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Abstract: Today’s computing is based on the classic paradigm proposed by John von Neumann,
three-quarters of a century ago. That paradigm, however, was justified for (the timing relations of)
vacuum tubes only. The technological development invalidated the classic paradigm (but not the
model!). It led to catastrophic performance losses in computing systems, from the operating gate
level to large networks, including the neuromorphic ones. The model is perfect, but the paradigm
is applied outside of its range of validity. The classic paradigm is completed here by providing the
“procedure” missing from the “First Draft” that enables computing science to work with cases where
the transfer time is not negligible apart from the processing time. The paper reviews whether we can
describe the implemented computing processes by using the accurate interpretation of the computing
model, and whether we can explain the issues experienced in different fields of today’s computing
by omitting the wrong omissions. Furthermore, it discusses some of the consequences of improper
technological implementations, from shared media to parallelized operation, suggesting ideas on
how computing performance could be improved to meet the growing societal demands.

Keywords: generalized computing paradigm; dispersion; computing efficiency; temporal logic;
time-aware computing; neuronal computing

1. Introduction

Today’s computing science commonly refers to the classic Electronic Discrete Variable
Computer [1] (EDVAC) report “First Draft” [2] as its solid base. von Neumann performed
a general analysis of computing; however, for the intended vacuum tube implementation
only, he made some very strong omissions. He limited the validity of his “procedure”
(but not of his model!) for vacuum tubes only, carefully drawing the range of validity of
the “initial approximations” he used. He made clear that using “too fast” vacuum tubes
(or other elementary processing switches) vitiates his simplified model. Furthermore, he
emphasized that it would be unsound to apply his simplified model to modeling a neural
operation, where the timing relations are entirely different. Unfortunately, sometimes an
implementation based on a different physical effect or material is called a ‘model’; for
examples, see [3]. Similarly, changing parts of the architectural principles are called models
(see cited references in [4] or [5]). We use the word for the abstract description of computing,
and discuss some of its different implementations in the paper.

Actually, his statement was that

i f [ t iming r e l a t i o n s of ] vacuum_tubes
then Classic_Paradigm ;
e l s e Unsound ;

In that phase of development, and in the age of vacuum tube technology, he did not feel
the need to work out the “procedure” that we could follow when the processing elements
get faster, and the timing relations do not enable us anymore to neglect transmission
time apart from processing time. However, he strongly emphasized that we must revise
the computing paradigm (especially the omissions he made about the timing relations)
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according to technological development, whether the conditions of applying the “classic
paradigm” are still satisfied.

The technology, with the advent of transistors and integrated circuits, quickly forgot
vacuum tubes. The stealthy nature of the impressive technological development covered
for decades was that the computing paradigm, created with vacuum tube timing relations
in mind, was not valid for the new technology. The experts early noticed that the develop-
ment of computing had slowed down dramatically [6]. Many experts suspected that the
computing paradigm itself, “the implicit hardware/software contract [7]“, was responsible for
the experienced issues: “No current programming model is able to cope with this development [of
processors], though, as they essentially still follow the classical van Neumann model” [8]. However,
when thinking about “advances beyond 2020”, on the one hand, the solution was expected
from the “more efficient implementation of the von Neumann architecture“ [9]. On the other
hand, it was stated that “The von Neumann architecture is fundamentally inefficient and
non-scalable for representing massively interconnected neural networks” [10].

The operating, technological, and utilization characteristics of computers have drasti-
cally changed. The aspects of utilization, developing architecture, using different technolo-
gies, and new physical effects/materials have been extensively discussed (see, for example,
cited references in [3]). However, a new theoretical basis for the detailed analysis of the
effects of those changes is still missing; those aspects have been discussed using the classic
computing paradigm, which is definitely ‘unsound’ to describe them.

The methodology used here is to discuss the ‘first principles’ of the computing process
in an implementation-independent way. That is, the computing process is considered as an
aligned and constrained sequence of transfer and processing phases; logical computability
is provided independently from the alignment (in a time-unaware way, such as the different
Turing machines) or a physical/biological event (delivered by a material carrier). We
illustrate the theoretical discussion with case studies taken from different implementation
technologies.

2. von Neumann’s Ideas
2.1. The “von Neumann Architecture”

The great idea of von Neumann was that he defined an interface (an abstract model)
between the physical device and its mathematical exploitation [2]. His publication is
commonly referred to as “von Neumann architecture” (perhaps his report is mismatched
with the other report on Electronic Discrete Variable Computer [1] (EDVAC) [1]). However,
in the first sentence, he makes it clear that “The considerations which follow deal with the
structure of a very high speed automatic digital computing system, and in particular with its
logical control.” He did not define any architecture; just the opposite: he wanted to describe
the operation of the engineering implementation in abstract terms, enabling mathematics
to establish the science of computing. Moreover, “this is . . . the first substantial work . . . that
clearly separated logic design from implementation. . . . The computer defined in the ‘First Draft’
was never built, and its architecture and design seem now to be forgotten.” [11].

2.2. The Model of Computing

“Devising a machine that can process information faster than humans has been a driving force
in computing for decades” [4]. The model of computing did not change during the times, for
centuries:

- The input operand(s) need to be delivered to the processing element;
- The processing must be completely performed;
- The output operand(s) must be delivered to their destination.

The processing elements must be notified that all of their needed operands are available,
and the result can be delivered to its destination only if the operation is completed. Whether
it is biological, neuromorphic, quantum, digital, or analog, the processing cannot even
begin before its required input operands are delivered to the place of operation, and vice
versa; the output operand cannot be delivered until the computing process terminates.
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Phases of computing logically depend on each other, and in their technical implementations, they
need a proper alignment: synchronization. In this way, the data transfer and data processing phases
block each other. The effective computing time of the model comprises both the transfer time(s) and
the processing time. Even if, in the actual case, one of them can be neglected apart from the other.

In most cases, simple operations are chained (even if the same physical processing
unit performs them), and several processing units must cooperate. The chained processing
units receive their input only when the module they receive their input from finishes its
operation. That is, any technological implementation converts the logical dependence of their
operations to temporally consecutive phases: the signal of one’s output must reach the other’s input
before the chained computation can continue.

This limitation is valid for all implementations, from geared wheels to transporting
electrons/ions or changing quantum states. An electronic computer is no exception, al-
though its operation is too fast to perceive with our human sensors. When designing
computing accelerators, feedback, and recurrent circuits, this point deserves special at-
tention: the computation considers the corresponding logical dependence through its
timing relations.

According to the computing model (see Figures 1 and 2), we assume that: we have
the prepared operand(s) (data) in the input section of the computing unit (we assume
that the operands are directly available), the data processing needs time, delivering the
result to its output section needs time, and the operations and events are properly aligned.
Correspondingly, the signal “Begin computing” is provided when the needed operands
are available, and on terminating the operation, an “End computing” signal is provided.
Between these two signals, the computing unit is busy: a “Computing cycle” is in course.
Notice that the result is not necessarily available yet in its output section. Notice that,
here, we tacitly assume that the processing unit is always available when needed; a
consequence of the Single Processor Approach (SPA) [12]. Given that the timing of the
“Operand available” signal varies with the access mode (for main memory and even for
cache memory, it is longer than the “Computing cycle”), several computing chains (threads)
can share the computing unit. Introducing hardware (HW)-threads (or hyper-threads)
only increases the utilization of the computing process [13], but does not need another
computing model. The diagram lines are somewhat similar to an electronic timing diagram,
but instead, they represent a proper alignment of processes.

