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Abstract: A first aim of the present work is the determination of the actual sources of the “finite
precision error” generation and accumulation in two important algorithms: Bernoulli’s map and the
folded Baker’s map. These two computational schemes attract the attention of a growing number
of researchers, in connection with a wide range of applications. However, both Bernoulli’s and
Baker’s maps, when implemented in a contemporary computing machine, suffer from a very serious
numerical error due to the finite word length. This error, causally, causes a failure of these two
algorithms after a relatively very small number of iterations. In the present manuscript, novel
methods for eliminating this numerical error are presented. In fact, the introduced approach succeeds
in executing the Bernoulli’s map and the folded Baker’s map in a computing machine for many
hundreds of thousands of iterations, offering results practically free of finite precision error. These
successful techniques are based on the determination and understanding of the substantial sources
of finite precision (round-off) error, which is generated and accumulated in these two important
chaotic maps.

Keywords: finite precision error generation; finite precision error accumulation; stabilization of
algorithms; stable Bernoulli’s map; stable Baker’s map

1. Introduction

In recent years, a quite extensive research in connection with Bernoulli’s and Baker’s
maps applications takes place. However, as we demonstrate in the present work, and as it
is also referred to in the bibliography (e.g., [1]), a serious amount of finite precision error is
accreted during the execution of these two algorithms.

As far as the applicability of Bernoulli’s map is concerned, we would like to emphasize
that the use of Bernoulli chaotic maps grows constantly. Thus, for example, this chaotic
map is employed for image watermarking [2]; in this publication, the authors perform a
statistical analysis of a watermarking system based on Bernoulli chaotic sequences. In [3],
a comparison of the performance of various chaotic maps, used for image watermarking,
is presented.

Another application of the Bernoulli map is associated with the construction of reliable
random number generators. In this framework, the authors of [4] employ chaotic true
orbits of the Bernoulli map on quadratic algebraic integers, in order to implement a pseudo-
random number generator. The authors report that the generated numbers manifest good
randomness. In [5], a hardware implementation of pseudo-random number generators
based on chaotic maps is introduced.
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Bernoulli map is also employed in cryptography. In particular, a number of image
encryption algorithms based on this chaotic map have been proposed, given that the
associated encryption schemes are fast and easily implemented in hardware and software.
For example, the authors of [6] use the Bernoulli chaotic map in order to embed a secret
message in an image.

In connection with Baker’s map, we would like to cite the following: In [7] an alterna-
tive chaotic image encryption based on Baker’s map is presented. The authors mention
that this enhanced symmetric-key algorithm can support a variable-size image, in contrast
to other encryption algorithms, which are mainly based on Baker’s map that require only a
square image. In [8], a method for obtaining cryptographically strong 8× 8 substitution boxes
(S-boxes) is presented. The method is based on chaotic baker’s map and a “mini version” of
a new block cipher. In [9], a family of pure analog coding schemes, with good properties,
constructed from dynamic systems, which are governed by chaotic functions—Baker’s map,
is proposed. The authors of [10] show that pattern classification systems can be designed
based upon training algorithms, such as Baker’s map, designed to control the qualitative
behavior of a nonlinear system. In [11], a comparison of the efficiency of three chaotic
maps—Baker’s, Cat and Line maps—is performed, as far as cryptography is concerned.

However, both Bernoulli’s and Baker’s maps manifest serious finite precision error,
when implemented in a contemporary computing machine. The accumulation of this
finite precision error makes both algorithms generate completely unreliable results, after a
relatively very small number of iterations (e.g., [1,12]).

Brief Summary and Organization of the Present Work

Here, the instability of these two chaotic maps, the Bernoulli map and the Baker’s one,
is confirmed and the actual reason for the causation and accumulation of the related finite
word length numerical error is spotted and demonstrated. Moreover, novel methods for
the complete stabilization of these algorithmic schemes are introduced. More specifically:

In Section 2 of the manuscript in hand, the authors give the employed notation and
symbolism. Moreover, they state a set of fundamental definitions upon which the compari-
son of two arbitrary floating-point numbers is achieved in finite precision. Eventually, a
crucial definition is derived, which allows for the exact evaluation of a number of erroneous
digits with which an arbitrary quantity is computed in a machine that employs a finite
word length.

In Section 3, the authors demonstrate that, in any subtraction executed in a computing
machine using a finite word length, there might be generated an even serious amount of
finite precision error, which is due to two types of numerical inaccuracy: a deterministic
or causal one and a random or an erratic error. The authors establish that the causal error
is due to the difference between the exponent of the obtained subtraction result and the
maximum exponent of the subtraction operands. On the other hand, the erratic error is
intimately connected to the method that the computing machine employs in order to fill in
the missing digits.

In Section 4, the exact sources of finite precision error in the Bernoulli chaotic map
are shown for the first time. It is demonstrated that these sources make the results this
algorithm offers totally unreliable, after a relatively very small number of iterations; this
renders the classical execution of the Bernoulli map totally inapplicable in practice. We
strongly emphasize that this rapid failure of the Bernoulli algorithm occurs even when a
particularly large finite word length is employed, say including 40,000 decimal digits or
more, e.g., by using tools offering unlimited precision arithmetic. On the basis of these
results, a novel method for the complete stabilization of the Bernoulli map is introduced.

In Section 5, the authors proceed along similar directions, in connection with Backer’s
map. In fact, the exact sources of finite precision error of this chaotic map are introduced
for the first time. It is, again, demonstrated that these sources make the results offered
by Baker’s algorithm completely unreliable, after a relatively very limited number of
recursions; this renders the classical execution of the Baker’s map, too, entirely inapplicable
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in practice. We, once more, would like to emphasize that these serious numerical problems
appear causally, too, independently of the employed finite word length, no matter how big
this number is. Using the previous results, a novel method for the complete stabilization of
the Baker’s map is accomplished for the first time.

