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Abstract: Compartmental models have long been used in epidemiological studies for predicting
disease spread. However, a major issue when using compartmental mathematical models concerns
the time-invariant formulation of hyper-parameters that prevent the model from following the
evolution over time of the epidemiological phenomenon under investigation. In order to cope with
this problem, the present work suggests an alternative hybrid approach based on Machine Learning
that avoids recalculation of hyper-parameters and only uses an initial set. This study shows that
the proposed hybrid approach makes it possible to correct the expected loss of accuracy observed
in the compartmental model when the considered time horizon increases. As a case study, a basic
compartmental model has been designed and tested to forecast COVID-19 hospitalizations during
the first and the second pandemic waves in Lombardy, Italy. The model is based on an extended
formulation of the contact function that allows modelling of the trend of personal contacts throughout
the reference period. Moreover, the scenario analysis proposed in this work can help policy-makers
select the most appropriate containment measures to reduce hospitalizations and relieve pressure on
the health system, but also to limit any negative impact on the economic and social systems.

Keywords: accurate forecasts; compartmental models; containment measures; health emergency;
health systems; Machine Learning; modeling approaches

1. Introduction

In early December 2019, the first COronaVIrus Disease-2019 (COVID-19) case was
identified in Wuhan, China [1], which started a pandemic that spread across the globe
in just a few months [2]. COVID-19 is a disease caused by a new form of coronavirus
named Severe Acute Respiratory Syndrome CoronaVirus type 2 (SARS-CoV-2) [1,3]. The
most common symptoms are fever, fatigue, and dry cough, which can evolve, in severe
cases, into pneumonia, severe acute respiratory syndrome, and death [4]. The disease
has been spreading fast and more than 65 million people have been infected as of fifth
December 2020, with more than 1.5 million deaths around the world [2]. In Italy, the first
COVID-19 case was announced on 20 February 2020 in Codogno, Lombardy [5]. In a
few days, the contagion started spreading throughout the country and, for this reason,
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the Italian government announced a national lockdown on 9 March 2020 to contain the
virus [6]. The lockdown period ended on 4 May 2020, but the circulation of the virus
has never really stopped in Italy, with few cases in Summer, but a rapid increase of the
pandemic spread since September reaching a total of about 1.7 million cumulative cases on
6 December [7]. According to scientific literature, compartmental mathematical models
have been widely used to emulate the behavior of infectious diseases and to map specific
phenomenon-based characteristics within the model. Compartmental models were first
introduced by Kermack and McKendrick [8] in 1991 with the Susceptible, Infected, and
Recovered (SIR) formulation [9]. Several other studies using compartmental models have
also been published, especially aimed at modelling COVID-19 spread in different countries
by focusing on multiple variables. In particular, Chen and colleagues [10] developed a
multilevel transmission network (called BHRP: bats, host, reservoir, people) based on the
Susceptible, Exposed, Infected and Recovered (SEIR) paradigm in order to emulate COVID-
19 transmission in China. Starting from the initial outbreak among bats, the method by
Runge-Kutta [11] was adopted to estimate the model equations hyper-parameters based
on Chinese official data. Moreover, an age-structured SEIR model was proposed by Prem
and colleagues [12] to evaluate the effect of social distancing measures on the outcomes
of the COVID-19 epidemic in Wuhan, China. Kucharski and colleagues [13] conducted
a mathematical study based on a stochastic SEIR model, with the goal of modelling the
early dynamics of COVID-19 pandemic transmission in Wuhan, also considering the
impact of travelling on the virus spread outside Wuhan. A modified SEIR model was
used by Yang and colleagues [14] to derive the COVID-19 epidemic curve in China. A
Machine Learning approach, trained on the 2003 SARS data, was also used to predict the
epidemic spread. An Extended SEIR model was proposed by Tang and colleagues [15,16]
to predict the trend of COVID-19 hospitalizations in China, which included some time-
variant hyper-parameters to implement a dynamic setting of the model. The same model
was used for the Italian case [17] to forecast COVID-19 related variables in two Italian
regions. Bollon and colleagues [18] used compartmental mathematical models to assess the
role of containment measures in curbing the demand for hospitalization. Rǎdulescu and
colleagues [19] adapted a traditional SEIR model based on four age groups to analyze the
effect of containment measures strategies in USA. Moreover, Giordano and colleagues [20]
developed a new mathematical model based on eight compartments to forecast COVID-19
trend in Italy. Ahmad and colleagues [21] proposed a fractional SEIR model to investigate
the spread of the COVID-19 in Pakistan during the first pandemic wave using, also, the
next generation matrix algorithm to compute the basic reproduction number R0. Kuzdeuov
and colleagues [22] developed a COVID-19 simulator for Kazakhistan through a stochastic
SEIR model. The simulator exploits a variety of data such as epidemiological, population
demographics and mobility. Moreover, Gaglione and colleagues [23] used a Bayesian
sequential and adaptive dynamic estimation method for computing the infection and
recovery parameters, and to track and predict the epidemiological curve in Lombardy, Italy,
and in USA. A SEIR model has also been exploited by Bherwani and colleagues [24] to
emulate the spread of the COVID-19 epidemic in India. Battineni et al. [25] also developed
a SEIR model explaining the infection growth across Italy and presenting epidemic rates
after and before country lockdown. A study related to the COVID-19 second wave in Italy
has been proposed by Chintalapudi et al. [26] evaluating the basic reproduction number.

Moreover, Zisad et al. [27] proposed an integrated Neural Network and SEIR Model
to predict COVID-19 spread in Bangladesh. Furthermore, Alanazi et al. [28] developed a
framework based on SIR model and Machine Learning for measuring and preventing the
continued spread of COVID-19 in the Kingdom of Saudi Arabia (KSA).

