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Abstract: Malaria poses a global health problem every day, as it affects millions of lives all over the
world. A traditional diagnosis requires the manual inspection of blood smears from the patient under
a microscope to check for the malaria parasite. This is often time consuming and subject to error.
Thus, the automated detection and classification of the malaria type and stage of progression can
provide a quicker and more accurate diagnosis for patients. In this research, we used two object
detection models, YOLOv5 and scaled YOLOv4, to classify the stage of progression and type of
malaria parasite. We also used two different datasets for the classification of stage and parasite type
while assessing the viability of the dataset for the task. The dataset used is comprised of microscopic
images of red blood cells that were either parasitized or uninfected. The infected cells were classified
based on two broad categories: the type of malarial parasite causing the infection and the stage of
progression of the disease. The dataset was manually annotated using the LabelImg tool. The images
were then augmented to enhance model training. Both models YOLOv5 and scaled YOLOv4 proved
effective in classifying the type of parasite. Scaled YOLOv4 was in the lead with an accuracy of 83%
followed by YOLOv5 with an accuracy of 78.5%. The proposed models may be useful for the medical
professionals in the accurate diagnosis of malaria and its stage prediction.

Keywords: object detection; malaria detection; automation; YOLOv5; scaled YOLOv4

1. Introduction

Malaria is caused due to the bite of a female Anopheles mosquito. It is a preventable
and curable parasitic disease. The WHO statistics, in 2019, revealed 229 million cases of
malaria infection, while the number of deaths caused by malaria was 409,000. Children
under the age of five years are most vulnerable to this disease and accounted for 67% of
the malaria deaths in 2019. The African region is the most severely affected, accounting
for 97% of the population infected by malaria [1]. Due to the widespread nature of the
illness combined with its mortality rate of about 1–3 million deaths per year, malaria levies
considerable costs to both governments as well as individuals. The costs incurred by the
government include the maintenance, supply, and staffing of health centers, purchase and
manufacturing of drugs and other products to combat the disease, and public intervention
measures for the control of malaria, such as the spraying of insecticides, disinfectants,
or distribution of insecticide-sprayed beds. Thus, implementing measures to ensure the
rapid diagnosis of this disease, as well as implementing preventive measures and efficient
treatment, is vital to combat this disease.

Malaria is typically detected by rapid diagnostic tests, which are a useful alternative
to microscopic examination, especially when tests must be conducted in regions without
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laboratory facilities [2]. The blood sample is placed on a sample pad on a test card along
with some reagents. After 15 min, the test cards show specific bands that indicate if the
patient is infected with malaria and the type of species. Another method for malaria
detection is the indirect fluorescent antibody test (serology test), which detects the malaria
antibody in the blood. It can be used to detect if the patient is infected with plasmodium
content. In this method, schizonts are used as the antigen. The patient’s serum is attached to
the homologous antibody (the organism), and if they are present, they attach to the antigen.
This, when examined under a fluorescent microscope, gives the parasite a fluorescent green
color [3]. However, these tests are time consuming and are not practical for day-to-day
testing. There are also spectroscopic methods of testing for malaria. Raman spectroscopy
uses chemical fingerprints to determine if the patient is infected with malaria [4]. Generally,
the disease is treated in its early stages before it becomes fatal to the infected individual.
Malaria can typically be treated with a range of medications depending on the type of
malaria parasite that has caused the infection, the severity of the illness, and the person’s
age, general immunity, and gender.

However, the screening and diagnosis of malaria is not an easy task. The identification
of malarial parasites in a blood sample using a microscope is considered a gold standard
for laboratory confirmation of malaria, but this is a tedious process. The rapid diagnostic
tests have their disadvantages as well, as they do not eradicate the need for microscopic
confirmation. They also have insufficient data to determine the ability of the test to detect
all species of malaria accurately. Microscopic analyses are time consuming and lead to
inaccuracy and inconsistency in some cases. The computerized approach uses digitized
blood slides that are able to improve the consistency in diagnosis [5]. In this study, we
propose a method for the automated classification of malarial parasites and the stage of
progression of the disease from Giemsa-stained blood smears obtained from the patients.
We use object detection algorithms, YOLOv5 and scaled YOLOv4, to obtain predictions of
the class of the parasitic infection. The two models are also compared to understand their
efficiency and accuracy in carrying out the task. Further, all the models are implemented
using the PyTorch framework.