In Section 6, a conclusion incorporating a summary of the obtained results is presented.

2. Employed Symbolism, Notation and a Number of Fundamental Definitions

For any quantity a expressed in scientific format or canonical form, like for example
the IEEE 754 floating-point format, we shall employ the notation (i) man(a) for the mantissa
of a and (ii) E(a) for the exponent of a.

The analysis that will be presented below is made in connection with the decimal
arithmetic system, simply because this is far more familiar to the user. However, we stress
that the related analysis is very well applicable to the binary system, too. In fact, both
the theoretical and the experimental results introduced in the present work show that the
associated approach, which is based on the decimal radix, is a very reliable and robust
model for the actual procedures that take place in a contemporary computing machines
that use the binary radix.

Abbreviations and Employed Notation

• Acronym e. d. d. stands for “erroneous decimal digits”, while acronym c. d. d. stands
for “correct decimal digits” and acronym d. d. stands for “decimal digits”.

• The abbreviation f. p. e. stands for “finite precision error”. We note, in passing, that a
number of researchers prefer the name “round-off error” to the “finite precision” one.
However, we will establish in the following that the generated and accumulated error
in an algorithm, after a number of iterations, when it is executed, is not a “round off
error” anymore; for this reason, we have definitely preferred to use the term f. p. e.

• The term “the algorithm is destroyed due to f. p. e.” or “the algorithm fails” expresses
the fact that the algorithm in hand offers completely unreliable/erroneous results, at a
specific recursion.

Next, suppose that one uses a computing machine in which all quantities are written
in canonical form with n decimal digits in the mantissa. Suppose in addition that all
operations in this machine are performed with the same finite word length and let a be
an arbitrary quantity in this computing environment. In the ideal case, where all number
representations and operations are made with infinite precision, then let this arbitrary
quantity a take the value ac (superscript c for correct value). In the following, we will give
a rigorous relation among a and ac by means of the subsequent definitions.

Definition 1. Consider two numbers, pn, qn of the same sign, written in canonical exponential
form, with the same number n of decimal digits in the mantissa, say:

pn = ξ1·ξ2ξ3 . . . ξn·10τ

qn = δ1·δ2δ3 . . . δn·10ρ , (1)

and without any loss of generality, let us assume that τ ≥ ρ.
Therefore, these two numbers differ by k decimal digits, k ≥ 0, if and only if

|pn − qn| = w·10τ−(n−k) where 1 ≤ w < 10 (2)

We emphasize that if the aforementioned formula offers a negative k then, by definition, it holds
that k = 0, namely pn and qn are identical as far as the n first decimal digits are concerned.

On the contrary, if k ≥ n, then the two numbers pn and qn differ completely.
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Thus, according to this definition, the two numbers, written below:

n1 = 5.12345678912 × 109,
n2 = 5.12347654321 × 109

differ by seven (7) decimal digits, shown in bold, since:

• τ = ρ = 9
• n = 12
• Their absolute difference is |n1 − n2| = 1.975409× 104

Hence:
τ − (n− k) = 4 ⇔ k = 7

Another representative example is demonstrated below:

n1 = 6.957600112134568× 108

n2 = 6.957599577134568× 108

A simple inspection might lead someone to deduce that these two numbers differ by
twelve (12) decimal digits. Actually, and according to Definition 1 the following hold:

• τ = ρ = 8
• n = 16
• Their absolute difference is |n1 − n2| = 5.350000000000000× 101

Hence:
τ − (n− k) = 1 ⇔ k = 9

Therefore, the two aforementioned numbers differ in nine (9) decimal digits, contrary
to a probable initial expectation.

Similarly, the two numbers:

n1 = 1.000000000× 10τ

n2 = 9.999999999× 10τ−1

have n− correct decimal digits, since:

• n = 10
• τ ∈ Z
• |n1 − n2| = 1× 10−10+τ

Hence:
τ − (n− k) = −10 + τ =⇒ k = 0

On the basis of the previous analysis, the sought-for relation between a and ac is given
via the subsequent definition:

Definition 2. The floating-point number a has been evaluated with exactly the last λ decimal digits
erroneous, if and only if the restriction-projection ac into n decimal digits and a, differ by λ digits
on the basis of Definition 1.

Subsequently, consider any computing machine, which uses a precision practically equivalent
to n decimal digits in the mantissa; then, for an arbitrary floating-point number represented in this
machine, it holds that:

(number of correct decimal digits of a) + (erroneous d.d. of a) = n (3)

Or equivalently, λc + λ = n, where λc is the number of the correct decimal digits of a. For
this reason, we shall use terms c. d. d., e. d. d., λc and λ interchangeably.

We also note that in IEEE 754 floating-point format, the mantissa is represented in a computer
machine by a specific number of bits, say m. Then, the same number is represented in the decimal
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system by n decimal digits (d. d.), where n is approximated in practice by the nearest integer of
quantity m·lg2.

3. Establishing That in an Arbitrary Subtraction the Finite Precision Error Consists of
Two Types: A Deterministic and an Erratic One

In the present section, we will show that during the execution of an arbitrary subtrac-
tion in a computing machine, two types of finite precision error may emerge: the first kind
of f. p. e. necessarily arises in many circumstances, when specific conditions hold and
then, it may be computed explicitly via a closed formula; for this reason, we shall employ
the term “causal” or “deterministic” f. p. e. for it. The other kind of f. p. e., which may
be generated in an arbitrary subtraction is strongly associated with the random way with
which the computer fills in the mantissa digits, when it executes a left shift so as to restore
the number in its canonical form; consequently, we shall employ the name “erratic f. p.
error” for this form of f. p. e. We will try to analyze these two types of “round-off error”,
immediately below.

The associated analysis will be made in the decimal arithmetic system without any
loss of generality; as we have already pointed out, this approach will offer a very reliable,
robust and comprehensive model of the actual procedures that take place in a computing
machine, based on the standard IEEE 754 form.