Operand 1 available
Operand 2 available

Begin computing
End computing

Computing cycle
Result available

Refractory
Signal delivery

Synchron signal

Figure 1. Timing relations of von Neumann’s simplified (incomplete) timing model: the data transfer
time neglected apart from the data processing time; synchronization can have small dispersion.
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Operand 1 available
Operand 2 available

Begin computing
End computing

Computing cycle
Result available

Refractory
Signal delivery
Signal transfer

Synchron signal

Figure 2. Timing relations of von Neumann’s complete timing model, with data transfer time
in chained operations; synchronization becomes an issue as the physical size of the computing
system grows.

2.3. The Computer and the Brain

von Neumann discussed the operation of neurons in parallel with the operation of
his intended technological implementation. In this context, it is clear that his model was
biology-inspired, but (as can be concluded from the next section) because of its timing
relations, it was not biology-mimicking. It is just a subtlety of the technological development
that today’s electronic computing devices work using timing relations more similar to our
brains than vacuum tubes (and the mathematical abstraction based on it). Of course, there
exists a resemblance in their operations, but handling temporal behavior also manifests
in crucial differences [14]; among others—that our brain works asynchronously and auto-
synchronized, while our computing systems work (mostly) in a synchronized way. These
differences also explain why biology can store information natively (without needing a
special memory unit), why biological systems can natively learn, and why technological
systems cannot [15]; furthermore, why using technological systems for understanding
learning and behavior in biological systems are mostly irrelevant [16].

2.4. Timing Relations

In his famous publication [2], von Neumann made a careful feasibility analysis and
warned: “6.3 At this point, the following observation is necessary. In the human nervous system,
the conduction times [transmission times] along the lines (axons) can be longer than the synaptic
delays [processing times]. Hence our above procedure of neglecting them aside from τ [the processing
time] would be unsound.”

von Neumann was aware of the facts and the technical development: “we will base our
considerations on a hypothetical element, which functions essentially like a vacuum tube. . . . We
reemphasize: This situation is only temporary, only a transient standpoint . . . After the conclusions
of the preliminary discussion, the elements will have to be reconsidered” [17].

2.5. The Synchronous Operating Mode

As von Neumann explicitly warned in his “First Draft” [2] (Section 5.4), the operations
must be synchronized appropriately. That is, computing faces further limitations inside
its technical implementation. The computation operation phases must be appropriately
synchronized; furthermore, the parallelization must be carried out with care. We can
add: as well as the acceleration of computations, including computing feedback and
recurrent relations.

The synchronization can be achieved by different means. The operand’s availability
must be signaled, anyhow: either on a per-operand basis (asynchronous operation) or
using some central control unit (synchronous operation).
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2.6. Dispersion of the Synchronization

In the same [2] (Section 5.4) von Neumann told “We propose to use the delays τ as
absolute units of time which can be relied upon to synchronize the functions of various parts of
the device. The advantages of such an arrangement are immediately plausible”. When choosing
such an absolute time unit, a “worst-case” timing must be selected, which inherently
introduces performance loss for the “less wrong” cases. Technical systems, following von
Neumann’s proposal for vacuum tube technology only, typically use a central clock, and it
is the designer’s responsibility to choose a reasonable (but arbitrary) cycle period for the
central clock. Figure 1 shows the timing relations assumed in the simplified (time-unaware)
model. Notice that the synchronous signal mostly replaces the logical signals needed for
the operation, which deserves special attention when designing computing accelerators,
especially for processing periodical signals.

Figure 2 shows the timing relations of the complete (time-aware) model from
Section 2.2. Notice the difference, where in chained computing operations, the total
computing times instead of the processing times must be as uniform as possible. If either
their processing times (complexity) or transfer times (connection technology, including
different package handling, the signal’s physical propagation speed, or the physical
distance the signal has to pass) differ, the total computing time changes. In Section 4.1, we
scrutinize the relations between the different timing contributions and their effects on
the system’s resulting performance.

3. Scrutinizing Dispersion

The central synchronization inherently introduces some performance loss: the processing
elements will be idle until the next clock pulse arrives. The effect, of course, grows as the
system’s physical size grows or the processing time decreases apart from transfer time. This
difference in the arrival times is why von Neumann emphasized: “The emphasis is on the
exclusion of a dispersion” [2]. His statement in the previous section is true for the well-defined
dispersionless synaptic delay τ he assumed, but not at all for today’s processors, and even
less for physically larger computing systems. The recent activity to consider asynchronous
operating modes [4,18–21] is motivated by admitting that the present synchronized operating
mode is disadvantageous in the non-dispersionless world.

von Neumann used the word “dispersion” only in a broad and mathematical sense,
but he did not analyze its dependence on the actual physical conditions. Given that “The
emphasis is on the exclusion of a dispersion” [2], we define a merit for the dispersion using
the technical data of the given implementation. We provide a “best-case” and “worst-case”
estimated value for the transfer time and define the dispersion as their geometric mean
divided by the processing time.

3.1. The Case of EDVAC

von Neumann mentioned that a “too fast” processor—with his words—vitiates his
paradigm. If we consider a 300 m2 sized computer room and the 3000 vacuum tubes
estimated, von Neumann considered a distance between the vacuum tubes, about 30 cm,
as a critical value. At this distance, the transfer time is more than three orders of magnitude
lower than the processing time (neighboring vacuum tubes are assumed). The worst case
is to transfer the signal to the other end of the computer room. With our definition, the
dispersion of EDVAC is (at or below) 1%.

3.2. The Case of Integrated Circuits

We derive dispersion for integrated circuits in the same way as discussed for vacuum
tubes. Figure 3 shows the dependence of different dispersion values on the year of fab-
rication of the processor. The technical data are calculated from publicly available data
(https://en.wikipedia.org/wiki/Transistor_count, accessed on 7 July 2021) and from [1].
The figures of the merits are rough and somewhat arbitrary approximations.

https://en.wikipedia.org/wiki/Transistor_count
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Figure 3. The history of some relative temporal characteristics of processors, in function of their
production year. Notice how cramming more transistors in a processor changed their temporal
characteristics disadvantageously.

We estimate the distance between the processing elements in two different ways. We
calculate the “average distance” of the transistors (the “best case”) as the square root of
the processor area divided by the number of transistors. We consider that, as a minimum
distance, the signals must travel between transistors. Notice that this transfer time also
shows a drastic increase with the number of transistors, but alone, it does not vitiate the
classic paradigm. This value, divided by the distance the signal passes in a clock period, is
depicted as “Proc transfer” in Figure 3. The maximum distance between the two farthest
processing elements on the chip, the processor area’s square root. Evidently, introducing
clock domains and multi-core processors shades the picture. However, we cannot provide
a more accurate estimation without proprietary technological data.

From the two distances, we derived the “Proc dispersion”. As its diagram line
shows, in today’s technology, the dispersion is near to unity. That is, we cannot apply the

“dispersionless” classic paradigm anymore. Reaching the plateau of the diagram lines coincides
with introducing the “explicitly parallel instruction set computer” [22]: that was the
maximum the classic paradigm enabled. Unfortunately, processors must use a (dozens
of centimeters long) bus for communication with each other and their memory (see “Bus
transfer”). At the point where the “Bus transfer” significantly increased compared to “Proc
dispersion”, cache memories appeared, and as the diagram line “Cache transfer” shows,
decreased, by one order of magnitude, the system’s effective dispersion.