1.1. Background

A malaria diagnosis can be made by observing a blood smear obtained from the
patient under a microscope slide. The specimen is stained with the Giemsa stain [6]. This is
a stain that allows for the differentiation of cells present in the hematopoietic tissue and
microorganisms present in it. Since malaria is caused by the Plasmodium parasite that
is transferred to the blood, the stain provides a characteristic color to it that aids with its
identification [7]. Figure 1 describes the Giemsa-stained blood smear images of a patient
infected with malaria.
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The Giemsa stain is the gold standard staining technique for both thick and thin
smears to identify blood parasites. The stained blood smear is viewed under a 100× oil
immersion objective. The oil-immersion technique is opted for, as it allows the highest
magnification to be retained.

1.1.1. Malarial Life Cycle

There are four major stages of the malarial life cycle. It begins with the female Anophe-
les mosquito injecting sporozoites into the human bloodstream. These sporozoites infect
liver cells to form schizonts. Schizonts then rupture to produce merozoites. Merozoites
develop into a preliminary stage of trophozoites called the ring stage, which further devel-
ops into Trophozoites on maturing. Trophozoites then mature into schizonts that further
rupture, and hence the cycle continues [9]. Gametocyte is a cell in plasmodium specializing
in the transition between the human and the mosquito host. Thus, the infection of malaria
is a dual host process. The morphological stages seen in erythrocytes include trophozoites
(growth stage), schizonts (dividing stage), and gametocytes (sexual forms) [10].

1.1.2. Malarial Parasitemia

Five species of malaria infect humans. They are Plasmodium Falciparum, Plasmodium
Malariae, Plasmodium Vivax, Plasmodium Ovale, and Plasmodium Knowlesi. Plasmodium
Falciparum malaria is life threatening. The stages preceding death may also cause liver
failure, kidney failure, convulsions, and coma. Plasmodium Vivax and Plasmodium Ovale
occasionally cause serious illness. Hypnozoites from the above two kinds of malaria
manifest in the liver and remain dormant in the host hepatocytes for 3 to 45 weeks before
maturing into hepatic schizonts, which, again, burst to form merozoites that infect red blood
cells. This is the primary cause of malarial relapse. Plasmodium Vivax is the commonly
observed parasite in recurring malaria infections. Figure 2 illustrates the different parasites
of malaria and the various stages of progression.
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1.2. Literature Review

There is a wide array of research conducted to automate and diagnose malaria from
the microscopic images of blood smears acquired systematically from the peripheral blood
smear using deep learning. The important research which focuses on the automation of
malaria detection is discussed here.

Sampathila et al. (2018) reported a computational approach to the diagnosis of malaria
through the classification of the malaria parasite from the microscopic image of a blood
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smear. It illustrates the usage of image segmentation and feature extraction to classify
malaria present in images of microscopic blood smears. The hue, saturation, and value color
space of each image were analyzed to remove unwanted noise or objects from the image.
The data were then passed through a neural network to undergo feature classification and
extraction based on colors, texture, and other desired features. The research achieved a
training accuracy of 97.2% [5]. Sifat et al. (2020) developed a fully automated system to
detect malaria parasites and their stages from the blood smear that illustrates the usage
of one of the first deep learning algorithms. VGG16 was utilized to identify infected RBC
parasites. It performed the automatic detection of malaria along with its stages. They
achieved a segmentation accuracy of 97.67%. The U-Net model achieved an accuracy of
92.05%. The CNN (convolutional neural network) model also obtained a detection accuracy
of 100% and a specificity of 95%. The average accuracy and specificity of the VGG16 model
were 95.55% and 94.75%, respectively [11].