3.1. The Deterministic f. p. Error during Subtraction

In the present section, we will demonstrate that during any subtraction of numbers
having the same sign, it is possible to have an amount of finite precision error generated
causally. We would like to stress that this generated amount of f. p. e. may be arbitrarily
large, in the sense that the number of erroneously computed decimal digits in the operation
of subtraction may increase up to the finite word length itself. In the following, we will
establish that this deterministic f. p. e. is due to the difference between the exponent of the
result of the subtraction and the maximum exponent of the subtracted terms. In fact, if τ is
the maximum exponent of the two subtraction operands, both written in scientific format,
and if ε is the exponent of the difference, when written in canonical form, then, causally,
(τ − ε) additional e. d. d. are accreted in the mantissa. For this reason, exactly, we shall
call this type of f. p. error “causal” or “deterministic”, while we shall also use the term
“exponent plunge” for the difference:

d = (τ − ε) (4)

We will attempt to clarify the previous statements by means of the examples that follow.

Example 1. Consider the two positive, undermentioned numbers, p32, q32 with thirty two (32) dec-
imal digits in the mantissa. Moreover, consider the representation of the same numbers with sixteen
(16) d. d. in the mantissa, say p16, q16, having all their decimal digits correct, as shown below:

p16 = 6.321456789456123× 105

q16 = 6.321456712896587× 105

p32 = 6.3214567894561232896587412365478× 105

q32 = 6.3214567128965871254789632587412× 105

then,
s16 = p16 − q16 = 7.655953640000000× 10−3

s32 = p32 − q32 = 7.655953616417977× 10−3

The maximum exponent of p16, q16 is five (5) while the exponent of the result s16 is minus
three (−3); therefore, the exponent’s plunge is d = τ − ε = 8. Consequently, one expects that a
deterministic f. p. e. will be generated in the execution of this subtraction, corresponding to eight
(8) additional e. d. d. This may become evident by comparing s16 and s32.
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Example 2. Consider the following two numbers:

p16 = 4.985214589614258× 101

q16 = 1.958741286325416× 100

p32 = 4.9852145896142581187456321456789× 101

q32 = 1.9587412863254169854123458965412× 100

Then:
s16 = p16 − q16 = 4.789340460981717× 101

s32 = p32 − q32 = 4.789340460981716× 101

Consequently, from Definitions 1 and 2, it follows immediately that s16 differs from s32 in
exactly one decimal digit.

In fact, the following rigorous result holds:

Proposition 1. Suppose that all associated quantities are computed with n decimal digits in the
mantissa. Consider an arbitrary number evaluated via a subtraction, i.e., by means of a formula of
the type:

sn = pn − qn , pn·qn > 0 (5)

where, sn = γ1·γ2 . . . γn·10ε , pn = ξ1·ξ2ξ3 . . . ξn·10ζ , qn = δ1·δ2δ3 . . . δn·10θ and ζ ≥ θ.
Suppose that, due to the previous finite word length computations, both quantities pn , qn have

been evaluated with exactly λc correct decimal digits or equivalently with λ = n− λc erroneous
d. d. In addition, let us write pn = pc + x·10ζ−λc

and qn = qc + y·10θ−λc
, where pc, qc are the

correct values of quantities qn, pn, should all operations were made with infinite precision, and x, y
are the mantissae of f. p. error. Suppose moreover that inequality 1 ≤

∣∣x− y·10θ−ζ
∣∣ < 10 holds.

In this case sn is computed with the first (λc − d) correct decimal digits.
In other words, the initial number of erroneous decimal digits has been increased by d in a

causal manner. We should stress that this number of e. d. d. is generated deterministically; however,
it may be modified somehow in an erratic manner, as it will be briefly indicated in Section 3.2.

Proof of Proposition 1. In the beginning, we must clarify that, since λc is the number of
correct d. digits in the mantissa of pn and qn, then it indeed holds that pn = pc + x·10ζ−λc

and qn = qc + y·10θ−λc
. �

Now, we consider that (pc − qc) is of order ε, strictly smaller than ζ and θ, and let
d = ζ − ε. Consequently, sn = pn − qn = (pc − qc) +

(
x− y·10θ−ζ

)
10ζ−λc

= γc·10ζ−d +(
x− y·10θ−ζ

)
10ζ−λc

=
(

γc +
(
x− y·10θ−ζ

)
10d−λc

)
·10ζ−d. In addition, we have adopted

the assumption that 1 ≤
∣∣x− y·10θ−ζ

∣∣ < 10 holds. Therefore, quantity (pn − qn) is com-
puted with d additional erroneous decimal digits or equivalently with (λc − d) correct
decimal digits, for the following reasons: After subtracting the mantissa of pn and qn and
since the exponent of the subtraction result plunges by d, the obtained result will have the
first d decimal digits equal to zero; i.e.,

sn = pn − qn = ξ1·ξ2ξ3 . . . ξn·10ζ − δ1·δ2δ3 . . . δn·10θ = 0.00 . . . 0γ1 . . . γn−d·10ζ (6)

However, at this stage, the machine performs an equivalent of d decimal left shifts in
order to restore sn into its scientific format. These left shifts will generate d extra incorrect
decimal digits in the “tail” of the mantissa of the difference. Since we have assumed
that inequality 1 ≤

∣∣x− y·10θ−ζ
∣∣ < 10 holds, error mantissae x and y do not contribute

additionally to the overall f. p. error during subtraction.
We would like to point out that the operation of subtraction has the very important

peculiarity “to be able” to generate at once, an arbitrarily large number of e. d. d. up to the
employed word length. The other fundamental operations, addition, multiplication and
division, do not have this property, as the authors will support in other research works.
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However, both multiplication and division may also generate a large number of e. d. d.,
when they are repeatedly applied.