As we have experienced, since the dispersion approached unity about two decades
ago, only a tiny fragment of the input power can be used for computation; the rest of it is
dissipated (produces only heat). The dispersion of synchronizing the computing operations vastly
increases the cycle time, decreases the utilization of all computing units, and enormously
increases the power consumption of computing [23,24]. It is one of the primary reasons
for the inefficiency [25] of the ASIC circuits, and leads to the symptom that moving data
requires more energy [26] than manipulating it. The increased dispersion enormously
decreases performance as the complexity and the relative transfer-to-processing time increases.
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3.3. The Case of Technology Blocks

Given that processing elements and storage elements are usually fabricated as sepa-
rated technological blocks (this technical solution is misinterpreted as “the von Neumann
architecture”: the structure and architecture are mismatched), the blocks are connected by
wires (aka bus), we also estimated a “bus transfer” time. The memory access time in this
way is extended by the bus transfer time. We assumed that cache memory is positioned
at an average distance of half processor size because of this effect. This time is shown as
“Cache transfer” time. The cache memories appeared at about the end of the 1980s, when it
became evident that the bus transfer drastically increased the memory transfer time (our
virtual cache timing can be calculated for all processors, however).

An interesting parallel is that both EDVAC and Intel 8008 had the same number of
processing elements. The relative derived processor and cache transfer times are in the
same order of magnitude. However, notice that the bus transfer time’s importance had
grown and started to dominate personal computers’ single-processor performances. A
decade later, the physical size of the bus necessitated introducing cache memories. The
physical size led to saturation in all relative transfer times. The real cause of the “end of
the Moore age” is that Moore’s observation is not valid for the bus’s physical size. The slight
decrease in the relative times in the past years can probably be attributed to the sensitivity
of our calculation method to the spread of multi-cores; this suggests repeating our analysis
method with proprietary technological data.

3.4. The Need for Communication

Moreover, at the time when von Neumann proposed his paradigm, there was only
one processor. Today, billions of processors are fabricated every year. They use ad-hoc
methods and ideas about cooperation and communication; furthermore, they use their payload
times for that activity. That activity increases the non-parallelizable portion of the tasks.
It is very desirable to extend the computing paradigm with considering the presence of
other processors.

3.5. Using New Physical Effect/Technology/Material in the Computing Chain

Given that the effective computing time also comprises the transfer time, the mean-
ingful analysis must consider the full-time budget of the computing operations.

3.5.1. Quantum Computing

von Neumann, of course, could not foresee the dawn of modern electronic technology.
His discussion, by intention, did not consider the already known quantum logic [27] with
its probabilistic outcomes. However, today, researching quantum computing has become
very intensive. Its principle enables solving only particular problems, rather than building
general-purpose computers. They run “toy algorithms” with accuracy 50–90%, and “the
main challenge in quantum computing remains to find a technology that will scale up to
thousands of qubits” [28]. Quantum computing has shown increasing advances in the past
few years. Still, since the number of qubits needed to perform its targeted operation is
estimated as 100,000, the technical difficulties make it elusive to put together a sufficiently
large number of qubits.

In its most relevant field “the current state of quantum computing and progress is
highly unlikely to be able to attack RSA 2048 within the next decade” [29]. The algorithmic
improvements restrict their usability inside that field; furthermore, they cannot form the
basis for general-purpose computers. It is possible to imitate von Neumann circuits [30]
using qubits, but they inherit their limitations as well. It is also possible to imitate classical
computing circuits using quantum Fourier transform [31]. Still, the synchronization issues
(both ‘Begin computing’ and ‘End Computing’, as well as ‘Operand available’ signals)
remain out of scope.

As discussed in [32,33], for the adequate description of computing, three-state systems
must be used. In the present two-state digital electronic logic systems, discharging the in-
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ternal capacitances can be considered a “refractory” period, i.e., a third state, which defines
time’s direction. However, it is not known if such a third state can be available among
the quantum states at all. Because of these reasons, in the foreseeable future, quantum
computers will not represent an alternative general-purpose architecture. “Building such
machines are decades away” [28].

3.5.2. Biomorphic Architectures

Given that, in his classic report, he outlined that his proposal was about the logical
structure of a computing implementation, it is hard to interpret what the “von Neumann
architecture” means if one speaks about non-von Neumann architecture in connection with
biomorphic computing (for a review, see [4]) or emerging non-Neumann architectures [5].
In regard to the need for manufacturing technology blocks, (such as Central Processing Unit
(CPU) and memory), it is preferable to use an architecture (the “von Neumann architec-
ture”). Still, it has as little to do with the computing model as it is the need for wiring those
blocks technologically with a single shared bus (the “von Neumann bottleneck”).

The third state is also missing here; so these architectures may inherit conventional sys-
tem inability to simulate the three-state system with two-state elements. In addition, those
systems also inherit some technology solutions, as discussed below. This is why judges
of the Gordon Bell Prize noticed that “surprisingly, [among the winners of the supercomputer
competition] there have been no brain-inspired massively parallel specialized computers” [34].

3.5.3. Artificial Neural Networks

From the computational point of view, an Artificial Neural Network (ANN) is an
adaptive distributed processor-based architecture widely used to utilize inputs and simu-
late human-processing, in terms of computation, response, and decision-making. Their
operating principle undergoes the general distributed processing principles. As discussed
in [35], they can do valuable work at a small number of cores (’toy level’) and can be useful
embedded components in a general-purpose processor, but have severe performance limi-
tations at large scale systems. They are sensitive to the synchronization issues discussed
here, primarily if they use feedback and recurrency [16].

3.5.4. Using Memristors for Processing

Recently proposed ideas involve replacing slow digital processing with quick analog
processing [36–38], to consider any future new physical effects and/or materials [3]. They
decrease the physical processing time, only. To make them useful for computing, both the
in-component transmission time, and especially the inter-component transmission time,
must be considerably decreased.

It sounds good that “The analog memristor array is effectively the neural network laid out in
the form of a crossbar, which can perform the entire operation in one clock cycle” [21]. In brackets,
however, fairly added that “(not counting the clock cycles that may be required to fetch and
store the input and output data)”. All operands of the memristor array must be transferred
to its input section (and previously, they must be computed or otherwise produced);
furthermore, the results must be transferred from their output sections to their destinations.
This requirement persists even if continuous-time data representation [38] is used, and
may require hundreds of additional clock cycles. One shall compare the memristor-related
operations’ effective computing time to conventional operations’ effective time, from the
beginning to the end of the computing operation, to make a fair comparison.

One can easily misidentify the temporal behavior of components and their material
in the time-unaware model. Five decades ago, even memristance was introduced [39] as a
fundamental electrical component, meaning that the memristor’s electrical resistance is not
constant, but depends on the history of current that had previously flowed through the
device. There are, however, some serious doubts as to whether a genuine memristor can
actually exist in physical reality [40]. In light of our analysis, some temporal behavior exists;
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the question is how much is related to material or biological features, if our time-aware
computing method is followed.

3.5.5. Half-Length Operands vs. Double-Length Ones

The mutual blocking of the transfer (and other, non-immediately payload operations)
and the payload operations similarly lead to disappointing efficiency improvement when
one attempts to use half-length operands instead of double-length ones. The expectation
behind the idea is that the shorter operand length may increase by a factor of four the
desperately low efficiency of the artificial intelligence class applications running on su-
percomputers. One expects a four-fold performance increase when using half-precision
rather than double-precision operands [41], and the power consumption data underpin
that expectation. However, the measured increase in computing performance was only
slightly more than three times higher: its temporal behavior limits the utility of using
shorter operands, too. The housekeeping (such as fetching, addressing, incrementing,
branching) remained the same, and because of the mutually blocking nature of the payload-
to-non-payload operations, the increase of the payload performance is significantly lower.
In the case of AI-type workload, the performance with half-precision and double precision
operands differ only marginally for vast systems. For details, see [35,42].