Nayak et al. (2019) investigated different deep learning models and their efficiency in
detecting malaria. Their results showed the ResNet 50 model to be extremely promising
with the highest training accuracy of 97.55%. [12]. The author assessed the performance
of prominent deep learning models, such as ResNet50, AlexNet, FastAI V1, VGG-16 and
DenseNet121.

Roy et al. (2018) detected the malaria parasite in the Giesma blood sample using image
processing, where they developed a model that used the color pixel-based discrimination
method and a segmentation operation to identify malarial parasites in microscopic blood
smear images [13]. Their methodology involved using two different segmentations: wa-
tershed segmentation and HSV (hue, saturation, and value space) segmentation. Then
they followed the morphological operations to highlight the presence of the parasite in the
microscopic images of RBCs. Their methods resulted in a 90% accuracy in the detection of
the parasite causing the disease. Scherr et al. (2016) proposed a method to analyze malaria
using mobile phone imaging and cloud-based analysis for standardized malaria detection,
where a mobile phone was used to take images for conducting a rapid diagnostic test. It
also enabled the objective recording of the rapid diagnostic test, and this enabled web
access for immediate result reporting. These images were uploaded to a database that was
globally accessible and then analyzed. It achieved an 80.2% true negative rate (specificity).
This was a novel use of digital pathology to ensure top-notch healthcare for patients [14].

More recent approaches to malaria detection can be observed in the paper put forth
by authors Li et al. (2022) in the paper “Residual Attention learning network and SVM
for malaria parasite detection”. The authors explored a hybrid model called RAL-CNN-
SVM composed of multiple residual attention learning network modules, a global average
pooling block and a classifier trained by a support vector machine. The model was ob-
served to improve prediction accuracy significantly without involving additional complex
computations [15]. Thuan et al. (2021) discussed the evolution of the YOLO algorithm
and YOLOv5 as a state-of-the-art object detection algorithm [16]. The paper sheds light
on how the YOLO algorithm was born to reframe the object detection problem as a re-
gression problem, and it was carried out by a single neural network. Khandekar et al.
(2020) reported blast cell detection for acute lymphoblastic leukemia diagnosis using object
detection models YOLOv4 [17]. The authors incorporated the use of transfer learning to
understand the impact of different variables in the detection process. They also proposed
methods for the real-time detection of leukemia. Tack et al. (2021) developed an automated
assessment of knee alignment from full leg X-rays by training a YOLOv4 model to locate
regions of interest in full leg radiographs for the hip, knee, and ankle joints. Residual
neural networks were then trained to regress landmark coordinates for each of the regions
of interest to then determine the knee alignment [18].

Huang et al. (2021) used YOLOv5 for bone marrow cell recognition. They reported
bone marrow cell recognition based on a novel loss function. The loss function proved
to boost the model’s performance. The models can be used to train custom datasets [19].
Another recent approach was outlined in the paper “Image analysis and machine learning
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based malaria assessment system” by the authors Kyle Manning et al. [20]. The authors
used image segmentation techniques to segment the infected (or uninfected) red blood cells
to the region of interest before making a prediction based on a convolutional neural network.
The model achieved an overall testing accuracy of 91.0%. Reddy et al. (2021) focused on
identifying malaria cell images using the transfer learning method [21]. The research used
pre-trained Resnet50 model and a fully connected dense layer that utilizes backpropagation
for learning. The paper reported a training accuracy of 95.91%. Krishnadas et al. (2021)
reported an algorithm for the detection of malaria implemented by deep learning using
PyTorch. Pretrained models of DenseNet121 and Resnet50 are repurposed with transfer
learning to fit the task of malaria detection in segmented single-cell images [22]. The authors
evaluated the performance of the two deep learning models and reported an accuracy of
94.43% for the DenseNet121 model while the Resnet50 model achieved an accuracy of 91.72%.

2. Method

Several approaches to the computer-aided design (CAD) of malaria, based on auto-
matic microscopic detection and characterization of plasmodia in blood films, have been
proposed in the last years [23]. Object detection is a computer vision technology that can
allow us to identify and locate objects in an image or a video. In this research, we also deal
with image classification, which is the process of predicting the class of one object in an image.