3.2. The Erratic Finite Precision Error Appearing in the Operation of Subtraction

According to the analysis introduced in Section 2, the eventual causal error that
is generated in the operation of subtraction may be modified in an erratic-stochastic
manner, strongly associated with the way the computing machine fills the digits that are
deterministically lost during the subtraction. Evidently, the restoration of the lost digits
takes place via successive left shifts, made as a rule in the binary radix environments of a
contemporary computing machine. However, due to the aforementioned relation between
the numbers of a set of binary digits in one hand and the equivalent decimal digits on
the other, one may safely consider that the left shifts that restore the canonical form, are
made in the decimal arithmetic system; this statement will be made definitely clear in the
subsequent analysis and it will be established in a forthcoming manuscript of the authors.

In any case, the underlying reasons for the appearance of an erratic finite precision
error in the result of an arbitrary subtraction are the following:

1. Suppose that the first digit to be replaced is the one located at the ψ− th position,
where ψ = λc − d + 1; according to the convention in symbolism adopted in the
present work, λc is the number of the correct most significant (MS) decimal digits and
d the exponent’s eventual plunge occurring after the subtraction (Section 3.1). Then,
the event of obtaining an additional correct decimal digit is equivalent to the event
that the computing machine fills the ψ− th position of the mantissa of difference sn
with the correct digit.

2. The event of obtaining two correct decimal digits in the mantissa of sn is equivalent
to the case where the machine fills both the ψ− th and (ψ + 1)− th digits with the
correct ones and so forth.

3. The eventuality that the number of correct d. d. after the evaluation of the determinis-
tic error is increased by one, is equivalent to the case where the round-off procedure
that occurs in the ψ − th position of the mantissa of sn, generates an additional
erroneous decimal digit.

4. Clearly, if the round-off approximation that the machine performs in the mantissa
of sn does not generate an additional erroneous d. d., then the erratic error does not
change the effects of the deterministic one.

Suppose that one knows the algorithm with which the computing machine fills in the
least significant (LS) lost digits after subtraction and the associated statistical properties.
Then, it is rather straightforward, but lengthy and tedious to evaluate the various probabil-
ities of modifying the deterministic error by a specific number of decimal digits. Of course,
such an evaluation requires knowledge of the statistical distribution of the accreted finite
precision error, during the execution of an algorithm; the authors will exhaustively tackle
this problem for various pdfs in future work. For the time being, we quote a restricted
number of quite typical probability values concerning the appearance of an erratic finite
precision error in an arbitrary subtraction result. A class of associated results are presented
in Table 1. This table refers to the case where the finite precision error generated by the
computing machine follows a binomial Gaussian distribution. In fact, it refers to the corre-
sponding probabilities of changing the deterministic error, for two different values of the
standard deviation σ of the binomial Gaussian distribution.
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Table 1. The probabilities of the deterministic modification of normally distributed finite precision error.

-
Examples of Theoretical Erratic Probabilities,

Symbolized as Peq , during Subtraction, for Two
f. p. e. Standard Deviations σ

Number of erroneous d. d. randomly
generated during subtraction

First std of the
Gaussian pdf

σ1 = 1.65

Second std of the
Gaussian pdf

σ2 = 4.9
Increased by one 6.20× 10−3% 14.31%

Retained the same 68.27% 68.66%
Reduced by one 28.06% 10.86%
Reduced by two 3.53% 1.05%

Reduced by three 0.23% 6.63× 10−2%

The results appearing in this table refer to the case where the finite precision error
generated during an arbitrary subtraction follows a joint Gaussian distribution with stan-
dard deviation σ1 or σ2. Each row of the Table corresponds to the modification of the
deterministic error by a specific number of decimal digits. Finally, we have employed
the symbolism Peq, since the probabilities presented here, correspond to the “worst case
scenario” by far, where, in the subtraction sn = pn − qn, operands pn and qn have already
been evaluated with exactly the same number λ of erroneous LS d. d.

4. Finite Precision Error Analysis and Stabilization of Bernoulli Map
4.1. A Brief Description of Bernoulli’s Map and Its Finite Precision Error Properties

Let x0 be a floating-point quantity such that 0 ≤ x0 < 1. Then, the Bernoulli map,
starting from x0 generates a sequence of floating-point numbers xk+1 as follows:

xk+1 =

{
2xk i f 0 ≤ xk <

1
2

2xk − 1 i f 1
2 ≤ xk < 1

(7)

It has been observed by many researchers (e.g., [1]) that the number of incorrect deci-
mal digits generated during the computation of the Bernoulli map grows with the number
of performed iterations. This continuous increase of the accumulated amount of finite
precision error in xk+1, eventually makes the results of the computations totally unreliable.
In [1], it has been shown that this round-off error practically doubles at each iteration.

4.2. The Actual Cause of Failure of the Bernoulli Map Due to Finite Precision

In the following, we shall give an explanation concerning how this finite precision
error is generated and accumulated and, using these results, we will show a method for
generating the correct values xk+1 of the Bernoulli map, for an arbitrarily large number of
iterations, when x0 has a finite representation.

In order to achieve the goal of determining exactly how the finite precision error
is accreted during the execution of the Bernoulli map, the following Lemma will prove
very useful:

Lemma 1. Suppose that one executes a series of operations in a computing machine that uses a
finite word length, say with n decimal digits in the mantissa. Then, suppose, in addition, that a
specific but otherwise arbitrary quantity z has already been computed with a total amount ze of finite
precision error that gives rise to λ incorrect decimal digits in the mantissa of z. Without harming
the general case, suppose that the exponent of z in canonical form is τ, i.e., z = man(z) 10τ .