3.5.6. The Role of Transfer Time

The relative weight of the data transfer time has grown tremendously for many
reasons. Firstly, because of miniaturizing processors to sub-micron size, while keeping the
rest of the components (such as buses) above the centimeter scale. Secondly, the single-
processor performance has stalled [43], mainly because of reaching the limits, the laws of
nature enable [44] (but, as we present, also because of tremendously extending its inherent
idle waiting times). Thirdly, making truly parallel computers failed [7], and replaced with
parallelized sequential computing (aka distributed computing), disregarding that the operating
rules of the latter [42,45] sharply differ from those experienced with segregated processors.
Fourthly, the utilization mode (mainly multitasking) forced us to use an operating system
(OS), which imitates a “new processor” for a new task, at serious time expenses [46,47].
Finally, the idea of “real-time connected everything” introduced geographically large
distances with their corresponding several millisecond data transfer times, while “Big Data”
assumes that everything is in cache memory. Despite all of this, the idea of non-temporal
behavior was confirmed by accepting the concept of “weak scaling” [48], suggesting that
all housekeeping times, such as organizing the joint work of parallelized serial processors, sharing
resources, using exceptions, and OS services, delivering data between processing units and data
storage units, are negligible. See [35] why weak scaling is wrong. Essentially, this is why the
algorithmic scalability assumes a dependence on the number of operations (i.e., it assumes
that the transfer time can be neglected aside from processing time), rather than taking
into account how the effective computing time changes with the transfer time between the
computing units as the physical size of the system increases.

3.5.7. How the Presence of Transfer Time Was Covered

The experience showed that wiring (and its related transfer time) has an increasing
weight [44] in the timing budget even within the core. When reaching the technology limit
of about 200 nm around the year 2000 (https://en.wikipedia.org/wiki/Transistor_count),
accessed on 7 July 2021, wiring started to dominate [49] (compare this date to the year
when saturation was reached in Figure 3). Further miniaturization can enhance computing
performance only marginally, but increases the issues due to approaching the limiting
interaction speed, as discussed below.

“To compensate for the different number of gates on different paths, functionally not needed
(such as invert–reinvert) gates are inserted on the path with fewer gates. The design comprises several
clock domains, and some more extensive parts of the design run with different synchronization.
However, approximately 30% of the total consumption of a modern microprocessor is solely used

https://en.wikipedia.org/wiki/Transistor_count
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for the clock signal distribution” [23] (and about the same amount of power is needed for
cooling). Furthermore, the difference in the length of physical signal paths causes a
“skew” (dispersion) of the signals, which become significant challenges in designing high-
performance systems [50]). Even inside the die: the segregated processors have very low
efficiency [25]. Despite this, today, wafer (and even multi-wafer-sized [51]) systems are
also under design and in use.

In complete systems, such as supercomputers running High Performance Conjugate
Gradients (HPCG) workloads, only 0.3 % of the consumed energy goes for computing and
this proportion will get much worse if conventional systems attempt to mimic biology,
such as running an ANN workload. The poor understanding of basic terms of computing
resulted in that in supercomputing “the top 10 systems are unchanged from the previous
list” [52], and that “Core progress in Artificial Intelligence (AI) has stalled in some quite different
fields” [53]; from brain simulation [54] to ANNs [55]; in general, the AI progress [53] as a
whole. Considering temporal behavior is a must [56].

4. The Time–Space System

von Neumann—at his time, and in the age of vacuum tube technology—did not feel
the need to discuss what a procedure can justify, describing the computing operation in a
non-dispersionless case. However, he suggested reconsidering the validity of the neglections he
used in his paradigm for any new future technology. The real question [50] is, the discussion
of which is missing from the “First draft”, what procedure shall we follow if the transfer time is
not negligible?

4.1. Considering the Transfer Time

Although he explicitly mentioned that the propagation speed of electromagnetic waves
limits the operating speed of the electronic components—until recently—that effect was
not admitted in computing (except introducing clock domains and clock signal skew). In
contrast, in biology, the “spatiotemporal” behavior [57] was recognized very early. In both
technical and biology-related computing, the recent trend has been to describe computing
systems theoretically and model their operations electronically using the time-unaware
computing paradigm proposed by von Neumann, which is undoubtedly not valid for
today’s technologies. Furthermore, as mentioned above, our computing devices’ operating
regimes are closer to our brains than the abstract model. That is, a similar description for both the
computer and the brain would be adequate.

Fortunately, the spatiotemporal behavior suggests a “procedure” that can be fol-
lowed in the case when the transfer time can even be longer than the processing time; a
point that is missing from the “First Draft” [50]. Although biology—despite the name
“spatiotemporal”—describes the behavior of its systems using separated space and time
functions (and as a consequence, needs ad hoc suggestions and solutions for different
problems), it has one common attribute with technical computing: in both of them, the
information transfer speed is limited (although several million times lower in biology).
For its physical (and maybe philosophical) relevance, a more detailed explanation see
in [58]. Giving an explicit role to time also reveals why information storing and learning
have a quite different implementation and behavior in biological and technological neural
computing [14]. Furthermore, it explains that methods of learning and machine learning
are orthogonal [16], and so are intelligence and machine intelligence.

To introduce time into computing in explicit form, we can use a 4D coordinate system
(for a mathematical exposition see [59]), where, in addition to the three spatial coordinates,
we use the time as the fourth coordinate. Such geometry is known in physics as Minkowski
geometry. For the first look, it seems strange to describe such systems with Minkowski
coordinates, given that it became famous in connection with Einstein’s theory of special
relativity. However, in its original form, only the existence of a limiting speed is assumed,
and modern treatments of special relativity base it on the single postulate of Minkowski
spacetime [59].
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The 4D coordinate system enables us to describe the correct behavior of information
processing in science-based technological implementations and biology for any combina-
tion (ratio) of the transfer time and the processing time. The key idea is similar to that of the
Minkowski coordinates, but we use the scale factor differently. Changing the way of using
a scale factor (the interaction speed) does not change the signature of the geometry, so our
proposed method is equivalent to the technique introduced by Minkowski. The difference
is that we transform the spatial distances between computing components (which can
be Si gates, cores, network nodes, biological or artificial neurons) to temporal distance
(measured with the limiting speed along the signal path) instead of transforming the time
coordinate to space coordinate. On different abstraction levels, the “computing component”
is defined differently, so we formulate the terms with care.

We only assume that a limiting speed exists, and that given that it has a material carrier,
transferring information in the system needs time. In our approach, Minkowski provided a
mathematical method to describe information transfer phenomena in a world where the interaction
speed is limited. The only new assumptions we make are that the events also have processing
times, such as an atomic transition, executing a machine instruction, or issuing/receiving
a neural spike; furthermore, the interaction speed may be other than the speed of light.
Special relativity describes the space around us with four-dimensional space–time coordinates,
and calculates the fourth spatial coordinate from the time as the distance the light traverses in a
given time; simply because, around us, the distance was the easily accessible, measurable
quantity—one hundred years ago.

In computing, distances get defined during the fabrication of components and as-
sembling of the system. They may be different in different designs; however, they must
meet their timing constraints. In biological systems, nature defines neuronal locations and
distances, and in ‘wet’ neurobiology, signal timing rather than axon length is the right (mea-
surable) parameter. To introduce temporal logic (meaning: the logical value of an expression
depends on WHERE and WHEN it is evaluated) into computing, a different approach to
the 4D coordinates is required: the time, rather than the position, is the primary measurable
quantity. We need to use a special four-vector, where all coordinates are time values: the
first three are the corresponding local coordinates (divided by the speed of interaction),
having a time dimension. The fourth coordinate is time itself. Distances from an event’s
location are measured along their access path; they are not calculated from their corresponding
spatial coordinates.