2.1. Dataset Description

Two different datasets were considered for each kind of classification: one for parasite
classification and one for stage classification. The first dataset used for parasite classifi-
cation had 172 images and had four classes, each corresponding to the type of parasite.
They are as follows: Vivax, Falciparum, Ovale, Malariae. This dataset was collected by
using a smartphone camera attached to a microscope eyepiece. The slides were stained
with a field stain at ×1000 magnification, and all the images were of 750 × 750 pixels.
The dataset consisted of ground truth images indicating the axes where parasites were
present. The images were also split into four folders corresponding to the type of parasite
present. Additionally, each image name consisted of either an “R” (ring), “S” (schizont),
“T” (trophozoite) or “G” (gametocyte), indicating the stage of progression. These images
were originally in the .png format and were converted to the .jpeg format (the significance of
which will be explained in the proceeding chapters). The second dataset was taken from the
Broad Bioimage Benchmark Collection. It had 1330 images with information corresponding
to the stage of progression of the disease: ring, trophozoite, RBC, gametocyte, schizont,
leukocyte, and difficult. Out of these classes, leukocyte and RBC corresponded to the
uninfected classes, and the rest were infected. An important observation about the dataset
was the large number of uninfected red blood cells compared to any other class of object.
The significance of this is revisited in the proceeding chapters. The labels were originally
stored in the form of a json file that was converted to a csv file containing x- and y-axis
coordinates corresponding to the presence of the parasite. This csv file was later referenced
while creating bounding boxes for the data. Both datasets had to be manually annotated
before they could be used for the YOLO algorithms as a major input parameter for the
algorithm are the annotations (more specifically, the bounding boxes), that indicate the
location of the object of interest in the image. While both datasets did contain supporting
label information for the cells, this information had to be integrated into annotations and
saved in the yaml format expected by the YOLO object detection algorithms.

2.2. Yolo Architecture

An object detector is designed to create feature images from its input images and then
feed these features into a prediction system that draws bounding boxes around the objects
and predicts the classes of the objects in question. YOLO models precisely perform these
functions and implements them in an end-to-end differentiable network. A YOLO object
detection model has three major components that include the backbone, neck and head.
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The first component, the backbone, is a convolutional neural network-based architecture
that aggregates the features of the image at different granularities. The second component
is the neck, which has series of layers that mix and combine image features and pass them
forward for prediction. The third component, the head, collects the features from the neck
and then draws a box around the object along with its predicted class [16]. The architecture
of YOLOv5 is illustrated in Figure 3.
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YOLOv4, on the other hand, consists of a CSPDarknet53 backbone (a cross stage partial
connection convolutional neural network that serves as a backbone for object detection
tasks), an SPP (spatial pyramid pooling) and a PAN (path aggregation network) as the
neck, and YOLOv3 as the head of the model. It involves the implementation of DropBlock
regularization and class label smoothing. It also uses a bag of specials for the backbone,
comprising Mish activation, cross stage partial connections (CSP) and multi input weighted
residual connections (MiWRC). These plug-in modules are also used for the detector with
appropriate alterations [23].

2.3. Parasite Classification Data Structure

The dataset used was a public source dataset published first by authors Andrea Loddo
et al. [24]. The dataset contained 172 images of microscope slide images. The name of each
image indicated if the progression of the disease was one of the four stages: ring, tropho-
zoite, gametocyte and schizont. The dataset also had four folders, each corresponding to
the kind of parasitic infection. They are Falciparum, Ovale, Vivax, and Malariae. Figure 4
represents a sample image from the dataset.
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The images had to be manually annotated since their labels were not explicitly pro-
vided for each image. The LabelImg tool is used to manually annotate the images and
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create text files for each image containing the image’s annotations. This tool was developed
and launched with a primary focus on manual annotations. Once the manual annotation is
complete, the annotations are exported in the required format. The tool was cloned from a
GitHub repository [24] and then deployed on a laptop. It simply records the coordinates
of each object as drawn by the user and saves it along with the label of the object in a text
file of the desired format. The input to the LabelImg must be a jpeg file and hence all the
images were converted to that format to suit the requirements. The graphical user interface
of LabelImg is illustrated in Figure 5 [25].