Growth models have been also used to understand COVID-19 epidemic outbreaks by
Tovissodé et al. [29], as well as in [30] to fit the number of cumulative confirmed cases for
revealing the patterns and the rate of COVID-19 spread in different countries. A second
wave of the COVID-19 pandemic has started in Europe since the end of Summer, which
achieved a peak in November [31]. However, all the mathematical models based on the
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first wave of the pandemic were not able to provide an accurate forecast of the second
COVID-19 pandemic curve, mainly due to substantial parametric changes from the first
to the second wave. In general, a major issue when using compartmental mathematical
models relates to the gradual loss of accuracy coming from the time-invariant formulation
of hyper-parameters, which actually prevent the model from following the evolution over
time of the epidemiological phenomenon under investigation. Such hyper-parameters
are generally calculated on the basis of appropriate estimation algorithms (e.g., MCMC,
Maximum Likelihood) that do not provide time-variant formulations though. For this
reason, each hyper-parameter should be defined with a time-variant formulation that
would allow the model to adapt to the different boundary conditions observed throughout
the evolution of the investigated phenomenon. The problem is exacerbated in the case of
complex compartmental models like the model in this work, based on nine compartments
and 29 hyper-parameters. In order to cope with this problem, the present work suggests
an alternative approach, based on Machine Learning, that avoids recalculation of hyper-
parameters and only uses an initial set. As the time frame increases, the expected loss
of accuracy in the model is corrected through an approach based on machine learning.
Indeed, in the present study, a Hybrid SEIR Model (from now on called HSM) framework,
has been designed by coupling a Basic SEIR Model (from now on called BSM) and Machine
Learning (ML), which led to a novel hybrid framework that takes advantage of both
approaches. The developed HSM has been used here to produce accurate predictions about
COVID-19 hospitalizations for the second epidemic wave, to simulate different scenarios
based on different containment measures and to assess the impact of such measures on the
epidemiological curve, using the HSM framework.

2. Materials and Methods
2.1. Population and Data Sources

To avoid model uncertainty due to inter-country and inter-regional variability, we
restricted the application of the model to the Lombardy region, North Italy, which is
one of the most affected regions in Italy and Europe, with more than 400,000 cases and
20,000 deaths in 10 million inhabitants on 6 December, with a cumulative incidence of
about 4% [32]. The number of hospitalizations was chosen as the target variable because it
reflects the number of severe cases and does not depend on the number of swabs, which
has varied substantially over time in Italy. Keeping track of hospitalizations is strategic for
policy-makers as it allows predicting the potential saturation of the hospital system, and
when this might happen. Moreover, data concerning COVID-19 hospitalizations, deaths,
isolated infected patients, infected patients, number of swabs and recovered patients in
the period from 9 March to 6 January 2021 were collected from the Italian Civil Protection
Department (ICPD) repository [33]. The average recovery period of hospitalized patients
has been estimated to be equal to 14 days by the Regional Health Agency (ARS) of Tuscany,
Italy [34]. This period corresponds to the worst case identified by ARS among the five
trajectories related to hospitalization duration according to different severity scenarios. For
the BSM modelling phase, other parameters regarding the COVID-19 epidemic spread have
been collected from Tang and colleagues [15,16] as well as from Reno and colleagues [17].

2.2. The Basic SEIR Model

The Basic SEIR Model (BSM) is a closed-population compartmental model. Based on
the SEIR model first introduced by Tang and colleagues [15,16] and subsequently adapted
by Reno and colleagues [17] to the Italian case, BSM has been proposed by redefining some
hyper-parameters related to the underlying differential equations. As shown in Figure 1,
BSM takes into account nine compartments.
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Figure 1. The BSM architecture to forecast the hospitalizations trend in Lombardy (Italy). According
to BSM, the population is divided into nine compartments: susceptible (S), exposed (E), infected (I),
recovered (R), quarantined susceptible (Sq), asymptomatic (A), hospitalized (H), quarantined exposed
(Eq), isolated infected (L). Interactions among compartments are depicted as directed segments, also
reporting the related transition rates.

Each compartment is connected to one or more compartments through directed
segments, and their interaction is regulated by the rate associated with each segment.
Formally, BSM is defined by the following system of ordinary differential equations that
allows modelling important epidemiological characteristics related to the COVID-19 spread
in Lombardy:

S′ = −(βc(t) + c(t)q(1− β))S(I + θA) + λSq
E′ = βc(t)(1− q)S(I + θA)− σE
I′ = σρE− (δI(t) + εI + γI + α)I

A′ = σ(1− ρ)E− γA A
S′q = (1− β)c(t)qS(I + θA)− λSq

E′q = βc(t)qS(I + θA)−
(
δq + εq

)
Eq

L′ = εqEq + εI I − (δL + γL + α)L
H′ = δI(t)I + δqEq + δLL− (γH + α)H

R′ = γI I + γA A + γH H + γLL

(1)

The solution of the system above is obtained by integrating differential equations over
a time interval starting from a set of initial conditions, reported in Table A1 of Appendix A,
and related to compartments. The time evolution of each compartment depends on a series
of hyper-parameters whose values have been estimated based on the available data and
information about the first pandemic wave. The full set of hyper-parameters is reported in
Table A2 of Appendix A. Hyper-parameters play an important role in modelling region-
specific outbreak dynamics, since the simulated trends strongly depend on the parameter’s
choice. Most hyper-parameters values are those proposed by Tang and colleagues [16]
as well as by Reno and colleagues [17] because some parallelism seems to exist between
the outbreak dynamics observed in Lombardy (Italy) and in Wuhan (China), even though
with different population characteristics. Further hyper-parameters have been added
whereas others have been redefined in order to improve the BSM forecasting performance
in Lombardy. As the virus is mainly transmitted through contact, the modeling of an
appropriate “contact function” was necessary to allow for the impact of containment
measures on the gradual trend in the number of contacts. Information about the contact
rate was not available at the time of writing. Hence, an intuitive approach has been applied
using mobility data provided by Apple [35], as better explained in Appendix A. Therefore,
the contact rate c(t) has been defined as:

c(t) = cw1(t) + cw2(t) (2)
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where:

cw1(t) =
1

1 + e−α1((TL2+∆TL2)−t)

[
1

1 + e−α1(L1−t)
c1(t) +

1
1 + e−α2(t−L1)

c2(t)
]