Suppose, now, that quantity z is multiplied by an arbitrary error-free quantity, say ω,
1 ≤ |ω| < 10; according to the analysis of the previous sections, this restriction of the ω− value
suffices for the finite precision error analysis in connection to an arbitrary error-free value of ω.
Then, the following hold:
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i. If |ω·man(z)| ≥ 10 and |ω·man(ze)| < 10⇒ ω·z is computed with an additional correct
decimal digit in its mantissa in comparison with z.

ii. If |ω·man(z)| < 10 and |ω·man(ze)| ≥ 10 ⇒ quantity ω·z is computed with one less
correct digit than z.

iii. If |ω·man(z)| < 10 and |ω·man(ze)| < 10 hold⇒ quantities ω·z and z are computed with
λ erroneous decimal digits in their mantissa. The same occurs when |ω·man(z)| ≥ 10 and
|ω·man(ze)| ≥ 10 simultaneously hold.

Proof of Lemma 1. Since z has the last λ decimal digits erroneous, then it can be written
as follows:

z = zc + man(ze)·10τ−(n−λ) (8)

where, as before, ze is the total amount of finite precision error accumulated in z. Conse-
quently, when z is multiplied by the error free number ω it follows that:

ω·z = ω·zc + ω·man(ze)·10τ−(n−λ) (9)

�

Now, one may distinguish the following cases:

1. |ω·man(z)| ≥ 10 and |ω·man(ze)| < 10 simultaneously hold.

Then, according to Definitions 1 and 2, quantity ω·z is computed with an additional
correct decimal digit. Indeed, in this case Equation (9) is transformed into:

man(ω·z)·10τ+1 = man(ω·zc)·10τ+1 + man(ω·ze)·10τ−(n−λ) ⇔
man(ω·z)·10τ+1 =

(
man(ω·zc) + man(ω·ze)·10−(n−λ+1)

)
·10τ+1 (10)

The last equation confirms the fact that quantity ω·z has been computed with one less
erroneous decimal digit in the mantissa.

2. |ω·man(z)| < 10 and |ω·man(ze)| ≥ 10 simultaneously hold. Now, one deduces:

man(ω·z)·10τ = man(ω·zc)·10τ + man(ω·ze)·101·10τ−(n−λ) ⇔
man(ω·z)·10τ =

(
man(ω·zc) + man(ω·ze)·10−(n−λ−1)

)
·10τ (11)

Then, according to Definitions 1 and 2, quantity ω·z is computed with an additional
erroneous decimal digit in its mantissa, as compared to z.

3. |ω·man(z)| < 10 and |ω·man(ze)| < 10 simultaneously hold or |ω·z| ≥ 10 and
|ω·man(ze)| ≥ 10 are verified.

It follows immediately from the analysis performed in 1. and 2. above, together with
application of Definitions 1 and 2 that ω·z is computed with exactly the same number of
correct digits in the mantissa, as compared to z.

Next, suppose that we execute Bernoulli’s map starting from a non-zero initial value
x0; we shall demonstrate the finite precision error causation and propagation, by means
of the entire previous analysis, for a specific, but completely arbitrary and representative
example. Indeed, let us assume that all operations are executed in a computing machine
with sixteen (16) decimal digits in the mantissa and let:

x0 = 5.055022710000000× 10−1

Then, x1 = 1.100454200000001 × 10−2 where the last digit ‘1’, shown in bold, is
erroneous. The actual cause for the generation of this erroneous decimal digit, according to
the analysis of Section 3, is the following: Multiplication 2x0 generates a quantity of order
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100. When one (9) is subtracted from it, the result is a quantity of order 10−2; in other
words, a plunge of order two takes place in the exponent of the obtained result. In fact,

x1 = 2x0 − 1 = 1.011004542000000 × 100 − 1⇒
x1 = 1.100454200000001 × 10−2

This plunge generates a deterministic numerical error of two decimal digits; in addi-
tion, an erratic error is generated with probabilities of order shown in Table 1. From this
table one deduces that, since the exponents 2x0 and 1 are equal to zero, it is quite probable
that the finite precision error maybe relaxed by one decimal digit. Application of Lemma 1,
Case (ii), demonstrates that this is indeed the case.

Then, the next step of the computations offers:

x2 = 2.200908400000001 × 10−2,
x3 = 4.401816800000002 × 10−2,
x4 = 8.803633600000005 × 10−2,

where, once more, the erroneous digits are shown in bold. We observe that, in the computa-
tion, there is no need for subtracting 1 from x2, x3, x4, since x1 and all these three numbers
are smaller than 1/2. On the contrary, each result has been obtained by doubling the
previous value of the sequence. Therefore, Lemma 1 can be applied, with ω = 2, ensuring
that the number of erroneous decimal digits of quantities x2, x3, x4 remains equal to one
(λ = 1).

During the computation of x5, the f.p. error has been doubled temporarily, thus
generating an additional e. d. d., but only for a while. In fact, execution of the multiplication
2x4 has also increased the order of the obtained result by one; when right-shift is performed
in order to restore the canonical form, an additional correct digit is produced, in full
accordance with the results of Lemma 1. Therefore, x5 is eventually computed with
2− 1 = 1 erroneous decimal digit in the mantissa, as shown below:

x5 = 1.760726720000001 × 10−1

By similar arguments, one may explain the finite precision error generation and
accumulation in x6, x7, x8, shown below:

x6 = 3.521453440000002 × 10−1

x7 = 7.042906880000004 × 10−1

x8 = 4.085813760000008 × 10−1.