Informatics 2022, 9, x FOR PEER REVIEW 7 of 19 
 

 

The images had to be manually annotated since their labels were not explicitly pro-

vided for each image. The LabelImg tool is used to manually annotate the images and 

create text files for each image containing the image’s annotations. This tool was devel-

oped and launched with a primary focus on manual annotations. Once the manual anno-

tation is complete, the annotations are exported in the required format. The tool was 

cloned from a GitHub repository [24] and then deployed on a laptop. It simply records 

the coordinates of each object as drawn by the user and saves it along with the label of the 

object in a text file of the desired format. The input to the LabelImg must be a jpeg file and 

hence all the images were converted to that format to suit the requirements. The graphical 

user interface of LabelImg is illustrated in Figure 5 [25]. 

 

Figure 5. LabelImg User Interface. 

Looking at the objects of interest used in dataset 1 for parasite classification, it was 

observed that the class Falciparum were greater in number. This caused a significant bias 

while performing training. Information about the class and the number of corresponding 

samples is given in Table 1. 

Table 1. Distribution of the number of samples between classes for parasite classification dataset. 

Class No. of Samples 

Falciparum 203 

Ovale 40 

Malariae 43 

Vivax 67 

Generally, the performance of deep learning or object detection algorithm may de-

pend on the data size and quality. The more data available for training, the better the 

algorithm learns and in turn performs. Currently, the dataset is rather small with a lot of 

underrepresented classes. Since the model is expected to perform better with more data, 

we perform augmentation to increase its size. 

2.4. Data Augmentation 

Augmentation is performed mainly for two reasons: To increase variability in the 

dataset and to increase the size of the dataset. Both are done with the interest of helping 

the algorithm learn better and faster. Augmentation is a crucial and vital step in any deep 

learning algorithm [26]. Once the annotations were created, they were converted to the 

yaml format expected by the YOLO models. The images were then preprocessed and aug-

mented with the following specifics: 

Preprocessing: 

Figure 5. LabelImg User Interface.

Looking at the objects of interest used in dataset 1 for parasite classification, it was
observed that the class Falciparum were greater in number. This caused a significant bias
while performing training. Information about the class and the number of corresponding
samples is given in Table 1.

Table 1. Distribution of the number of samples between classes for parasite classification dataset.

Class No. of Samples

Falciparum 203
Ovale 40

Malariae 43
Vivax 67

Generally, the performance of deep learning or object detection algorithm may depend
on the data size and quality. The more data available for training, the better the algorithm
learns and in turn performs. Currently, the dataset is rather small with a lot of underrepre-
sented classes. Since the model is expected to perform better with more data, we perform
augmentation to increase its size.

2.4. Data Augmentation

Augmentation is performed mainly for two reasons: To increase variability in the
dataset and to increase the size of the dataset. Both are done with the interest of helping
the algorithm learn better and faster. Augmentation is a crucial and vital step in any deep
learning algorithm [26]. Once the annotations were created, they were converted to the
yaml format expected by the YOLO models. The images were then preprocessed and
augmented with the following specifics:

Preprocessing:

• Auto orientation.
• Resizing the images to fit 1080 × 1080. This increases the resolution of the images,

thus increasing the model learning capacity.
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Augmentations:

• Rotation between +15◦ and −15◦.
• Brightness between +5% and −5%.
• Exposure between −7% and +7%.
• Blur up to 0.5 px.
• Noise up to 2% of pixels.

An example of the image after annotation and pre-processing performed by Roboflow
is given below in Figure 6.
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Figure 6. Example of an image after annotation and pre-processing.