(3)

with
c1(t) = (c0 − cb) e−r1 t + cb (4)

c2(t) =
(

c f − cb

)(
1− e−r f t

)
+ cb (5)

and
cw2(t) =

1
1 + e−α1(t−(TL2+∆TL2))

c3(t) (6)

with
c3(t) =

(
c f − cb

)
e−r1 t + ce (7)

The corresponding hyper-parameters values are defined in Table A2 in Appendix A.
As shown in Equation (2), the contact function c(t) has been designed as a linear

composition of two terms cw1(t) and cw2(t), which model the trend of personal contacts
during the first and the second wave respectively. The contact function c(t) estimates
the trend of contacts between people, while also mapping the adoption of various con-
tainment measures aimed at curbing the epidemic spread (i.e., lockdown). Specifically,
cw1(t) is expressed as a function of two time-varying terms: the first term c1(t), shown
in Equation (4), has been derived by Tang and colleagues [16] to model the exponentially
decreasing rate of contacts upon the adoption of containment measures for the first pan-
demic wave (9 March–18 May 2020) in the present analysis. The second term c2(t), shown
in Equation (5), has been used to model the increased rate of contacts after gradually lifting
containment measures at the end of the first wave lockdown. Moreover, as shown in
Equation (6), cw2(t) is expressed as a function of the term c3(t), defined in Equation (7) and
relates to the decreasing trend of contacts that was observed after the new containment
measures put in place to control the pandemic spread during the second wave (started on
16 October 2020). In Equations (3) and (6) suitable sigmoid functions have been used for
simulating the gradual decrease or increase in contacts when entering or exiting lockdown,
respectively. Furthermore, the ce parameter in the c3(t) term of the cw2(t) contact function
allows modelling the asymptotic presumed average rate of personal contacts after the
second wave lockdown imposed in Lombardy on 6 November 2020. Hence, ce allows esti-
mating different hospitalization scenarios based on the pandemic evolution in Lombardy.
The solution of the BSM mathematical model strongly depends on the initial conditions
(given on 9 March 2020) and on the compartment hyper-parameters, that have been set to
model hospitalizations during the first pandemic wave. Moreover, it has been possible to
achieve a better setting of BSM through the fine-tuning of hyper-parameters, by means of
a trial and error procedure that compares BSM predictions with real hospitalization data.
Specifically, the BSM best setting has been achieved by setting the exponential decreasing
rate of diagnose rate r2 and the recovery rate of asymptomatic infected individuals γA
to 0.1 and 0.17529, respectively. However, as the simulation horizon increases over time,
BSM accuracy progressively decreases since BSM settings (hyper-parameters and initial
conditions) should be constantly updated according to the new time window under con-
sideration. BSM is therefore not properly suited for estimating hospitalizations during the
second COVID-19 pandemic wave. For this reason, the hybrid framework (HSM) has been
developed.

2.3. The Hybrid SEIR Model

The use of BSM to accurately forecast hospitalizations during the second pandemic
wave, with the first containment measures that were introduced on 13 October 2020 [36]
would have meant redefining the whole set of initial conditions and hyper-parameters.
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Therefore, a hybrid framework has been designed to develop the HSM. The aforemen-
tioned framework derives from using the two different predictive approaches obtained
through both the BSM mathematical model and the Machine Learning (ML) module. The
latter takes care of fixing mistakes in the long-term forecasts produced by the BSM and it
relies on polynomial models that have been properly trained on hospitalization data in
Lombardy from 15 October to 5 November 2020 (date when the second wave containment
measures became effective) [37]. Once trained, the ML module is able to make long-term
predictions (starting from 6 November 2020). Polynomial models of different orders have
been considered for assessing their accuracy against real hospitalization data. The best
fitting has been achieved by means of second order polynomial models.

The Machine Learning Module

The Hybrid SEIR Model (HSM) framework, introduced in the present study, exploits
the features of compartmental SEIR models and Machine Learning (ML) in order to provide
accurate forecasts of hospitalizations in Lombardy during the second wave lockdown.
Hence, HSM relies on a compartmental model (BSM), that is unable to provide long-term
accurate estimations, and on a ML module that aims to learn and correct the estimation error
produced by BSM. Figure 2 shows the HSM training and inference phases. Equation (8)
was used in the supervised training phase to define polynomial hypotheses hd

(
θ(d), x

)
of

different degree d, that have been trained with the hospitalizations observed in Lombardy
from 15 October to 5 November 2020 as target and with BSM estimations for the same
period (backward lagged by 1 day) as input.

ŷd(t) := hd

(
θ(d), x

)
:= θ0 + θ1x + θ2x2 + · · ·+ θdxd (8)

where θ0, . . . , θd are unknown regression coefficients which have been estimated using the
Normal Equation algorithm. Once trained, each polynomial hypothesis allows the mapping
between the BSM inaccurate estimations and the corresponding observed hospitalizations,
thus providing improved forecasts. Moreover, the HSM training phase provides as an
outcome the trained polynomial hypotheses to be used during the inference phase. In
the inference phase, the already trained polynomial models are exploited to correct BSM
estimations and to forecast the long-term trend of future hospitalizations, which has not
been observed yet. Indeed, inaccurate BSM estimates, starting from 6 November, have been
backward lagged by 1 day in this phase, and used as input of each polynomial hypothesis
previously trained to produce hospitalizations forecasts starting from 6 November, when
the second wave lockdown became effective [37]. The different polynomial hypotheses
have been assessed in the model selection block, shown in Figure 2, to select the optimal
model which produces the most accurate hospitalizations forecasts.

The Root Mean Squared Error (RMSE), defined by (9), has been selected as the eval-
uation metric for the error produced by each polynomial hypothesis in the prediction of
hospitalizations from 6 November to 8 December 2020.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

where ŷi is the i-th prediction, yi is the i-th observed sample and n is the number of
samples.
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Training and Inference phases.

2.4. What-If Analysis: Scenarios during the First and the Second Lockdown

The what-if analysis allows the assessment of different scenarios related to the evolu-
tion of the pandemic, by taking advantage of time variability in the c(t) contact function.
Two scenario analyses have been carried out with regard to the first and the second wave
of the pandemic, respectively. The first analysis was aimed at estimating the trend of
hospitalizations in Lombardy under various scenarios with a different lockdown duration
during the first wave of the pandemic. In particular, this was achieved by running BSM
multiple times with different values of the L1 variable, which represents the number of
days of simulated lockdown.