During the computation of x9 an additional erroneous decimal digit will appear, since
the error is doubled, and its exponent increases by one, while the overall exponent remains
the same and no right shift is performed this time; this corresponds to Case (ii) of Lemma 1.
In fact,

x9 = 8.171627520000015 × 10−1

With a very similar reasoning, one may predict that the number of incorrect decimal
digits in x10, x11 will remain the same, namely two; indeed, doubling of the number relaxes
the error by one digit, while the subtraction increases the number of erroneous digits by
one, according to the analysis results of Sections 2 and 3. Therefore,

x10 = 6.343255040000031 × 10−1

x11 = 2.686510080000062 × 10−1

In the next iteration, when x11 is doubled to compute x12, we observe that the order
of the result does not change, given that the integer part of x11 is smaller than five (5),
while the exponent of the accumulated numerical error (6.2× 10−15) increases by one.
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Consequently, Case (ii) of Lemma 1 holds and x12 is evaluated with the last three d. d.
erroneous. In fact,

x12 = 5.373020160000124 × 10−1

Next, x13 = 2x12 − 1 and the conditions introduced in Sections 2 and 3 hold. Conse-
quently, one expects that x13 will be computed with four (4) e. d. d. and indeed:

x13 = 7.460403200002475 × 10−2

Now, evaluation of x14, x15 and x16 follows the results of Lemma 1, Case (iii) while
evaluation of x17 satisfies the analysis made in Section 3, offering:

x17 = 3.873290240007918 × 10−1

Doubling x17 in order to evaluate x18, gives rise to the “activation” of Case (ii) of
Lemma 1 and thus

x18 = 7.746580480015837 × 10−1

In full accordance with all previous analysis

x19 = 5.493160960031673 × 10−1

However, x20 = 2x19 − 1 and now the plunge of the exponent of x20 is not compen-
sated by the generation of a correct decimal digit and hence,

x20 = 9.863219200633466 × 10−2

The computation of xk+1 continued in a very analogous manner and so in the 53rd
iteration the x53 element of the Bernoulli map has been computed with all digits of the
mantissa incorrect.

The analysis associated with the aforementioned example dictates that the actual
reason of generation and accumulation of finite precision error during the execution of
the Bernoulli’s map in a computing machine is independent of the finite word length that
the machine employs. A large number of performed experiments using finite word length
from eight (8) decimal digits to forty thousand (40,000) d. d. fully confirmed this statement.

4.3. Obtaining a Bernoulli Map Free of Finite Precision Error

The main observation which may lead to a robust computation of any desired number
of xk+1, is the following:

Suppose that the initial value of the Bernoulli’s map x0 is correctly given in canonical
form, with n decimal digits in the mantissa and exponent −1. Then, all subsequent terms
xk+1 of the Bernoulli map, where (k + 1) is an arbitrary natural number, will also be
computed with precisely n decimal digits in the mantissa. In addition, all intermediate
calculations will offer results with at most ( n + 1) decimal digits in the mantissa, including
all the eventual finite precision procedures. The demonstration of this claim follows by an
inductive argument:

Suppose that all Bernoulli elements up to xk are indeed calculated with n decimal
digits in their mantissa and that they are of order 10−1. Then, (i) if xk <

1
2 holds, doubling

xk will not change the exponent of the result. (ii) On the other hand, if xk ≥ 1
2 , then the

exponent of the result 2xk will be zero (0) while, at the same time, temporarily the mantissa
of the product 2xk will include n + 1 decimal digits. At this point, when one is subtracted
from 2xk to generate xk+1, then the order of the result becomes smaller than or equal to
10−1. Then, xk+1 in canonical form has at most n digits in the mantissa.

Similarly, suppose that x0 or xk (k ∈ N) are of order 10−ρ, with ρ > 1, having n
decimal digits in its mantissa. Then, with similar arguments as above, one may deduce
that all elements xk+1 of the Bernoulli map are computed with at most (n + ρ− 1) decimal
digits in the mantissa, when all intermediate finite precision procedures are taken into
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consideration. At the same time, all intermediate quantities involved in the computation of
xk+1 are temporarily evaluated with at most n + ρ decimal digits, again when all actions
taking place in the finite precision environment are considered.

At this point, we choose to perform all computations with a finite word length,
corresponding to t = n + ρ + 2 decimal digits in the mantissa. According to the results
of the previous sections, if λ is the number of the digits in the mantissa of xk which are
incorrect, then the number of e. d. d. of xk+1 is at most λ + 2 + E(xk)− E(xk+1), where
E(xk+1) and E(xk) are the exponents of xk+1 and xk, both expressed in canonical form.
Hence, if ψ = λ + 2 + E(xk)− E(xk+1), then all incorrect decimal digits in the mantissa of
xk+1 are located between the ψ− th decimal place and the last one, namely the t− th.

Consequently, if we force the last, after the ψ − th one, decimal digit in the t rep-
resentation of xk+1 to be zero then, the obtained result will always be free of round-off
error. We accomplish that, in a rather straightforward manner, by transforming the number
into a string and obtaining both the mantissa of the current xk+1 as well as its exponent.
Subsequently, we zero the last t− ψ + 1 entries of the string of the mantissa and we project
the number back to floating point arithmetics. In this way, we will obtain totally error free
values xk+1 of the Bernoulli map, in connection to all decimal digits located between the
first and the ψ− th digits’ places in the mantissa.

A flowchart of the Bernoulli map version that offers f. p. error—free results is
presented in Figures 1 and 2.
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Figure 1. The flowchart of the introduced method for obtaining versions of both Bernoulli and
Baker’s maps free of finite precision error; we define “correct_x(xk, xk+1, λ, t )” to be the procedure.
In this figure-flowchart: xk, xk+1 are the values offered at the k− th and (k + 1)− th iteration of the
classical Bernoulli map, λ is the number of incorrect digits appearing in the mantissa of xk and t is
the necessary extension of the employed finite word length for obtaining f. p. e. free member xk+1.
The exact number of t is n + 2− E(xk).
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We note that special care has been taken to circumvent eventual difficulties due to
the equivalent representation of a floating-point number with a number of terminal nines.
We will manifest the related approach with an example: in a computing machine, which
uses a finite word length corresponding to n = 8 (eight) decimal digits in the mantissa,
numbers y = 1.2399999 and z = 1.24 must be treated as equivalent. To achieve that, we
have rounded the floating-point number from the 4-th to the 8-th decimal digit. Evidently,
the position where the rounding process takes place is automatically spotted by applying
simple logical rules, string conversions and rounding methods.