Roboflow also provides pre-processing and augmentation services. For pre-processing,
the data were auto-oriented and then fit to the resolution 1080 × 1080. A consequence of
this is the addition of black edges to match the required image resolution. Each image
underwent one or more of the augmentations mentioned above, thus increasing the size of
the dataset while introducing variability into the dataset. The final dataset before training
had a total of 422 images. An example of the augmented data generated after augmentation
was performed by Roboflow is depicted in Figure 7.
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2.5. Stage Classification Data Structure

The dataset consisted of 1330 images of multicellular microscope slides [27] out of
which only 830 were used. The rest were discarded and were not considered part of the
dataset. This was mostly because the images were of poor quality, the objects of interest
were indistinguishable during annotation, or the image suffered from staining aberrations.
The dataset consisted of two classes of uninfected cells: leukocytes and red blood cells.
There are four classes of infected cells: gametocytes, schizont, trophozoites, and rings. It is
worth noting that cells of the type schizont, leukocytes, and gametocytes are less in number.
The dataset also contained “json” files that had information regarding the labels. The file
was then converted to a “.csv” format. This file was used as a reference to annotate the
images manually using the LabelImg annotation tool. A sample image from the dataset is
given in Figure 8.
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Figure 8. Sample image from the dataset.

The dataset had seven classes. They are as follows: ring, trophozoite, schizont, gameto-
cyte, leukocyte, difficult and RBC. Out of these, RBC and leukocytes represented uninfected
cells, whereas the other cells represented the presence of the malarial parasite in the cell.
The approximate numbers of labels are provided in Table 2.

Table 2. Distribution of the number of labels between classes for stage classification dataset.

Class No. of Labels

RBC 95,000
Trophozoite 650

Ring 478
Schizont 273

Gametocyte 218
Leukocyte 146
Difficult 301

It is evident that there is a massive overrepresentation of red blood cells and a severe
underrepresentation of leukocytes. This can potentially cause a significant learning bias
during training and render the model unable to learn the labels of far greater importance,
i.e., those with the malarial parasite.

The easiest way to deal with this is to remove the RBC labels from the list of annotations.
This reduces the number of classes to 6 instead of 7 and allows the model to focus training
on the labels with greater significance.
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2.6. Data Augmentation

Once the annotations were created, the dataset was converted to the required scaled
YOLOv4 and YOLOv5 formats as mentioned for the previous dataset. The images were
then preprocessed and augmented with the following specifics:

Preprocessing:

• Auto orientation.
• Resizing the images to fit 1080 × 1080. This increases the resolution of the images,

thus increasing the model learning capacity.

Augmentations:

• Rotation between +15◦ and −15◦.
• Brightness between +5% and −5%.
• Exposure between −7% and +7%.
• Blur up to 0.5 px.
• Noise up to 2% of pixels.

An example of augmented data is given in Figure 9.
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After augmentation, 1989 images were generated. These 1989 images were utilized for
model training.

2.7. Model Implementation

The model was implemented in the PyTorch framework. The advantage of a Pytorch
implementation lies in the allowance of a half floating-point precision in training and
inference from 32 bits to 16 bits. This significantly speeds up the inference time of YOLOv5
models. Configuration files used to support and run the model are present in the “.yaml”
file. These are condensed files that contain specifications of different layers in the network
and then multiply them by the number of layers in a particular block. In this study, we
focus on the YOLOv5 and scaled YOLOv4 models. We trained both the object detection
models on the two sets of data to compare the results between the two versions of the object
detection algorithm. The different aspects of the two models are indicated in Table 3.

Table 3. Comparison between scaled YOLOv4 and YOLOv5.

Scaled YOLOv4 YOLOv5

Layers 334 283
Parameters 5.25155 × 107 7,263,185
Gradients 5.25155 × 107 7,263,185
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All YOLO models have pre-trained weights based on the COCO dataset [28]. The
COCO dataset is a dataset with 80 different classes of everyday objects. When the “.yaml”
configuration files for this dataset are replaced with our dataset for the malaria project, the
weights are accordingly shifted to suit the number of classes present in the dataset.

