 5, 10, 20, and 30 layers. Each of
the hidden layers had the number of inputs equal to the number of features which for the
ROC datasets was 9 and for the ROC + BUF + SYR + ALB there were 36 inputs at each
hidden layer. The best accuracy for DNN was 94.81% obtained from the ROC dataset only,
normalized with Z-score, using 42 as random state and with 10 hidden layers.

WNN: There were 18 unique WNN Classifiers by training against the cross of the 6
premade datasets and the 3 random states used from before. The best accuracy for WNN
was 95.91% obtained from the ROC + BUF + SYR + ALB, normalized with Z-score, using 0
as random state.

DWNN: There were 126 unique DWNN Classifiers by training against the cross of
the 6 premade datasets, 7 different amounts of hidden layers for the deep aspect, and the
3 random states used from before. The 7 different hidden layers were: 2, 3, 4, 5, 10, 20,
and 30 layers. Each of the hidden layers had the number of inputs equal to the number of
features which for the ROC datasets was 9 and for the ROC + BUF + SYR + ALB there were
36 inputs at each hidden layer. The best accuracy for DWNN was 95.74% obtained from
the ROC + BUF + SYR + ALB, normalized with Z-score, using None as random state and
with 10 hidden layers.

RCC: Reservoir Computing Classifier was investigated because, in a previous investi-
gation of daily values, RCC had the highest accuracy. For RCC, six datasets were crossed
with the same 3 random states as before and crossed again with 6 different sizes of the
reservoir; 50, 100, 200, 400, 600, 1000. The result of these crosses was 108 unique data forms
to train with. The best accuracy was 95.81% which was obtained from the Rochester only
dataset, normalized by Z-score, a random state of 42, and a reservoir size of 1000.

LSTM: There were 12 unique LSTM Classifiers by training against the cross of the
6 premade datasets, and 2 different sequence lengths. Random states were not used for
LSTM as it depends on chronologically consecutive rows of data. The two sequence lengths
considered were 3 previous rows of data and 7 previous rows of data. The best accuracy for
LSTM was 94.82% obtained from the ROC + BUF + SYR + ALB, normalized with Minmax,
using a sequence length of 3.

Overall: Both SVM and KNN classifiers performed the best. Figure 9A,D show all
of the best accuracies for each of the classification methods used in the mixed and ROC
datasets. The plotting for this ranking was zoomed into the accuracy range of 94.5–96.5%
to better show the differences between the methods. A further examination of the ranking
with the normalization data is shown in Figure 9C,F. In almost every case except for LSTM,
the best normalization method was Z-score. It can also be seen that in many cases the non-
normalized version of the data performed measurably worse than its Z-score counterpart.
The groups of (B,E) and (C,F) are derived from the same results. However, Figure 9B,E
show another way to highlight the performance in regards to normalization.
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Figure 9. Classification performance. (A–C): Classification ranking in the Mixed dataset. (D–F):
Classification ranking in the ROC dataset. (A,D): The best performance ranking mixing the nor-
malization. (B,E): Accuracy in regard to normalization. (C,F): An overall ranking among models
and normalizations.

4.3. Regression

Being that accuracy is not measured the same for regressors the metrics recorded
were the coefficient of determination (R2), the root of the mean-squared error (RMSE),
the mean-squared error (MSE), and Pearson Correlation Coefficient (Pcc). The data used to
train and test the regressors in this section was a subset of the data used for the classifiers
such that all rows targets were above 0.01, that target being the next hours p01i value
(precipitation inches). This decision was made after an initial investigation with the full
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dataset resulted in much poorer performances. This was likely due to the overwhelming
ration of non-precipitation hours (outliers) compared to precipitation hours.