We stress that the entire aforementioned method and the corresponding implementation
add negligibly to the overall execution time. Clearly, in the case where t ≤ 18⇔ n + ρ ≤ 16,
then the aforementioned method for correcting Bernoulli’s map results may be imple-
mented using the hardware capabilities of the computing machine. On the contrary, when
t > 18, one must switch to software implementation of operations with arbitrary precision,
like the powerful multiple-precision floating-point computations with correct rounding
(MPFR) library.

The related performed experiment fully supports the previous analysis. For example:

x0 = 1.375675568× 10−1

where n = 16 the numbers of digits in the mantissa of x0, ρ = −1 the exponent of x0.
Then, the employed finite word length is the classical double precision offered by the vast
majority of contemporary computing machines.

A. The classical method of Bernoulli map computation offers completely unreliable/
erroneous results after fifty-three (53) iterations, when it is implemented by the
standard hardware double precision arithmetic (IEEE 754 double-precision floating-
point format). Here are the results where the algorithm fails completely for the
first time:

x53 = 1.250× 10−1

xcorrect
53 = 8.62483456× 10−2

The correct values xcorrect
53 have been obtained by executing the Bernoulli’s algorithm

with approximately one thousand (1000) decimal digits in the mantissa in the MPFR
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environment. Evidently, the associated results have been projected in a 16 decimal digits
word length.

B. When mantissa of twenty thousand (20,000) decimal digits precision is used, the
classical method of Bernoulli map gives incorrect results after the 16th d. d. in
the 66,387-th recursion. We will manifest this failure of the classical algorithm, by
projecting the obtained results in seventeen (17) decimal digits due to obvious space
limitations. Then, one obtains.

x66386 = 7.8099604275200000 × 10−1

x66387 = 5.6199208550399997 × 10−1

The correct results have been obtained by computing the Bernoulli map with forty
thousand (40,000) decimal digits in the mantissa in the MPFR environment and they are
shown below:

x66386 = 7.8099604275200000 × 10−1

x66387 = 5.6199208550400000 × 10−1

Clearly, again, due to the space limitations, only the first seventeen (17) decimal digits
are shown while in x66387 all subsequent decimal digits up to twenty thousand (20,000)
were totally erroneous. We note that after a very small number of subsequent iterations the
Bernoulli’s map offer totally unreliable/erroneous results.

C. The method proposed in the present work continues to give totally error free results.
Actually, the computation of the classical Bernoulli map performed in forty thousand
(40,000) decimal digits failed completely, while the proposed method continued to
give absolutely correct results. Evidently, the failure of the classical Bernoulli map and
the error free results of the proposed method have been verified by comparing them
with the corresponding results generated when eighty thousand (80,000) decimal
digits in the mantissa have been use.

At this point, we must emphasize that it is impossible to stabilize any algorithm
which generates such a type of f. p. e. whatsoever, when the initial value x0 is a finite
representation of a non-rational number. For example, if x0 =

√
2 and one keeps n decimal

digits for representing it, then a straight-forward analysis as the one given above indicates
that the f. p. error will inevitably propagate very fast and that it will eventually destroy
the algorithm. Namely, the initial truncation, taking place in

√
2− representation, will

inevitably propagate in any analogous algorithm whatsoever. This means that if one
succeeds in obtaining an analytic solution of the problem, then the Bernoulli algorithm
or any other similar one, when executed in a computing machine with n d. d. word
length, will eventually offer results radically different than the analytic solution. This holds
true for any other number, which needs an infinite non-periodic sequence of digits for
its representation.

5. Finite Precision Error Analysis and Stabilization of Baker’s Map
5.1. A Brief Description of Baker’s Map and Its Finite Precision Error Properties

Let x0, y0 be floating point quantities such that 0 ≤ x0 < 1 and 0 ≤ y0 < 1. Then, the
folded Baker’s map is a sequence (xk+1, yk+1), k ∈ N0 of floating-point numbers, starting
from (x0, y0) defined via:

(xk+1, yk+1) =

{(
2xk, yk

2
)

i f 0 ≤ xk <
1
2(

2(1− xk), 1− yk
2
)

i f 1
2 ≤ xk < 1

(12)

Baker’s map suffers from very serious finite precision error, quite similar to the one
referred in Section 4.1, in connection with Bernoulli’s map.
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5.2. The Actual Cause of Failure of the Baker’s Map Due to Finite Precision

The actual cause of generation and accumulation of f. p. e., as far as xk is concerned,
is practically the same with the previously analytically presented case of the Bernoulli shift
computation. In other words, in connection to quantities xk+1, the following sequence
of actions in the computing machine generates a continually increasing error due to the
employed finite word length:

A. Execution of the subtraction (1− xk), whenever necessary, generates a plunge of
order d in the exponent of the obtained result; equivalently the closer xk is to one,
the smaller the exponent 10−d of the difference and hence, according to Proposition
1, the greater the number of decimal digits of xk+1 that they will be erroneous, as far
as the deterministic f. p. error is concerned.

B. On the other hand, multiplication of quantity (1− xk) by two may modify the
deterministic error, according to the results of Lemma 1. In fact, if conditions of
Case (ii) of Lemma 1 occur, then the overall f. p. e. increases by one decimal digit in
comparison with the causal finite precision error.

C. For similar reasons, multiplication of xk by two also may increase the overall number
of the already generated and/or accumulated erroneous digits, again when Case (ii)
of Lemma 1 holds. Thus, in the end, the accumulation of f. p. e. becomes dominant
and the folded Baker’s map fails, after an impressively small number of iterations.