The second analysis focused instead on assessing the effect of potential containment
measures to keep the rate of personal contacts unaltered during the second wave lockdown.
The HSM framework allowed minimizing the long-term error made by BSM in estimating
second wave lockdown hospitalizations. Different ce values, that define the minimum
average rate of contacts during the second wave lockdown (started on 6 November 2020),
have been assessed through several sensitivity analyses. For each sensitivity analysis all the
hyper-parameters have been left unchanged except for ce in order to assess its impact on
future hospitalization trend scenarios, comparing HSM forecasts with the actual available
hospitalizations data. Several ce values have been considered for modelling potential
scenarios during the second epidemic wave, when containment measures were imposed
on the population. In particular, the scenario with the highest value of contacts equal to 6
has been considered first, as strongly suggested by the decree of the Italian Prime Minister
on 13 October 2020 [36]. Additionally, this value was also imposed by the UK government
on 14 September 2020 [38] to slow down the pandemic spread by limiting the number of
personal contacts. Moreover, further ce parameter values have been considered for the
evaluation of more restrictive scenarios (average number of contacts equal to 3) and of
other less stringent scenarios (average number of contacts equal to 10 and 12). For each
scenario, the average percentage error (ε%) between HSM hospitalization predictions and
actual hospitalizations data has also been computed.
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2.5. The Daily Reproduction Number Estimation

The daily reproduction number Rd(t) has been estimated by using the next-generation
matrix method [39] (see Appendix B):

Rd(t) =

[
β ρ c(t) (1 − q)
δI(t) + εI + γI

+
β c(t) θ (1 − ρ) (1 − q)

γA

]
S0 (10)

Since Rd(t) depends on the contact function c(t), by modifying the variable L1 in
Equation (3), different daily reproduction number trends could be assessed in Lombardy
during the first wave of the pandemic, with respect to the critical threshold Rd(t) = 1,
(i.e., when the disease is endemic). When computed at the beginning of the pandemic
(t = 0), Rd(0) represents the basic reproduction number (known as R0 in literature), usually
employed for evaluating the potential infectivity of a disease. Herd immunity (i.e., the
minimum threshold allowing a population to become self-immune to a virus) has also
been evaluated based on 9 March 2020 data in Lombardy, using the following equation
proposed by Gorkin [40]:

i = 1− 1
R0

(11)

where i represents the portion of the population that needs to be immunized in order to
reach the herd immunity threshold.

3. Results

Figure 3 reports the results of the simulations performed using BSM. For both panels,
the x-axis reports the number of days from 9 March to 9 July 2020, whereas the y-axis
reports the absolute number of hospitalizations. Real hospitalized people are depicted by a
red line, whereas BSM predictions are shown in green through a dashed line. BSM hyper-
parameters have been first initialized to the values reported in Appendix A (Table A2), and
the corresponding predictions are shown in Figure 3a. BSM hyper-parameters have then
been further tuned for the best setting, leading to a better fitting with respect to the actual
hospitalizations trend observed (Figure 3b).
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(dashed green line) compared with real hospitalization data (red line) in the period from 9 March to
9 July 2020. BSM hospitalization predictions, with the basic hyper-parameters setting reported in
Table A2 of Appendix A, are shown in panel (a), whereas BSM hospitalization predictions, with the
best setting of r2 = 0.1 and γA = 0.17529 hyper-parameters, are reported in panel (b).

Moreover, the BSM best setting has been used as the starting point to perform a what-if
analysis on the first pandemic wave, by taking advantage of the time-variant behavior
of the contact function c(t). The what-if analysis has been performed for assessing the
effect of different lockdown durations on the hospitalizations trend (Figure 4a) and on the
corresponding daily reproduction number Rd(t), leading to several scenarios (Figure 4b).
The daily reproduction number was further evaluated on 9 March 2020 (t = 0) upon the
adoption of containment measures for the first COVID-19 wave. The results reported in
Figure 4b, show a value of Rd(0) = R0 = 2.625. This value has been used for estimating
the immunity threshold for Lombardy using Equation (11):

i = 1− 1
2.625

= 0.619 = 61.9%
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Figure 4. What-if Analysis based on different lockdown duration scenarios during the first wave
and Rd(t) estimation. (a) BSM best setting predicted hospitalizations based on different lockdown
scenarios, with estimated hospitalization peaks (upward triangles) and days when the hospitaliza-
tion reference threshold is reached (downward triangles), e.g., 10,000. (b) for each scenario, the
corresponding daily reproduction number Rd(t) is reported along with the estimated days (circles)
in which the critical threshold is reached.

Figure 5 shows the results obtained by means of the second order HSM hybrid model
to predict hospitalization evolution during the second pandemic wave. As described in
Section 2, the ce parameter in the c3(t) term of the contact function allows modelling the
asymptotic presumed rate of personal contacts after the second wave lockdown imposed
in Lombardy on 6 November 2020. Four different average rates of contact equal to 3, 6,
10, and 12 have been considered to assess the impact of different containment measures
on the hospitalizations trend. Panel (a) reports the estimates of contacts evolution from
9 March 2020 to 31 December 2020, under four different scenarios based on the ce parameter.
Panel (b) shows the results of the BSM prediction during the same observation period under
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the four different scenarios based on the ce parameter. An increasing loss of accuracy can
be observed in the BSM with wider time windows, starting from 17 June 2020, producing
an overestimate of hospitalizations in the period from the end of the first wave lockdown to
the introduction of new containment measures during the second wave (15 October 2020).
Panel (c) shows the results using HSM and four different rates of personal contacts during
the lockdown period imposed in Lombardy on 6 November 2020: the lower the contact
rate, and the earlier and lower the peak of the hospitalization curve. The comparison
between BSM and HSM applications shows an improvement of more than 94% of HSM
with respect to BSM (Table 1). The average percentage error (ε%) was also calculated for
each contact scenario and, as it turned out, the ce = 10 scenario recorded the lowest error
(2.39%) among all scenarios considered in the analysis (Figure 5c).
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Figure 5. COVID-19 hospitalization estimates in Lombardy according to different scenarios of personal contacts. HSM
hospitalizations predictions assuming different scenarios of personal contacts during the second wave lockdown. The
supposed contacts trend is shown in panel (a), whereas panel (b,c) show the different hospitalization scenarios using BSM
and HSM, respectively. For each scenario, the average percentage error (ε%) from 6 November to 8 December 2020 is also
reported.