R2, MSE, RMSE, and Pcc are expressed in Equations (20)–(23) respectively:

R2 = 1− ∑i(yi − fi)
2

∑i(yi − y)2 , (20)

MSE =
1
n

n

∑
i=1

(yi − fi)
2, (21)

RMSE =

√
1
n

n

∑
i=1

(yi − fi)2, (22)

Pcc =
∑n

i=0(yi − y)( fi − f )√
∑n

i=0(yi − y)2
√

∑n
i=0( fi − f )2

, (23)

where yi is the observed i-th data, y is the mean of the observed data, fi is the modeled
value, and f is the mean of the modeled values. R2 gives the measurement to what extent
the estimation model fits the dataset; MSE shows the quantitative difference between the
observed and estimated values; RMSE lowers the magnitude of MSE; and Pcc explains the
correlation of the observed data and the predictive model. These four metrics have been
widely used in the most related literature.

4.3.1. KNN Regressor

Six datasets were crossed with the same 3 random states as before to make 18 unique
forms of data and then each of those 18 was run through a KNN Regressor 1000 times to
find the n_neighbor parameter that resulted in the best R2 metrics. The dataset that had the
best R2, 0.181718, was the Rochester, Buffalo, Syracuse, and Albany dataset, normalized
using Z-score, using None for random state, and with an n_neighbors value of 57. This
dataset also had the best MSE and RMSE, 0.005819 and 0.076282. The dataset that had the
best Pearson correlation coefficient score, 0.445571, was the Rochester, Buffalo, Syracuse,
and Albany dataset, normalized using Z-score, using 42 for random state, and with an
n_neighbors value of 37. Table 1 shows the top 2 best metric performers in KNN regressor
for each dataset source.

Table 1. Top 2 best metric performers in KNN regressor.

Dataset Norm. Random Neighbor R2 MSE RMSE Pcc

Mixed Z-score None 57 0.181718 0.005819 0.076282 0.428720
Mixed Z-score 42 37 0.179490 0.009653 0.098247 0.445571
ROC Z-score None 53 0.151876 0.006031 0.077660 0.392005
ROC Z-score 42 44 0.136763 0.010155 0.100773 0.376142

4.3.2. Linear Regressor

Six datasets were crossed with the same 3 random states as before and run through a
linear regression model. The best metrics were obtained from the Rochester, Buffalo, Syra-
cuse, and Albany dataset, with a random state of None. Because this is a linear regression,
the normalizations all yield the same results when the other settings are the same. Those
values were R2 = 0.173853, Pcc = 0.418374, MSE = 0.005875, and RMSE = 0.076648. Table 2
shows the top two performing Linear Regression Models and their respective performance
metrics for each dataset source. Note that the normalizations do not affect the R2 for the
Linear Regressor so that for Mixed or ROC dataset we can put any normalization as they
all have the same metrics through the experimental results.
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Table 2. Top 2 best metric performers in Linear regressor.

Dataset Norm. Random R2 MSE RMSE Pcc

Mixed None None 0.173853 0.005875 0.076648 0.418374
Mixed Z-score None 0.173853 0.005875 0.076648 0.418374
ROC Z-score None 0.152275 0.006028 0.077642 0.390999
ROC None None 0.152275 0.006028 0.077642 0.390999

4.3.3. SVM Regressor

Six datasets were crossed with the same 3 random states as before and crossed again
with the 4 different kernel options: linear, poly, rbf, and sigmoid. This resulted in 72
data forms that were run through the support vector regressor. Table 3 shows the best
performers in each metric for each source. The best R2, 0.036320, came from the Rochester,
Buffalo, Syracuse, and Albany dataset, normalized with Z-score, using the rbf kernel,
and with a random state of 42. The best Pearson correlation coefficient score, 0.408546,
came from the Rochester, Buffalo, Syracuse, and Albany dataset, normalized with MinMax,
using the linear kernel, and with a random state of None. However, SVR did not perform
well on ROC dataset where the invalid values were calculated in R2. Table 3 shows the top
2 best performers in SVR including the invalid values in R2. It shows that SVM does not
perform well in regression tasks.

Table 3. Top 2 best metric performers in SVR.