In electronics, the limiting speed is connected to the speed of light (in biological
systems, the issue is more complicated, but the speed of interaction is finite, anyhow).
Given that we use the time as the primary variable, we can use the formalism to describe
neuronal operation (where the conduction velocity is modulated) with time rather than
position. However, in the latter case, the formalism is less straightforward (and enables us
to understand how information is stored and learning occurs in biology [14]). To illustrate
the effect of introducing transfer time into computing, we describe a thought computing
experiment resembling Einstein’s example of a moving observer in physics. However,
we have only one frame of reference, and our observers (the computing objects) are not
moving, only the information carrier they send to each other. With that thought computing
experiment, we demonstrate that the solid mathematical background connected to the
Minkowski coordinates (and all associated behavior of modern science, also describing
modern technological materials) is preserved in our slightly different coordinate represen-
tation. Our time–space system is equivalent to the commonly used space–time systems. In
the following sections, we use the transformed coordinates only to describe computing
systems’ temporal behavior.

The only change introduced to logic functions of computing is that they are not any more
evaluated implicitly at point (0,0,0,0) (In other words, the classic paradigm is valid only for
infinitely small and infinitely fast technical computers). Instead, they are evaluated at a point
(x,y,z,t) of the time–space. Below, we introduce the idea and its notations. The validity and
the mathematical features of the space–time systems have been scrutinized exclusively
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in the past 120 years. So, on the one hand, we use the solid background the computer
science is based upon: mathematics; on the other hand, we extend it with the similarly
solid background of time–space formalism.

4.2. Introducing the Time–Space System

With the reasoning above, we introduce [58] a four dimensional time–space system. The
resemblance with the Minkowski space is evident, and the name difference signals the
different utilization methods.

In our particular coordinate system (used in some figures below), formally (x,y,t)
coordinates are used (for better visibility, the third spatial coordinate is omitted). What
happens at time t in a computing component at position (x,y) occurs along a line parallel
with axis t, along a line perpendicular to plane at (x,y). The objects are annotated with their
spatial position coordinates ‘x’ and ‘y’, but they are time values: how much time the signal having
the limiting speed needs to reach that point. Several ‘snapshots’ taken at time t about the same
computing object are shown in the 3-D figures on top of each other. The computing objects
may alternatively be positioned at some arbitrary position that corresponds to the same
time distance from point (0,0,0) (a cylindrical coordinate system would be adequate but
would make both visualization and calculations much harder to follow).

The arrows in the same horizontal plane represent the same time (no transmission).
The interaction vectors are neither parallel with the time axis nor are in a spatial plane: both their
temporal and spatial coordinates change as the interaction propagates. In electronic systems, the
speed of interaction is constant, so the vectors are simple lines. Those spatial vectors are displayed
with their different projections in the corresponding figures, enabling their easy trigonometric
calculation. The horizontal blue arrows are just helper lines: the position (annotated by x,y,
but denoting the time the signal from (0,0,0) needs to reach this position) is projected to
time axis and the XY plane. The red arrow points from the coordinates of the beginning to
the coordinates of the end of an action. It is a Minkowski distance, and it has the dimension
of time. In some cases, it may approximate the distance of events in the Minkowski space;
it connects propagation and processing times. They are measured on different axes, and
the basic trigonometry is valid here. The result of the operation is available at a position
different from that of its operand. It needs additional time to reach an observer. The red
arrow is the vectorial sum of the two projections, also in that plane.

At the positions in the (x,y) plane, the events happen at the same time. The other
processing units will notice that event at a correspondingly later time in another XY plane.
The events happening in connection with a processing unit are aligned on an arrow parallel
with axis t. In this sense, we can interpret ‘classic computing’: our objects are compressed to
one XY plane: all events happen simultaneously at all objects. Even as the time distance between
our computing objects is zero because of the instantaneous transmission (independently from its
technical implementation), the mathematical point (0,0,0) will represent the figure. The processing
time is only an engineering imperfectness, according to the ‘classic computing science’.

4.3. Validating the Time–Space System

Figure 4 represents essentially a light cone in 2D space plus a time dimension. On the
one hand, it demonstrates that our procedure using 4D coordinates with a different scaling
factor is appropriate for discussing temporal behavior in our thought experiment. On the
other hand, it shows why time must be considered explicitly in all kinds of computing. The figure
shows that an event appears in our time–space system at point (0,0,0). The only (very plausi-
ble) difference to the classic relativistic thought experiment is that we assume that signaling
needs some time, too (not only the interaction but also its technical implementation needs
time). Our observers (fellow computing objects) are located on the ‘x’ axis (unlike in the
relativistic thought experiment, they are not moving); the vertical scale corresponds to
time. In the thought computing experiment, light is switched on in origin: the need to
perform a calculation appears. The observers switch their light on (start their calculation)
when they notice that the first light is switched on (the instruction/operand reaches their



Informatics 2021, 8, 71 13 of 26

position). The distance traveled by the light (the signal carrying the instruction) is given as
the value of time multiplied by the speed of light (signal speed). At any point in time on
the vertical axis, a circle describes light propagation (signal). In our (pseudo) 3-dimensional
system, the temporal behavior is described as a conical surface, known as the future light
cone in science.

−1
1

2

2

1

x

y

t

Figure 4. The computing operation in time–space approach. The processing operators can be gates,
processors, neurons, or networked computers. The “idle waiting time”, rooting in the finite interaction
speed and the physical distance of computing elements (see mixed-color vectors in figure), is one of
the major sources of computing systems’ inefficiency.

Both light sources (computing objects) have some ‘processing times’, that passes
between noticing the light (receiving an instruction/operand) and switching their light
(performing an instruction). An instruction is received at the bottom of the green arrow.
The light goes on at the head of the arrow (i.e., at the same location, but at a later time)
when the ‘processing time’ Tp passed. Following that, the light propagates in the two
spatial dimensions as a circle around the axis ‘t’. Observers at a larger distance notice the
light at a later time: a ‘transmission time’ Tt is needed. If the ‘processing time’ of our first
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event’s light source were zero, the light would propagate along the gray surface at the
point (0,0,0). However, because of the source’s finite processing time, the signal propagates
along the blueish cone surface at the head of the green arrow.

A circle marks the position of our other computing unit on the axis ‘x’. With zero
‘transmission time’, a second gray conical surface (at the head of the horizontal blue dotted
arrow) would describe the propagation of its signal. However, this second ‘processing time’
can only begin when our second processing unit receives the instruction at its position:
when the mixed-color vertical dashed arrow hits the blueish surface. At that point begins
the ‘processing time’ of our second processing unit; the yellowish conical surface, starting
at the second vertical green arrow, describes the second signal propagation. The horizontal
(blue dotted) arrow describes the second computing unit’s physical distance (as a time
coordinate) from the first one. The vertical (mixed color dashed) arrow represents the
time delay of the instruction. It comprises two components: Tt transmission time (mixed
color) to the observer unit and its Tp processing time (green). The light cone of the observer
(emitting the result of calculation) starts at t = 2 ∗ Tp + Tt. We use the red arrow to
call attention to the effect: the longer the red vector, the slower the system is. The length
of that vector might be of use as some summary of a computing system, especially for
statistical purposes.