On the contrary, yk+1 computation does not, in practice, generate f. p. e. for the
following reasons:

i. We note that the operation
(
1− yk

2
)

may indeed generate f. p. e. However, in
contrast to what happens in the xk+1 computation, the plunge of the exponent of
the obtained result yk+1 is one (9) when yk > 0, since inequality 0 ≤ yk

2 < 1
2 always

holds. Consequently, yk+1 may be computed with one erroneous d. d. at most, due
to the exponent’s plunge of one, according to Proposition 1. We must point out that
an additional erratic error is not generated this time, because the term 1 in

(
1− yk

2
)

is error free.
ii. At the same time, each division of yk by two also divides the amount of error with

which yk+1 is produced. One may safely say that two or three successive divisions
by two (2) in practice reduce the number of the accumulated e. d. d. by one decimal
digit. Moreover, the essence of the folded Baker’s map algorithm itself, forces the
operation of division yk

2 to occur after a rather quite limited number of subtractions
of type

(
1− yk

2
)
.

Eventually, one expects that statistically, with very high probability, yk will be com-
puted with only one or two or non-erroneous decimal digits in the mantissa. Extensive
related experiments performed by the authors fully support this claim.

Finally, we would like to, once more, emphasize that the classical Baker’s map fails
after a relatively particularly small number of recursions even when a large finite word
length is employed, e.g., 40,000 decimal digits in the mantissa.

5.3. A Method for Generating the Baker’s Map Elements Free of Finite Precision Error

Therefore, in order to stabilize folded Baker’s map algorithm, a quite analogous
method to the one presented in Section 4.3 has been applied here, too. In fact, one may
prove with analogous arguments that

A. When the initial value x0, is of order 10−ρ, with a finite number n of decimal
digits in the mantissa, then quantity xk+1 of folded Baker’s map is always correctly
computed, should n + ρ− 1 ≤ 2n decimal digits in the mantissa were employed.
The justification of this statement follows with arguments completely analogous to
the ones stated in the Bernoulli’s map case.

B. Therefore, one may apply a very similar method to the one presented in Section 4.3,
in order to stabilize the component xk+1 of folded Baker’s map, too. Extended
experiments, performed by the authors, fully support this statement.
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A flowchart of the Baker’s map version that offers f. p. error—free results is given in
Figure 3.
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An indicative example follows.
We have computed the folded Baker’s map with the following initial condition for x0,

using sixteen (16) decimal digits in the mantissa and ρ = −1:

x0 = 3.333356668880000× 10−1

The choice of the initial value y0 may be arbitrary, since a practically negligible f. p. e.
is generated in the yk+1 computation, as described previously.

We have evaluated the xk+1 and yk+1 values of this map for a number of iterations,
first with the classical manner and next with the previously introduced stabilization method.
The related comparative results are shown in Table 2, from where it is evident that, after fifty-
four (54) iterations, the classical manner of computation completely fails, i.e., it generates
results with all the sixteen d. d. erroneous. On the contrary, the method introduced
in this manuscript manifested no erroneous decimal digits at all. We note that in order
to obtain these results, the folded Baker’s map has been executed in parallel with four
thousand (4000) decimal digits precision and by application of Definitions 1 and 2, where
the first sixteen digits of the 4000 d. d. representation played the role of the correct quantity.
We would like to stress that the evaluation of xk+1 by means of the introduced method
continues to give correct results for many more thousands of iterations. Moreover, in the
end, comparison of these results with those obtained with a mantissa even larger than
4000 d. d., indicates that the xk+1 evaluation with 4000 d. d. eventually fails, while the
introduced method offered practically completely correct results.
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Table 2. Comparative results of the introduced method for the folded Baker’s map.

No. of Iteration Values of xk+1 via Classical Method Values of xk+1 via Introduced Method Correct Values of xk+1

1 6.666713337760000× 10−1 6.666713337760000× 10−1 6.666713337760000× 10−1

2 6.666573324480000× 10−1 6.666573324480000× 10−1 6.666573324480000× 10−1

3 6.666853351040001× 10−1 6.666853351040000× 10−1 6.666853351040000× 10−1

53 7.500000000000000× 10−1 8.359693271040000× 10−1 8.359693271040000× 10−1

54 5.000000000000000× 10−1 3.280613457920000× 10−1 3.280613457920000× 10−1

The results of folded Baker’s map obtained via the following three different methods:
(a) via the classical manner indicated as “Classical Method” in the Table, (b) via the
introduced method, labeled “Introduced Method” and (c) with four thousand digits in
the mantissa, where the sixteen of these digits are presented in the Table and they are
labeled “Correct Values”. We stress that the values of the Classical Method have been
obtained by evaluating the iterative Equation (12) in “triple” precision, From the table, it is
evident that when using the classical method, xk+1 completely fails after 54 iterations; on
the contrary during all these iterations, evaluation of xk+1 by by means of the introduced
method, offered totally correct results.

We would like to emphasize that the folded Baker’s map manifested the same behavior,
as far as f. p. error is concerned, in connection with many hundreds of tested inputs x0
having a great variability in the order 10−ρ, the exact value and the number of decimal
digits of x0.

We would simply like to once more emphasize that if the input values x0, y0 in
the folded Baker’s map are irrational numbers, then stabilization of the algorithm is
impossible due to the nature of the computing machines that use a finite word length for
all computations.

6. Conclusions

In the present manuscript, it has been established that the Bernoulli’s and Baker’s maps
indeed offer totally erroneous results, after an impressively small number of recursions; for
example, when IEEE standard double precision is employed, both chaotic maps fail after
few tens of iterations, frequently less than sixty. The actual reason for the causation and
accretion of this, exponential growing, finite precision error, follows immediately from the
analysis introduced in Section 3 and Lemma 1; the corresponding approach is novel.

Using the aforementioned results, methods for properly executing the Bernoulli’s
and Folded Baker’s maps are introduced in Sections 4 and 5. These methods, for the first
time, allow the two chaotic maps to run for many hundreds of thousands of iterations,
offering correct results practically free of finite precision error. A considerable number of
associated experiments fully confirm this claim, as it is discussed in Sections 4 and 5 of the
present manuscript.
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