Dataset Norm. Kernel Random R2 MSE RMSE Pcc

Mixed Z-score rbf 42 0.036320 0.011337 0.106474 0.380177
Mixed Minmax linear None invalid 0.009003 0.094882 0.408546
ROC None sigmoid 42 invalid 0.012855 0.113380 0.168737
ROC Minmax poly None invalid 0.009645 0.098208 0.407548

4.3.4. DNN Regressor

In total, there were 126 DNN Regressors were trained against the cross of the 6
premade datasets, 7 different amounts of hidden layers, and the 3 random states used from
before. Seven different hidden layers were: 2, 3, 4, 5, 10, 20, and 30 layers. Each of the
hidden layers had the number of inputs equal to the number of features which for the
ROC datasets was 9 and for the ROC + BUF + SYR + ALB there were 36 inputs at each
hidden layer.

Table 4 shows the best two performers in each dataset. The best R2, 0.036257, came
from the Rochester only dataset, normalized with Minmax, using 4 hidden layers, and with
a random state of 42. The best Pearson correlation coefficient metric, 0.290540, came from
the mixed dataset, normalized with Z-score, using 30 hidden layers, and with a random
state of 42. The best MSE and RMSE, 0.006871 and 0.082891, came from the Rochester only
dataset, normalized with Minmax, using 2 hidden layers, and with a random state of None.
Even though we used 30 layers deep neural network, the best performer of R2 in ROC
dataset was obtained from the normalization with Minmax, using 4 hidden layers, and a
random state of 42.

Table 4. Top 2 best metric performers in DNN regressor.

Dataset Norm. Layers Random R2 MSE RMSE Pcc

Mixed Minmax 3 None 0.021768 0.006956 0.083405 0.215921
Mixed Z-score 30 42 Invalid 0.011765 0.108465 0.290540
ROC Minmax 4 42 0.036257 0.011338 0.106478 0.240040
ROC Minmax 2 None 0.033795 0.006871 0.082891 0.214836
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4.3.5. WNN Regressor

Similarly to the WNN Classifier, there were 18 unique WNN Classifiers by training
against the cross of the 6 premade datasets and the 3 random states used from before.
For each of the measured metrics there were different models that performed best. Table 5
shows the best performers in each metric. The best R2, MSE, and RMSE (0.148975, 0.006122,
0.078244 respectively), came from the ROC dataset, normalized with Z-score, and with a
random state of None. The best Pearson correlation metric, 0.415068, came from the mixed
dataset, normalized with Minmax, and with a random state of None.

Table 5. Top 2 best metric performers in WNN regressor.

Dataset Norm. Random R2 MSE RMSE Pcc

Mixed Minmax 0 0.121694 0.008829 0.093963 0.354666
Mixed Minmax None 0.099783 0.006402 0.080010 0.415068
ROC Z-score None 0.148975 0.006052 0.077793 0.387437
ROC Minmax None 0.139087 0.006122 0.078244 0.376594

4.3.6. DWNN Regressor

Similarly to the DNN Regressor, 7 different hidden layers were: 2, 3, 4, 5, 10, 20, and 30
layers. Table 6 shows the best performers in each metric for each source. The best R2 for the
mixed datasets, 0.181974, came from the mixed dataset, normalized with Z-score, using 20
hidden layers, and with a random state of 42. The best R2 for the ROC datasets, 0.156510,
was obtained from the Rochester only dataset normalized with Z-score, using 20 hidden
layers, and a random state of None.

Table 6. Top 2 best metric performers in DWNN regressor.

Dataset Norm. Layers Random R2 MSE RMSE Pcc

Mixed Z-score 20 42 0.181974 0.009623 0.098098 0.426754
Mixed Z-score 30 42 0.181682 0.009627 0.098116 0.428402
ROC Z-score 20 None 0.156510 0.005998 0.077448 0.396452
ROC Z-score 10 None 0.155902 0.006003 0.077476 0.395922

4.3.7. LSTM Regressor

There were 48 LSTM regressors in total by training against the cross of the 6 premade
datasets, and 8 different sequence lengths. Random states were not used for LSTM as it
depends on chronologically consecutive rows of data. The 8 sequence lengths considered
were 3, 5, 7, 9, 12, 24, 36, and 48 previous rows of data. Table 7 shows the results of the two
best performing LSTM regressors over two datasets. The best R2, MSE, and RMSE came
from the same model, using the Rochester dataset, not normalized, and using a sequence
length of 5. Those values were R2 = 0.099439, MSE = 0.006424, and RMSE = 0.080149.
The best Pearson correlation coefficient, 0.318826, came from the Rochester dataset, non-
normalized, and using a sequence length of 5. From the mixed dataset, the regressor with
highest R2 obtains the lowest MSE and RMSE and the highest Pcc.