Two more observers are located on the axis ‘x’, at the same position, to illustrate the
influence of transmission speed (and/or ratio R). For visibility, their timings are displayed
at points ‘1’ and ‘2’, respectively. In their case, the transmission speed differs by a factor of two
compared to that displayed at point ‘0’; in this way, three different R = Tt/Tp ratios are
used. Notice that at half transmission speed (the horizontal blue arrow is twice as long as
the one at the origin) the red vector is considerably longer, while at double transmission
speed, the decrease of the time is much less expressed. These insets illustrates the effect of
transmission speed on observations. This phenomenon is discussed in detail in [42].

4.4. Scrutinizing the Temporal Behavior

The temporal behavior means that values of logical functions depend on both time and
place of evaluating the corresponding logical function. Notice that some consequences stem
immediately from the nature of our model. Now two computing elements are sitting
at points (0,0,0) and (0,1,0). The second element calculates something that expects the
calculation of the first element as its input operand of the second calculation. Consider
that the result is inside the green arrow during its processing time and comes to the light
after that time. As visible from the discussion and the figure, the first event happens
at a well-determined position and time coordinates in our time–space system. Its spatial
coordinates agree with those of the spatial coordinates of the first element. Furthermore,
they are different from those of the second element. The result must be transported: it shall
be delivered to the position of the second processing unit, which needs change in both
position and time.

The event starts to propagate, and its final destination’s coordinates differ in time and
space from those of the origin. It would be described as positioned at the head of the red
vector (such vectors are neither vertical vectors, parallel with the t axis, nor lie within the
plane (x,y) ). During this transfer, the space coordinate (the projection of the time–space
distance to the (x,y) plane) changes to the coordinates of the head of the blue arrow: here
was the observer when the event happened. In the meantime, however, the time passed for
the observer, and now the head of the vertical arrow at its position describes its coordinate.
That vertical arrow comprises two contributions: the upper green arrow represents the
processing time of the observer, and we also have the length of the mixed-color arrow (the
idle waiting): it has the same length as the blue dotted arrow: our observer must wait for
such a long time to receive the signal. Given that all signals are in the plane (x,t), the actual
time distances can be calculated straightforwardly. The projection of the event to axis t is
Tp + Ti + Tp. However, the position of the event is different from that of the beginning.
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Hence, an observer receives the information later, depending on the position of the event
and the interaction speed.

When looking at the events from the direction of the x axis in the (x,t) plane, we
see that the total time corresponds to the sum of the two processing times (plus some
unexplained idle time) in ‘classic computing’. The waiting time of the second unit is only
an arrowhead (instant interaction). It denotes the corresponding logical dependence but
does not increase processing time. The second unit must wait for the result of the first
calculation because of their logical dependence. However, because of the instant delivery,
no additional waiting is required. Consequently, according to the “timeless (classical)
paradigm”, observers’ distance seems to be zero. The introduced extra dimension, time of
interaction, changes the picture drastically. The closer is the difference between the summed
length of the two green vectors to the red vector’s length, the more significant is their
interaction speed. They are equal, however, only if the interaction speed is infinitely large.

4.5. Computing Efficiency as a Consequence of Temporal Behavior

It has been discussed—virtually infinite times in computing—that computing per-
formance depends on many factors. However, the temporal dependence has never been
included. As the discussion above suggested, the time has a decisive role in computing;
the idle waiting times indeed degrade performance, so the rest of the discussion shall focus
on the role of time in shaping performance.

Given that the spatial distance is equivalent to time, they have a similar role. The
processor operation itself has some idle time, and, as discussed in the following sections,
the outdated technical principles and solutions add more (and slightly different) idle times.
Moore’s observation is valid only for the gate’s density inside chips, but not for their
internal wiring and even less for the external wiring (such as buses) connecting them, so
the idle (transmission) time increases. This relation has a self-exciting effect: the low efficiency
(that decreases as the required performance increases) means that a more significant portion of energy
consumption is used for heating (and because of that: needs more cooling), needing more cooling
that increases the physical distance of the components, causing worse performance, and so on.

On the one hand, the communication between processors is implemented in a way
that increases the non-payload, sequential-only portion of the task. On the other hand, the
physical time of transmission (that depends on both the speed of interconnection and the
physical distance between the corresponding computing objects) also significantly con-
tributes to degrading the efficiency. Moreover, both the algorithms, how the components
are used, and the architecture parameters all impact the system’s computing efficiency.
Systematic empirical investigations (for example [60]) found that for their specific ap-
plication type “the memory and the execution time required by the running are of O(n3) and
O(n5) order“, in other words, the empirical computing efficiency drops by two orders of mag-
nitude. Algorithm scaling is not possible without considering the temporal behavior of
computing components.

The modules’ benchmark data define the hard limits, and their way of cooperation defines the
soft limits we can experience. That is, the temporal behavior of their components is a vital feature of
computing systems, especially of the excessive ones, mainly if they target high computing perfor-
mance, especially if they are running very demanding workloads. The effect of workload is why,
especially for neural simulation, it was bitterly admitted that: “artificial intelligence, . . . it’s the
most disruptive workload from an I/O pattern perspective.” (https://www.nextplatform.com/
2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/, accessed on 7 July 2021).

5. Technical Solutions for the Vacuum-Tube Age

Some of the “classic” technical implementations—due to the incremental development—
survived their technological state-of-the-art, and (especially in the light of temporal analy-
sis) need a drastic revision. Moreover, there is research (both in science and technology,
with vast investments in the background) to find new materials/effects/technologies.
However, science severely limits its usability: the temporal analysis provides a helping

 https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/
 https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/
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hand and optimizes performance/cost. “Reinventing electronics” [20] is necessary not only
for computing devices but also for their interconnection and modes of utilization.

5.1. Method of Identifying Bottlenecks of Computing

The transmission time Tt is an ‘idle time’ from the point of view of computing: the
component is ready to run, takes power, but does no valuable work. Due to their finite
physical size and the finite interaction speed (both neglected in the classic computing
paradigm), the temporal operation of computing systems results inherently in an idle time of
the Processing Units, which can be a significant contributor to the non-payload portion of their
processing time. Given that the different effective processing times inevitably increase the dispersion,
they can be a crucial factor of the experienced inefficiency of general-purpose chips [25]. With other
significant contributors, originating from the technical implementation of their cooperation,
these “idle waiting” times sharply decrease the payload performance of computing systems.
It is worth discussing the inside-component and inter-component contributions separately.

In the spirit of the temporal behavior, we can set up two general classes of processing:
the payload processing Tp makes our operations directly related to our goal of computation;
all other processing is counted as non-payload processing. The merit we use is the time
spent with that processing. As will be shown, some portion of the non-payload processing
time is rooted in laws of nature: computing inherently includes idle times, some other part
(such as housekeeping) is not directly useful. However, any processing takes time and
consumes energy. The task of designing our computing systems is to reduce the effective
processing time, i.e., to develop solutions that minimize the proportion of the ‘idle’ activity; not
only at the component level, but also at the system level. Scrutinizing the temporal diagrams of
components, solutions, and principles is an excellent tool to find bottlenecks.

In the figures below, near to the (vertical) axis t are shown vertical arrows (where
payload processing happens) or lack of arrows (when non-payload processing occurs).
The large amount of non-payload processing (that increases with the system’s complexity)
explains the experienced low computing efficiency of computing systems using those
technical implementations. The proportions of times are chosen for better visibility and
call attention to its effect rather than reflect some realistic arrangements.