To emphasize such result, Figure 6 reports the hospitalizations trend as predicted by
HSM compared with the actual number of hospitalizations in Lombardy, from 6 November
to 8 December 2020. As shown, HSM predictions exhibited a very close match with actual
hospitalizations data, falling into the confidence interval of prediction (CI: 95%) throughout
the observed period.
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Table 1. Comparison between BSM and HSM in the period 15 October–5 November 2020, using
RMSE 1.

ce BSM RMSE HSM RMSE Improvement (%)

3 2834.34 151.63 94.65
6 2864.07 128.03 95.53
10 2905.20 103.96 96.42
12 2926.43 95.78 96.73

1 RMSE = Root Mean Squared Error.
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Figure 6. Real vs predicted hospitalizations in Lombardy. HSM predictions (dashed black line)
for the average contact rate ce = 10 and real hospitalizations in Lombardy (straight red line) from
6 November to 8 December 2020 are reported. The 95% prediction confidence interval along with the
average percentage error (ε%) between HSM hospitalization predictions and actual hospitalizations
data are also reported.

4. Discussion

The present work suggests a hybrid approach based on Machine Learning that avoids
recalculation of compartmental models’ hyper-parameters. This study shows that the
proposed hybrid approach makes it possible to correct the expected loss of accuracy
observed in the compartmental model when the considered time horizon increases.

Various mathematical models have been applied to obtain the most accurate predic-
tions of COVID-19 hospitalizations in the first and second pandemic waves, according to
social contact restrictions for lockdown, using the Lombardy region as a case study. As
regards the first pandemic wave, from March to May 2020, a better setting of the classical
BSM has been found through the fine-tuning of hyper-parameters, by means of a trial and
error procedure that compares BSM predictions with real hospitalization data. This proce-
dure allowed an improvement in hospitalizations predictions by about 26% (Figure 3b),
with respect to forecasts achieved by the initial BSM version (Figure 3a). However, for the
second wave, from October to December 2020, an HSM framework based on the classical
BSM and a ML module, which relies on polynomial models that have been properly trained
on real data, provided more accurate long-term predictions of COVID-19 hospitalizations
than the traditional BSM. The application of both modelling approaches confirmed that
containment measures, such as the lockdown and consequently contact reduction through
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social distancing, can heavily contribute to control the pandemic spread, depending on the
magnitude of reduction of individual contacts and the length of the period: the lower the
contact number and the longer the lockdown period, the lower the peak of hospitalizations
and the farther the point the peak is reached (Figure 4a). The analysis of the different
scenarios obtained through BSM may well support the selection of the most appropriate
lockdown duration to reduce the number of hospitalized patients and relieve pressure or
stress from the health system, while also limiting any negative impact on the economic and
social systems. Results actually show that a 60-, 90- or 120-day lockdown would produce a
very similar trend in terms of hospitalizations. The results achieved by the BSM best setting
confirmed also the impact of lockdown duration on the daily reproduction number when it
is above the critical threshold, meaning that the disease is spreading. Indeed, as reported in
Figure 4b, a shorter lockdown causes Rd(t) to persist above the critical threshold for more
days, as compared with a longer lockdown. Furthermore, for each considered scenario, the
results reported in Figure 4 show a dependence between the day in which Rd(t) achieves
the endemic critical threshold (Rd(t) = 1) and the day when the hospitalization peak is
reached. The time interval between these two days might be related to the recovery period,
estimated as 14 days according to Italian figures [34] and to the incubation period. Finally,
the herd-immunity threshold of 61.9% is an optimistic result, since R0 was computed on
9 March 2020 when some containment measures had already been introduced in Lombardy
to reduce the COVID-19 spread. The adopted SEIR approach proved to properly model the
trend of hospitalizations in Lombardy during the first pandemic wave. Unfortunately, due
to the strong dependence of the BSM mathematical model on the initial conditions and on
the hyper-parameters values that date back to 9 March 2020, an increasing loss of accuracy
can be observed in the BSM with wider time window, as shown in Figure 5b, particularly,
from the end of the first wave lockdown to the introduction of new containment measures
during the second wave (15 October 2020). For this reason, the HSM framework has been
applied. The appropriate variation of the ce parameter in the contact function that defines
the asymptotic average value of contacts throughout the entire second wave, made it
possible to outline four scenarios based on a different rate of personal contacts during the
lockdown period imposed in Lombardy on 6 November 2020 [37]. Modelling the gradual
decrease in the rate of personal contacts throughout the entire lockdown required using
sigmoid functions in the contact function. Therefore, the results of applying the HSM
framework depended on the contact function values during the transition period, that
started on 15 October 2020, with the first Italian Prime Minister’s Decree [36]. The HSM
framework proved very close to the hospitalization trend observed in Lombardy during
the second wave of the pandemic (see Figure 5c), as it allowed to reduce the estimation
error of more than 94% with respect to BSM in the hospitalization trend from 15 October to
5 November 2020, for all the considered scenarios. For the ce = 10 scenario, the hospitaliza-
tions trend predicted by HSM is very close to the real hospitalizations trend in Lombardy,
from 6 November to 8 December 2020, with an average percentage error of 2.39%, as shown
in Figure 6. Indeed, all the proposed scenario analyses depend on the choice of the contact
function. The modelling procedures that have been proposed to describe the trend of per-
sonal contacts have proved appropriate for the estimation of different plausible scenarios
about the trend of hospitalizations in Lombardy, both in the first and the second phase. In
addition, the different scenarios related to the trend of contacts during the second wave
suggest that the adoption of stricter containment measures with respect to the allowed
rate of personal contacts might promote a more moderate trend of hospitalizations, with
a lower peak and earlier in time. Under the most plausible scenario that sets the rate of
allowed personal contacts to ten throughout the entire lockdown period in the second
wave, predictions show a peak at around 9300 hospitalized patients, followed by a rapidly
decreasing trend that should end on 1 January 2021. The main strength of the study lies in
the development of a novel hybrid framework based on ML to reduce the errors that are
usually introduced by mathematical compartmental models in the long term. The analysis
was also stretched out to include the period from 8 December 2020 to 6 January 2021 by
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forecasting the contacts trend during the considered period. The results of the extended
analysis are reported in Figure 7.
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Figure 7. Real vs predicted hospitalizations in Lombardy. HSM predictions (dashed black line)
for the average contact rate ce = 10 and real hospitalizations in Lombardy (straight red line) from
6 November 2020 to 6 January 2021 are reported. The 95% prediction confidence interval along with
the average percentage error (ε%) between HSM hospitalization predictions and actual hospitaliza-
tions data are also reported.