Table 7. Top 2 best metric performers in LSTM regressor.

Dataset Norm. Sequence R2 MSE RMSE Pcc

Mixed Minmax 12 0.093923 0.006489 0.080555 0.310783
Mixed None 12 0.072728 0.006641 0.081492 0.272889
ROC None 5 0.099439 0.006424 0.080149 0.318826
ROC None 48 0.089427 0.006539 0.080865 0.307474
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4.3.8. LSTM Bi-Direction

The Bidirectional regressor models used the same settings as the LSTM regressor
models, so 48 unique Bidirectional regressors were examined with 8 different sequence
steps and the maximum length of previous sequence steps of 48. Table 8 shows the
results of the two best performing LSTM regressors. The best R2, MSE, RMSE, and Pcc
in the Rochester dataset came from the same regressor, normalized using Minmax and
using a sequence length of 12. Those values were R2 = 0.092928, MSE = 0.006496, and
RMSE = 0.080599. The best R2, MSE, RMSE, and Pcc in the mixed dataset also came from
the same regressor that was normalized using Minmax and using a sequence length of 3.

Table 8. Top 2 best metric performers in LSTM Bi-direction regressor.

Dataset Norm. Sequence R2 MSE RMSE Pcc

Mixed Minmax 3 0.067292 0.006645 0.081519 0.295810
Mixed Minmax 7 0.061097 0.006706 0.081889 0.285112
ROC Minmax 12 0.092928 0.006496 0.080599 0.320603
ROC None 12 0.085119 0.006552 0.080945 0.311874

4.3.9. GRU Regressor

The GRU regressor models used the same settings as the LSTM and Bidirectional re-
gressor models, so 48 unique GRU regressors were examined with the maximum sequence
steps of 48. The best R2 in ROC dataset were normalized using Z-score, and a sequence
length of 48. However, its MSE, RMSE, and Pcc were inferior to those of the second place
with Z-score normalized and a sequence length of 3. The best R2, MSE, and RMSE in mixed
dataset were normalized using Minmax and used a sequence length of 36. However, its Pcc
was inferior to that of the second place with Minmax normalized and a sequence length
of 9. Table 9 shows the top two performing GRU Regressor Models and their respective
performance metrics.

Table 9. Top 2 best metric performers in GRU regressor.

Dataset Norm. Sequence R2 MSE RMSE Pcc

Mixed Minmax 36 0.073474 0.006608 0.081291 0.287391
Mixed Minmax 9 0.073345 0.006626 0.081400 0.293189
ROC Z-score 48 0.091028 0.006528 0.080794 0.310435
ROC Z-score 3 0.088520 0.006494 0.080586 0.323445

4.3.10. Overall Regression Results

Table 10 demonstrates the best performer of each model in the mixed dataset. It shows
that DWNNr and KNN are listed as the top performers in R2 while KNN shows the best in
MSE, RMSE, and Pcc. KNN’s MSE, RMSE, and Pcc shows the highest value among the
models, which means a high correlation coefficient between the prediction model and the
dataset. The R2 value of KNN outperforms all but the DWNNr model for which it is a little
lower. That DWNNr model was trained with 20 layers and Z-score normalization.