5.2. Gate-Level Processing

Although for its end-users, the processor is the “atomic unit” of processing, princi-
ples of computing are valid also at a “sub-atomic” level, at the level of gate operations.
(The reconfigurable computing, with its customized processors and non-processor-like
processing units, does not change the landscape significantly.) Describing the temporal
operation at gate level is an excellent example to demonstrate that the line-by-line compiling
(sequential programming, called also ‘von Neumann-style programming’ [61]), formally introduces
only logical dependence, but through its technical implementation it implicitly and inherently
introduces a temporal behavior, too. The same is valid for any technical implementation of a
Turing machine.

The one-bit adder is one of the simplest circuits used in computing. Its typical
implementation comprises five logic gates, three input signals, and two output signals.
Gates are logically connected internally: they provide input and output for each other.
The relevant fraction of the equivalent source code is shown in Listing 1, while Figure 5
shows the timing diagram of a one-bit adder, implemented using common logic gates.
This time, the computing objects are logical gates; one’s output level serves as the input
level for the other gate. The processing time is the time the gate needs to change its output
level. The transfer times take their origin when the signal needs to propagate to another
topological position along the wire. The coordinate system is the same as in Figure 4. The
three input signals are aligned on axis y; the five logic gates are aligned on axis x. Gates are
ready to operate, and signals are ready to be processed (at the head of the blue arrows).
The logic gates have the same operating time (the length of green vectors); their access
time distance includes the needed multiplexing. The signals must reach their destination
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gate (dotted green arrows), which (after its operating time passes) produces the output
signal, starting immediately towards the next gate. The vertical green arrows denote gate
processing (one can project the arrow to axis x to find out the gate’s ID), labeled with the
produced signal’s name.

a
b

ciXa
Xb

&a
&b

OR

a&b

a ↑ b

(a ↑ b&ci)
(a ↑ b ↑ ci)

sum

((a&b)‖(ci&(a ↑ b)))
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t

Figure 5. The temporal dependence diagram of a 1-bit adder. The diagram shows the logical
equivalent of the SystemC source code of Listing 1, the lack of vertical arrows signals “idle waiting”
time (undefined gate output), with “pointless” synchronization (red circles). The input signals a, b
and ci are aligned along axis y (the input section), the computation takes place in gates aligned along
axis x, and the output signals co and sum are aligned again along axis y (the output section).

Because of the non-synchronized operating mode, there are “pointless” arrows in the
figure; see the red circles. For example, signal a&b reaches the OR gate much earlier than
the signal to its other input. Depending on the operands of OR, it may or may not result in
the final sum. The gates always have an output signal, even if they did not receive their
expected input.
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Listing 1. The essential lines of source code of the one-bit adder implemented in SystemC.

SC_MODULE (BIT_ADDER)
{

sc_in < s c _ l o g i c > a , b , c in ;
sc_out < s c _ l o g i c > sum , cout ;

// S e n s i t i v i t y to changes in a , b , & c in .
SC_CTOR (BIT_ADDER)
{

SC_METHOD ( process ) ;
s e n s i t i v e << a << b << cin ;

}

//Performed f o r any change
void process ( )
{

//intermediate s i g n a l s
s c _ l o g i c aANDb, aXORb, cinANDaXORb ;

//Perform intermedia te c a l c u l a t i o n s
//when any of the inputs changes
aANDb = a . read ( ) & b . read ( ) ;
aXORb = a . read ( ) ^ b . read ( ) ;
cinANDaXORb = cin . read ( ) & aXORb ;

//Ca l c u l a te sum and carry out ;
// maybe not f i n a l ones
sum = aXORb ^ cin . read ( ) ;
cout = aANDb | cinANDaXORb ;

}
} ;

Notice that according to Listing 1, “process()” is sensitive to all the three input signals.
That is, every single time when any of the inputs changes, the “calculation” starts over and
re-calculates all signal levels. Although only five switchings are needed for the operation,
two more switchings happen, because of the undefined states: signals must pass a different
number of gates. This number is only 1.4 times more than the minimum number needed
for a single-bit adder. However, given that the adders provide result bits for each other,
for a 64-bit adder, it is 1.464, which is up to about 2 billion times more than the requested
minimum (the actual number, of course, depends on the actual arguments). Given that the
primary source of the energy consumption of gates is due to switching their states, the actual
power consumption of the 64-bit adder may be by orders of magnitude higher than that expected
based on the operation of the time-unaware computing paradigm. This effect may even more
strongly contribute to wasting power for heating rather than computing than the clock
distribution. Reducing the number of unneeded state transitions is vital for segregated
single processors and large computing systems.

5.3. Design Aspects

The present conclusions shall be used in electronic design in two stages. In the first
stage, one can analyze the existing designs, components, and principles, understand their
inherited weaknesses (see following sections), and make them more effective.

In the second stage, one needs to consider the old truth that “More is different” [62].
We shall revise to apply the design principles developed for “toy level” systems to the
present vast electronic systems. As the examples show, the technical implementation of
the serial bus (even if it is a high-speed one); replacing parallel processing with serialized
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sequential processing; proposing in-memory computing without establishing its compo-
nent and architecture base, etc., represent performance limits for computing. As discussed
above, increasing the bit width of an adder circuit increases its power consumption dis-
proportionally. In addition to developing more low-energy circuits, it should be realized
(as some technical implementations partly do) that the higher bit width needs different
design principles.

The design should be more system-centric rather than working along cut and paste
logic. The idea is somewhat similar to FPGAs Programmable I/O Cell (PIC): at individual
simple circuits’ level, their use seems to waste resources. However, at the system level, they
are beneficial, although relatively expensive, resources. Somewhat closer to the subject,
the present design uses clock domains to cover the experienced “skew” of clock signals,
which largely contributes to wasting energy for heating. From the complexity of circuits,
investing extra resources in auto-synchronization pays back in power consumption and
operating speed.

Biology uses three-state logic, which enables shallow energy consumption. Neurons
are “off” until their synapses receive some input, then for some time, they get “open”,
after some time “inactivated”, and after some time “off” again. As discussed in [14], the
three-state operation mode is desirable from several points of view. The present design
point of view, replacing the “inactivated” state with a “down” edge, enables reaching
higher operating frequency [63]. Still, large designs shed light on the limitations caused
by attempting to replace the energetically needed three-state operation [32,33] with a
simplified two-state operating mode.

5.4. The Serial Bus

Figure 6 discusses, in terms of “temporal logic”: why using high-speed buses for
connecting modern computer components leads to very severe performance loss, especially
when one attempts to imitate neuromorphic operation. The processors are positioned
at (−0.3,0) and (0.6,0). The bus is at position (0,0.5). The two processors make their
computation (green arrows at the place of processors), then they want to deliver their result
to its destination. We assume that they want to communicate simultaneously. First, they
must have access to the shared bus (red arrows). The core at (−0.3,0) is closer to the bus,
so its request is granted. As soon as the grant signal reaches the requesting core, the bus
operation is initiated, and the data starts to travel to the bus. As soon as it arrives at the
bus, the bus’s high speed forwards it, and at that point, the bus request of the other core is
granted, and finally, the computed result of the second core is bused.

At this point comes into the picture the role of workload on the system: we presumed
that the two cores want to use the single shared bus, at the same time, for communication.
Given that they must share it, the effective processing time is several times higher than the
physical processing time. Moreover, it increases linearly with the number of cores connected to the
bus if a single high-speed bus is used. In vast systems, especially when attempting to mimic
neuromorphic workload, the bus’s speed is getting marginal. Notice that the times shown in
the figure are not proportional: the (temporal) distance between cores is in the several
picoseconds range, while the bus (and the arbiter) are at a distance well above nanoseconds,
so the actual temporal behavior (and the idle time stemming from it) is much worse than the figure
suggests. This behavior is why “The idea of using the popular shared bus to implement the
communication medium is no longer acceptable, mainly due to its high contention.” [64]. For a
more detailed analysis see [58], and specifically for the case of artificial neural networks [35].
The figure suggests using another design principle instead of using the bus exclusively,
directly from the computing component’s position.
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Figure 6. The temporal operating diagram of a technological high-speed single bus: the bus delivers
data only in the fractions denoted by vertical green arrows.