As clearly expected, HSM was not able to produce accurate forecasts in the period
of interest (ε% = 30.84%), even though forecasts fit in the 95% confidence interval. The
reason for this depends on a number of factors related to the period of interest, including
the quick alternation of different containment measures. As a matter of fact, the Prime
Minister’s Decree of 3 November 2020 [37] imposed new restrictions on the country based
on three risk scenarios related to increased critical levels (yellow, orange and red) in
the various regions. The Decree provides for the assessment of restrictions based on
the Rt index value observed in each Italian region. The definition of the critical level
per region will take place on a weekly basis and it will last 15 days. Each region shall
then comply with the assigned critical level measures for at least two weeks. For this
reason, the Italian situation is extremely dynamic and difficult to model. In addition, the
vaccination campaign against COVID-19 was launched in Europe on 27 December 2020.
Proper modelling should also account for the impact that vaccines are supposed to have on
the epidemic curve. However, the developed framework is extremely general and although
the focus of the present work was on the hospitalized people compartment, the framework
could also have been efficiently used for other compartments of the SEIR mathematical
model, thus enabling the accurate prediction of other COVID-19 variables as well. The
modelling proposed for the contact function allows the assessment of different, more or
less stringent containment measures based on a variable average number of contacts. Such
measures help outline different hospitalization trend scenarios that are useful to monitor
their impact on the national health system. For these reasons, the framework represents
a valid and accurate decision support tool for policy-makers. Yet, as already said, the
use of compartmental models strongly depends on the initial conditions and on a set of
hyper-parameters that govern the evolution of the various compartments over time. The
use of a model based on different time scenarios (i.e., phase two and any further phase
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of the pandemic) requires the definition of time variant hyper-parameters, for the model
to adapt to changes in working conditions also in the long term. Clearly, in the case of
complex compartmental models such as the BSM model with nine compartments used
in the present study, redefining all hyper-parameters would mean having extremely fine-
grained information and epidemiological point data available both in space and in time,
along with using the appropriate estimation algorithms, as for instance those based on
Maximum Likelihood. Consequently, the impossibility to redefine all hyper-parameters for
very long-time frames causes a loss of accuracy in long-term predictions. To overcome this
limitation, the authors exploited the Machine Learning. Moreover, as the contact function
has a strong impact on the model predictions, the best definition of such function would
require knowing the number of personal contacts at a regional level for the entire time
frame under observation. The lack of such information led the authors to the assumption
of a contact trend that is governed by the mobility trend provided by Apple. The choice of
Lombardy as the case study for the proposed modelling approach can be a possible limit of
the study. However, Lombardy has a larger population than various European countries,
was highly affected by COVID-19 in both first and second wave and has large industrial
and commercial activities determining a wide network of social contacts. However, the
Italian regions have different public health systems and adopted nonidentical approaches
for contrasting the COVID-19 pandemic, making a prediction model not suitable for any
region, as somewhat different parameters should be included in the model. In conclusion,
various mathematical forecasting models for the COVID-19 pandemic have been tried
so far, but the choice of the best model depends on various assumptions and parameters
which are valid in a specific context. Among them, the average number of daily contacts
is of the utmost relevance to assess the effectiveness of confinement measures, due to the
high transmission of SARS-CoV-2 through human contacts. However, the duration and
strictness of containment measures have a substantial impact on the socio-economic fabric
and the health system, therefore the estimate of different scenarios of the pandemic spread
according to daily contacts and other parameters can be a valuable tool for choosing the
most appropriate compromise solution to adopt.
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Appendix A

Compartmental Model Specification.

Table A1. Initial conditions for BSM on 9 March 2020.

Definitions Values Sources

S Susceptible 10,025,948 [17]
P Residents as of 31 October 2019 10,097,171 [41]
D Deaths 333 [33]
H Hospitalized 3242 [33]

H + L + D Known Infected 4823 [33]
A + I Undetected Infected 48,230 [17]

A Undetected asymptomatic Infected 32,153 [17]
I Undetected symptomatic Infected 16,077 [17]
T Tests 20,135 [33]
Q Quarantined 15,312 [17]
Eq Quarantined exposed 24 [17]
Sq Quarantined susceptible 15,288 [17]
E Unknown exposed 2212 [17]
R Recovered 646 [33]

Table A2. Hyper-parameters used in the BSM differential equations.