Although recurrent neural network models were often expected to have a better
performance in sequential data prediction, RNN models such as LSTM, GRU, and bidi-
rectional LSTM have not shown a strong indicator in R2 and Pcc. In our study, hourly
rainfall forecasting is a type of very short-term prediction. The overall results show that the
relatively short sequence length has the best performance except for GRU. Back in Table 9,
it showed that the sequence length of 36 performed the best in R2, MSE, and RMSE while
the second place with the sequence length of 9 was the best in Pcc. A similar result was
achieved in ROC dataset as shown in Table 11. It has been shown that the relatively short
sequence length (short-term memory) has the best performance, again except for GRU.
Back in Table 9, a similar scenario took place: the sequence length of 48 performed the best
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in R2 only, while the sequence length of 3 at the second place was the best in MSE, RMSE,
and Pcc. From the performance analysis, a very short-term rainfall forecasting might have
short-term memory characteristics. It likely sheds some light on previous steps/memories
not benefiting the forecasting improvement so much and LSTM models not showing the
best performance in our hourly precipitation forecasting.

Table 10. Overall Performance in ROC + BUF + SYR + ALB dataset.

Model Norm. Random Param. R2 MSE RMSE Pcc

DWNNr Z-score 42 20 layers 0.181974 0.009623 0.098098 0.426754
KNN Z-score None 57 nodes 0.181718 0.005819 0.076282 0.428720
Linear None None N/A 0.173853 0.005875 0.076648 0.418374
WNNr Minmax 0 N/A 0.121694 0.008829 0.093963 0.354666
LSTM Minmax N/A 12 units 0.093923 0.006489 0.080555 0.310783
GRU Minmax N/A 36 units 0.073474 0.006608 0.081291 0.287391

Bidirect Minmax N/A 3 units 0.067292 0.006645 0.081519 0.29581
SVR Z-score 42 Rbf 0.03632 0.011337 0.106474 0.380177

DNNr Minmax None 3 layers 0.021768 0.006956 0.083405 0.215921

In the relatively small ROC dataset, Table 11 shows that the ranks were basically con-
sistent with those in the mixed dataset. The top three methods DWNNr, Linear, and KNN
had the similar performance in R2, MSE, RMSE, and Pcc. DWNNr was listed as the top
performer in R2, consistent with that of the mixed dataset. KNN was ranked in the third
place with a slightly lower value in R2 than that of the linear regression which was listed
in the third place in the mixed dataset. The ROC dataset is not as large as the mixed
dataset, which might explain why KNN is somewhat inferior in R2 and Pcc to the first and
second places.

From the results, it seems that Z-score normalization did play a role for the top
performers in both datasets. However, non-normalization and Minmax also worked in
some places. Therefore, at this point we cannot make a significant conclusion about the
impact of normalization on regression models.

Table 11. Overall Performance in ROC dataset.

Model Norm. Random Param. R2 MSE RMSE Pcc

DWNNr Z-score None 20 layers 0.156510 0.005998 0.077448 0.396452
Linear None None N/A 0.152275 0.006028 0.077642 0.390999
KNN Z-score None 53 nodes 0.151876 0.006031 0.077661 0.392005

WNNr Z-score None N/A 0.148975 0.006052 0.077793 0.387437
LSTM None N/A 5 units 0.099439 0.006424 0.080149 0.318826

Bidirect Minmax N/A 12 units 0.092928 0.006496 0.080599 0.320603
GRU Z-score N/A 48 units 0.091028 0.006528 0.080794 0.310435

DNNr Minmax 42 4 layers 0.036257 0.011338 0.106478 0.24004
SVR None 42 Sigmoid invalid 0.012855 0.11338 0.168737

4.4. Running Time

We also collected the results in running time. As shown in Figure 10, the training
times are on average much longer than the testing/inference time. We have the size of the
training set and the testing set at a 70-30 split respectively. When considering the classifiers,
SVM and LSTM have the relatively longer training time, which is understandable. LSTM
needs more time for training sequential data and SVM handles non-linear hyperplane
training. While, KNN has a significantly higher inference time, due to the need to measure
distance with all fitted points. When considering the regressors, the recurrent learning
family LSTM, bidirectional, and GRU have more training time while linear model and
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KNN are easy in training. For the inference time, DNN with many layers seems that it
needs much more time to infer the prediction result.

Figure 10. Running time for training and inference.