When using a shared bus, increasing either the processing speed or the communication speed,
alone, does not affect linearly the total execution time anymore. Furthermore, it is not the bus speed
that limits performance. A relatively small increase in the transfer time can lead to a relatively
large change in the value of the experienced processing time. This change leads to an
incomprehensible slowdown of the system: its slowest component defines its efficiency. The
conventional method of communication may work fine, as long as there is no competition
for the bus, but leads to queuing of messages in the case of (more than one!) independent
sources of communication. The effect is topped by the bursty nature of communication
caused by the need for central synchronization, leads to a “communication collapse” [65],
that denies huge many-processor systems, especially neuromorphic ones [66].

Notice that the issue with sharing communication resources returns in slightly dif-
ferent form also in quantum computing [30]: the data transfer between the quantum
processor and the quantum memory needs resource sharing resemblant to the high-speed
sequential bus.

5.5. Distributed Processing

Given that the single-processor performance stalled [6] and the building parallel
computers failed [7] to reach the needed high computing performance, the computing
tasks must be cut into pieces and be distributed between independently working single
processors. Cutting and re-joining pieces, however, needs efforts both from programming
and technology. The technology, optimized for solving single-thread tasks, hits back when
several processors must cooperate, as cooperation and communication are not native
features of segregated processors. The mission was so hard that the famous Gordon Bell
Prize was initially awarded for achieving at least 200-fold performance gain by distributing
a task between several (even thousands) processors.
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Figure 7 depicts the temporal diagram of distributed parallel processing. One of
the processing units (in our case, the one at (0,0.5)) orchestrates the operation, including
receiving the start command and sending the result. This core makes some sequential
operations (such as initializing data structures, short green arrow), then it sends the start
command and operands to fellow cores at (−0.5,0) and (1,0), one after the other. Signal
propagation takes time (depending on their distance from the coordinator). After that time,
fellow cores can start their calculation (their part of the parallelized portion). Of course, the
orchestrator Processing Unit must start all fellow Processing Units (red arrows) to begin its
portion of distributed processing.

Proc1

Proc2

Res1

Res2

−0.5
0.5 1

1
2

2

4

x

y

t

Figure 7. The operation of the “parallelized sequential” processing, in the time–space coordinate
system. Parallel with axis t, the lack of vertical arrows signals “idle waiting” time, both for the
coordinator and the fellow processors.

As the fellow processing units finish their portion, they must transmit their data Resi
to the orchestrator, which receives those data in sequential mode, and finally makes some
closing sequential processing. This aspect is significant; if those units’ physical transmission
times differ (speed or distance is different), the task is not adequately split into equal
portions. Modern hardware has indeterministic behavior [67,68], or the units may be
connected through an interconnection with stochastic behavior [69]. The times shown in
the figure are not proportional and largely depend on the type of the system.

If the individual tasks are independent (they do not need communication), they can
use dedicated processors in a Graphic Processing Unit (GPU) [70] or in a computing grid
system, and can reach outstanding efficiency: they do not undergo the limitations described
here. Again, the inherently sequential-only portion [71] of the task increases with the number
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of cores and their idle waiting time (time delay of signals) increases with their physical size
(cable length). Notice also that the orchestrating Processing Unit must wait for the results
from all fellow cores, i.e., the slowest branch defines performance.

The dispersion in distributed systems is dramatically increased because of the physical
distance of the computing components. The increase depends on the weights of critically
large distances. As analyzed in [42], a different communication intensity changes the weight
of the operations having considerable temporal distance. For vast distributed systems,
see Figure 8, the efficiency sharply depends on the number of parallelized units and the
goodness of their parallelization. “This decay in performance is not a fault of the architecture but
is dictated by the limited parallelism.“ [45] Notice how the efficiency of distributed systems
also depends on the workflow they run. The estimated efficiency of brain simulation is
derived from data in [54], as discussed in [42].
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Figure 8. The two-parameter efficiency surface (in function of the parallelization efficiency measured
by benchmark HPL and the number of the PUs) as concluded from Amdahl’s Law (see [42]), in
the first order approximation. Some sample efficiency values for some selected supercomputers
are shown, measured with benchmarks High Performance Linpack (HPL) and High Performance
Conjugate Gradients (HPCG), respectively. Moreover, the estimated efficacy of brain simulation
using conventional computing is shown.

One can separate the measured efficiency values in Figure 8 into two groups. The
recent trend is that only a tiny fraction of their cores are used in the HPCG benchmarking,
while, of course, all their cores are used in the HPL benchmark. As discussed above, super-
computers’ efficiency depends on their workload. One can project the two benchmarked
efficiency values to different numbers of cores and different non-payload to payload ratios
on the axes. The other group comprises measurements where the experimenters used the
same number of cores in both benchmarks. For this group, for visibility, only the HPL
projections are displayed.



Informatics 2021, 8, 71 23 of 26

In this latter group, the efficiency sharply decreases with the number of cores in
the system. In the former group, only about 10% of the total cores is used, and the two
efficiency values differ by roughly an order of magnitude. The general experience showed
that the HPL-to-HPCG efficiency ratio is about 200–500 when using the same number of
cores. This efficiency decrease is why these entries reduced their number of cores in the
second benchmark. Their payload performance reached their “roofline” [35,72] levels at
that number of cores; using all cores would decrease the system’s performance by order
of magnitude only because of the higher number of cores. (Started with June 2021, this
“measured cores” information is missing from the published HPCG data, and even the
formerly published data are removed.)

It is noticeable that the systems having the best efficiency values do not use an accelerator:
in accelerated systems the payload performance gets higher but the efficiency is much lower
in the HPL benchmark case, but it is even more disadvantageous in the case of the HPCG
benchmark. As can be seen, they can reach their “roofline” efficiency with a lower number
of cores; using more cores would decrease [35] their performance. In other words, the
accelerators enable the systems to reach only much worse non-payload to payload ratio;
furthermore, vast accelerated systems cannot use all their cores in solving real-life tasks.

6. Conclusions

The technological development made the neglections used in the commonly used
computing paradigm outdated and forced us to consider the original model with correct
timing relations. The stealthy nature of the development led to many technological im-
plementations, including the synchronous operation and the high-speed bus, which is
not usable anymore. One obvious sign is the enormous dissipation of our computing
systems, which is a direct consequence of the computing systems’ dispersion being well
above the theoretically acceptable level. “Reinventing electronics” [20] is a must, and not
only for building neuromorphic computing devices. The computing model is perfect, but
the classic paradigm is used far outside of its validity range. For today’s technological
conditions, the needed “contract” [7] between mathematics and electronics should be based
on a paradigm that considers the transfer time. Our findings show that we can build a
generalization of the classic computing paradigm based on the idea of the finite interaction
speed between computing units. The classic computing paradigm remains usable for
simple, low-speed, and low communication systems. Still, for modern processors with a
vast number of transistors, supercomputers having an excessive size, biological systems
with low interaction speed, only the generalized paradigm provides a good description.
The generalization enables explaining issues with present-day computing, from high power
consumption to low computing performance, and suggests ideas for improving technology
to enhance computing.
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