Definitions Values Sources

L1 Number of days of the first wave lockdown 58 BSM

TL2
Number of days from the beginning of the first lockdown

(9 March 2020) to the start of the second lockdown (6 November 2020) 242 BSM

∆TL2
Number of days for the gradual decrease in contacts after the second

wave lockdown 8 BSM

c0 Contact rate on 9 March 2020 10 BSM

cb
Lowest contact rate achieved during the first wave lockdown

(9 March–18 May 2020) 3 [42]

c f
Highest contact rate achieved after the first wave lockdown

(9 March–18 May 2020) 24 BSM

ce
Lowest contact rate after the second wave lockdown started on

6 November 2020 {3, 6, 10, 12} BSM

r1 Exponential decreasing rate of the contact function 1.3768 [16]
r f Exponential increasing rate of the contact function 0.01 BSM
α1 Sigmoid function rate of decay 0.8 BSM
α2 Sigmoid function rate of growth 0.1 BSM
β Probability of transmission per contact 2.0011 × 10−8 BSM
q Quarantined rate of exposed individuals 1.887 × 10−7 [17]
σ Transition rate of individuals exposed to the infected class 1/14 [43]

λ
Rate at which the quarantined uninfected contacts were released into

the wider community 1/14 [16]

ρ Probability of symptoms among infected individuals 0.86834 [16]

δI0
Initial transition rate of symptomatic infected individuals to the

quarantined infected class 0.3266 [16]

1/δIF The shortest period of diagnosis 0.3654 [16]
r2 Exponential decreasing rate of diagnose rate 0.158 BSM

δq
Transition rate of quarantined exposed individuals to the quarantined

infected class 0.1259 [16]

γI Recovery rate of symptomatic infected individuals 0.33029 [16]
γA Recovery rate of asymptomatic infected individuals 0.1 BSM
γH Recovery rate of hospitalized individuals 0.0769 BSM
α Disease induced death rate 1.7826 × 10−7 [16]
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Table A2. Cont.

Definitions Values Sources

θ Infected rate of asymptomatic/symptomatic 0.05 [17]
εI Rate of home isolation for infected individuals 0.2 [17]
εq Rate of home isolation for quarantined exposed individuals 0.2 [17]
γL Recovery rate for isolated infected individuals 0.13978 [17]
δL Hospitalization rate for isolated infected individuals 0.2 [17]

BSM refers to the parameters that have been updated through the “trial and error” approach illustrated in the manuscript.

Formally, the Basic SEIR Model (BSM) used in our analysis is defined by the system
of ordinary differential equations described by (1) in the manuscript and also used by
Reno and colleagues [17]. The solution to the differential equation system is obtained by
integrating differential equations over a time interval, starting from a set of initial conditions
related to compartments, as reported in Table A1. The time evolution of each compartment
is governed by a series of hyper-parameters whose values have been estimated based
on the available data and information about the first pandemic wave. The full set of
hyper-parameters is reported in Table A2. BSM is based on the SEIR model that was first
introduced by Tang and colleagues [15,16] and then adapted to the Italian case by Reno
and colleagues [17]. BSM has been designed by redefining some differential equations
and the related hyper-parameters to achieve a better modelling of the hospitalizations
trend in Lombardy. In particular, the following contact function proposed by Reno and
colleagues [17],

c(t) = θ(t− Tc ) c1 (t) + θ(Tc − t) c2 (t) (A1)

where:
c1(t) = (c0 − cb)e−r1t + cb (A2)

c2(t) =
(

c f − cb

)(
1− e−r11(t−Tc)

)
+ cb (A3)

θ(t) =
{

1 i f t < 0
0 otherwise

(A4)

has been entirely reconstructed, as shown in Equations (2)–(7) in the manuscript. As
discussed in the manuscript, the contact function c(t) has been designed as a linear compo-
sition of two terms cw1(t) and cw2(t) as shown by (2). Specifically, cw1(t) models the trend
of personal contacts during the first pandemic wave and is expressed as a function of two
time-varying terms c1(t) and c2(t) as reported in (3). The first term c1(t), defined by (4),
has been designed to model the exponentially decreasing number of contacts upon the
adoption of containment measures for the first pandemic wave (9 March–18 May 2020). The
second term c2(t), has been used to model the increased number of contacts after gradually
lifting containment measures at the end of the first wave lockdown. Moreover, cw2(t)
models the trend of personal contacts during the second pandemic wave and is expressed
as a function of the time-varying term c3(t) as reported in (6). The term c3(t), defined by
(7), has been added in the contact function to model the decreasing trend of contacts that
was observed after the new containment measures put in place to control the pandemic
spread during the second wave (16 October 2020 up to 6 January 2021). When formulating
the contact function used by Reno and colleagues [17], both c1(t) and c2(t) terms can be left
out through step function θ(t), which allows an instant modelling of the trend of contacts
during the transition phase and also upon entering and exiting lockdown. On the contrary,
to achieve a more realistic modelling of the trend of contacts following the adoption of
containment measures both in the first and in the second lockdown, the present analysis
has selected appropriate sigmoid functions that enable the representation of smoothed
transitions. It should also be noted that in our formulation, transitions entering and exiting
lockdown are only managed by sigmoid functions, thus leaving info about the duration of
the first and the second lockdown out of contact terms c2(t) and c3(t), respectively. Finally,
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the ce parameter in the c3(t) term of the contact function allows modelling the asymptotic
presumed number of personal contacts after the second wave lockdown imposed in Lom-
bardy on 6 November 2020. Hence, ce allows estimating different hospitalization scenarios
based on the pandemic evolution in Lombardy. The contact function is also parameterized
by the c0, cb and c f rates. In the original model by Tang and colleagues [16], c0 has been
defined as equal to 14.781 referring to Wuhan region in China. In our use case, this value
should have been rescaled to c0 = 13.469, according to (A5), to fit the Lombardy context
with a population of about 10.097 million people [41],

Wuhanpop : 14.781 = Lombardypop : x (A5)