5. Discussion and Conclusions

Rainfall forecasting plays an important role in our daily lives, especially agriculture
and related activities. In this study, we have designed and implemented a generic com-
putational framework based on learning models for regional rainfall forecasting to solve
both classification and regression problems. The machine learning models, including some
state-of-the-art algorithms, are integrated into the generic framework. They are K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Deep Neural Network (DNN), Wide
Neural Network (WNN), Deep and Wide Neural Network (DWNN), Reservoir Computing
(RC), Long Short-Term Memory (LSTM) and two LSTM variants LSTM bi-directional and
Gated Recurrent Unit (GRU). We used the classification models to forecast if precipitation
will occur in next hour and we used the regression models to predict the regression value of
the rainfall in the next hour. Also, we adopted two commonly used normalization methods
Minmax and Z-score to compare their performance with those of non-normalized models.
The results show that (1) SVM and KNN with Z-score normalization have been listed as
the top 2 classification models in the generic machine learning framework and (2) DWNN
and KNN models with Z-score normalization have achieved the best rank according to
the regression metrics of R2 on the large dataset but KNN beats all others in MSE, RMSE,
and Pcc. The results in the small ROC dataset were basically consistent with those in the
mixed dataset. However, considering the volume of data size, the results on the larger
mixed dataset seem more convincing.
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According to the results in regression, DWNN was listed as the top model according to
R2 although its performance was very close to that of KNN in the mixed dataset. The result
is aligned with the recent literature where DWNN was found superior over other two deep
learning methods [62]. Also, it seems a bit surprising that the KNN model was ranked
as top 2 for both classification and regression in larger datasets. As a traditional machine
learning method, KNN has not drawn as much attention as other trending machine learning
methods such as neural networks or deep learning. Figure 11 shows the number of articles
as a comparison in terms of the keyword search KNN rainfall forecasting and Neural Network
rainfall forecasting respectively in the order of year from Google Scholar. Note that we
used the number of publications indexed from Google Scholar as the indicator for the
researcher’s interests including peer review sources and non-peer review sources [97]
such as thesis, preprint, etc. Our results are also aligned with the recent literature where
KNN-based methods were found effective in rainfall forecasting [43,44].

Figure 11. The number of indexed articles for KNN and Neural Network used in rainfall forecasting
from Google Scholar as of 20 Junuary 2021.

Time series prediction models such as LSTM, GRU, and LSTM-bidirection have not
shown satisfactory performance in rainfall forecasting. The overall results showed that
LSTM models with relatively short sequence steps (short-term memory) have the better
performance than those with longer sequence steps. It might be the very short-term memory
characteristics in the short-term hourly rainfall forecasting that affect the performance of
the longer sequences. In contrast, the linear based models such as DWNN, linear models,
and WNN have much better performance than complicated models such as DNN, SVR,
and LSTM. The reason behind the ranking may be that the weather data, unlike other
data, contains many uncertain outliers, errors, and missing values that may fuel lots
of distractions to the precise models such as neural networks and time series models.
Therefore, rainfall forecasting may require more robust models to find the knowledge
from those weather datasets. Fortunately, we have found that the SVM and KNN models
are qualified for classification and DWNN and KNN are good for regression. However,
SVM’s performance in regression was far behind others and DWNN’s performance in
classification was not as good as its performance in regression. In contrast, surprisingly,
the KNN model that has been long underestimated is robust enough to be qualified for
both classification and regression.

Certainly, this study also has some limitations. First, our focus was a generic com-
puting framework that can accommodate a variety of forecasting engines rather than
optimizing an individual algorithm inside a specific method. Although the parameters of
those bagged machine learning methods have been carefully configured to get the best
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performance, they are out-of-the-box configurations. Also, limited by the computing re-
sources, our datasets were only from the 11-year weather data in Upstate New York since
2010. Therefore, in the future, we will extend this study on two thrusts: First, refining and
enhancing the computing framework to provide more functions such as data preprocess-
ing algorithms [98,99] that can aid to improve the feature selection and reduce the noise
to better learn weather features; Second, expanding the datasets with more historically
weather data and more regions. We believe that this study and its expansion can advance
the method design in this area and benefit the modeling of rainfall forecasting in Upstate
New York.
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