where Wuhan population has been estimated at about 11.081 million individuals [44]. How-
ever, the present analysis considered a lower value of c0 = 10 to include the preliminary
containment measures that had already been introduced in Lombardy on 9 March 2020.
This value has also produced the best predictions with respect to the observed hospitaliza-
tions. The parameter cb represents the lowest contact rate achieved during the lockdown
period, that has been set to three according to the Italian Scientific Technical Committee
report [42]. This document reports the average number of contacts per age group, consid-
ering a situation in which no containment measures are enforced on the population. As
mentioned above, the lockdown was imposed on the entire Italian population from 9 March
to 4 May 2020. It is safe to consider that the contact rate was only limited to home contacts
in this period. Therefore, the value for cb has been obtained by calculating an average of
the values for each age group. A broader discussion is needed for the c f parameter used to
model the increasing trend of personal contacts between the two waves of the pandemic.
Information about this parameter was not available at the time of writing, hence an intuitive
approach has been applied using mobility data provided by Apple [35]. In Figure A1, the
Apple mobility trends about “driving”, “walking” and “transit” are shown with respect to
a baseline representing a reference mobility value registered on 13 January 2020 then before
the adoption of any containment measures. After the end of the first wave lockdown (4 May
2020), an increasing trend can be observed with a peak higher than 100% (in the worst case)
with respect to the baseline. Hence, the authors of the analysis assumed a similar trend
for personal contacts, imposing a value above 100% with respect to the reference value
c0 that was previously estimated to model contacts before the first lockdown. Moreover,
the recovery rates of hospitalized people (γH = 1/ recovery periodH) and asymptomatic
infected individuals (γA = 1/ recovery periodA) have been redefined to adapt the model
to the Italian case. The recovery period for hospitalized patients and asymptomatic infected
individuals lasts 13 and 10 days, as reported in [34,45] respectively. Therefore, γH = 0.0769
and γA = 0.1 have been considered. Furthermore, δI(t) (the diagnosis rate), which strongly
depends on the resources available for detecting new cases, has been defined as in the work
by Tang and colleagues, [16]:

1
δI(t)

= (
1

δI0
− 1

δIF
) e−r2t +

1
δIF

(A6)

where, as reported in Table A2, δI0 is the diagnosis rate at the initial time (t = 0) with
δI(0) = δI0, δI f is the fastest diagnose rate with lim

t → ∞
δI(t) = δI f , and r2 is the exponential

decreasing rate.



Informatics 2021, 8, 57 18 of 21
Informatics 2021, 8, x  19 of 22 
 

 

 
Figure A1. Apple mobility trends and the corresponding presumed contacts. Mobility trends provided by Apple, ex-
pressed as percentage variation with respect to the baseline in Italy between 13 January and 9 November 2020, are reported 
by straight lines with values on the y-axis, left side. On the y-axis, right side, the presumed contacts have been reported 
according to the mobility trend. 
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Appendix B

Evaluation of the Effective Reproduction Number

The effective reproduction number Re(t) is one of the most important epidemiological
indices to control the behavior of an epidemic disease. It corresponds to the average
number of new infections per infectious case in a population made up of both susceptible
and unsusceptible hosts in a generic time instant t. If Re > 1, the number of cases will
increase, such as at the start of an epidemic [46].

The present study used BSM to estimate hospitalization in Lombardy from 9 March to
15 October 2020. Re(t) has been evaluated in each simulated day, leading to the definition
of the effective daily reproduction number Rd(t). Rd(t) has been evaluated by Tang and
colleagues [15,16], using the next generation matrix algorithm [39], and its expression is
reported in (A7).

Rd(t) =
[

c(t)β(1− q)(−ρδI(t)θ − ρ α θ − ργIθ + ργA + δI(t)θ + α θ + γIθ)

γA(δI(t) + α + γI)

]
(A7)

However, following the approach proposed by Reno et al. in [17], BSM adds a new
compartment related to the isolated infected individuals (L) with respect to the SEIR
model used by Tang and colleagues [15,16]. Thus, a new closed formula for Rd(t) has
been derived by applying the next generation matrix algorithm to BSM. Each step of the
algorithm is presented as follows.

Let X be the vector of infected compartments, such as exposed (E), infected (I), asymp-
tomatic (A), hospitalized (H), quarantined exposed (Eq), isolated infected (L). Let Y be the
vector of uninfected compartments, such as susceptible (S), quarantined susceptible (Sq),
and recovered (R). Let F be the vector of new infection rates (transitions from Y to X) and
V the vector of all other rates (not new infections).
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X =



E
I
A
Eq
L
H

Y =

 S
Sq
R

 F =



βc(t)(1− q)S(I + θA)
0
0

βc(t)qS(I + θA)
0
0

 V =



σE
−σρE + (δI(t) + εI + γI + α)I

σ(ρ− 1)E + γA A(
δq + εq

)
Eq

−εqEq − εI I + (δL + γL + α)L
−δI(t)I − δqEq − δLL + (γH + α)H


Considering the following hypothesis regarding the Disease-Free Equilibrium (DFE),

which is defined as the point at which no disease is present in the population, [47]:

DFE = (s∗, 0, · · · , 0)

it follows that

S′ = dS
dt =

[
−(βc(t) + c(t)q(1− β))S(I + θA) + λSq

]
|DFE = 0

⇒ −(βc(t) + c(t)q(1− β))s∗(0) + λ0 = 0

Then, deriving vectors F and V with respect to X and evaluating them at the DFE
point, we have:

F =
dF
dX |DFE

=



0 βc(t)(1− q) βc(t)(1− q)θ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 βc(t)q βc(t)qθ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V =
dV
dX |DFE

=



σ 0 0 0 0 0
−σρ δI(t) + εI + γI + α 0 0 0 0

σ(ρ− 1) 0 γA 0 0 0
0 0 0 δq + εq 0 0
0 −εI 0 −εq δL + γL + α 0
0 −δI(t) 0 −δq −δL γH + α


Computing the inverse of the matrix V and multiplying by F, the next-generation

matrix FV−1 can be obtained as in the following:

FV−1 =



βc(1−q)ρ
δI(t)+γI+εI

+ βc(1−q)(1−ρ)θ
γA

βc(1−q)θ
δI(t)+γI+εI

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

βcqρ
δI(t)+γI+εI

+ βcq(1−ρ)θ
γA

βcq
δI(t)+γI+εI

βcqθ
γA

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Finally, by computing the dominant eigenvalue of the next generation matrix it is

possible to obtain the following closed formulation for the daily reproduction number:

Rd(t) =
[

c(t)β(1− q)(−ρδI(t)θ − ρεIθ − ργIθ + ργA + δI(t)θ + εIθ + γIθ)

γA(δI(t) + εI + γI)

]
(A8)

It should be noted that (A8), obtained for BSM, only differs from (A7) by Tang with
regard to the rate of home isolation for infected individuals (εI) which replaces the disease
induced death rate (α).
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