3. Results
3.1. Preliminary Results

The metric used to evaluate object detection models is the mean average precision
(mAP) metric. This is calculated over the recall values and ranges between 0 and 1. The
mAP is calculated as the weighted mean of precisions at each threshold. Here, the weight
represents the difference in recall from the previous threshold. The models were trained
for 200 and 400 epochs each to gauge their rudimentary performance before making any
adjustments to the either the pre-processing or the training pipeline. The significance of
these preliminary results lies not just in model validation, but also in understanding the
model limitations and the quality of the dataset used. The preliminary results for stage
classification are given in Table 4. The preliminary results for parasite classification are
given in Table 5.

Table 4. Preliminary results for stage classification.

YOLOv5 Scaled YOLOv4

Precision 0.393 0.314
Recall 0.499 0.726
mAP 0.417 49.8
Loss 0.017 0.038

Epochs 200 200
Image resolution 720 × 720 720 × 720

Batch size 16 16

Table 5. Preliminary results for parasite classification.

YOLOv5 Scaled YOLOv4

Precision 0.701 0.52
Recall 0.787 0.938
mAP 0.70 0.83
Loss 0.20 0.021
Time 57 min 25 s 3 h 26 min

Epochs 400 400
Image resolution 720 × 720 720 × 720

Batch size 16 16

As shown in Table 4, the following changes were sequentially applied, and the mod-
els were trained to see if they improved the results; changes in augmentations were
performed [26]. The resolution of the images was varied to test its effect on learning. The
learning rate was also adjusted to observe any effect on learning. Upon further inspection of
the dataset, it was concluded that it may not be well suited for object detection algorithms.
Irregularities in the standard shape of RBCs also caused doubt in the correctness of the
label information provided. Thus, this dataset was removed from consideration.

Since the same dataset that was considered for parasite classification contained anno-
tation information for stage classification, it was repurposed to fit this task as well. The
images were annotated according to the stages present with the following four classes: ring,
trophozoite, schizont and gametocyte. The augmentations and pre-processing performed
were the same as those performed for the parasite classification model, and then the model
was run in the YOLOv5 and scaled YOLOv4 algorithms.
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3.2. Final Results for Stage Classification

The models were first trained for 300 epochs and achieved mean average precisions
of 41% and 44.5% for YOLOv5 and scaled YOLOv4, respectively. These results were
unsatisfactory. As mentioned before, changes to the pre-processing and augmentations
were made to see if the mAP could be improved. The dataset was even edited to have only
images similar in color and shape of the cells, but this also did not affect the improvement
of the mAP. Therefore, a fresh start was taken, and an alternate dataset was employed to
train the algorithms. The results for the same are presented in Table 6

Table 6. Comparison of the results for stage classification with the revised dataset.

YOLOv5 Scaled YOLOv4

Precision 0.447 0.369
Recall 0.556 0.859
mAP 0.399 0.684
Loss 0.103 0.039
Time 1 h 22 min 2 h 2 min

Epochs 200 200
Image resolution 416 416

Batch size 16 16

From Table 6, it is observed that the scaled YOLOv4 algorithm was able to predict
the classes of the objects with a 68.4% accuracy. The YOLOv5 algorithm, on the other
side did not perform as well. The results from the scaled YOLOv4 were considered as
the relevant results for this part of the research. Figure 10 provides graphical information
about the metrics: mean average precision, precision and recall for the superior model.
Scaled YOLOv4 is trained with the second dataset for stage classification, and is shown in
Figure 11 as an example output as to how the classification model identifies each stage of
the cells.
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Figure 11. Stage classification prediction testing by scaled YOLOv4.

As observable in the figure, the model can recognize cells and classify them according
to stage. This is highlighted by the bounding boxes drawn over the infected red blood cells
with the stage of progression.

3.3. Parasite Classification

The dataset corresponding to parasite classification was used to train the YOLOv5 and
scaled YOLOv4 algorithms. Preliminary results were observed. After that, an alteration
to the dataset augmentation was created. Saturation values were varied as an additional
augmentation step, and the results are presented in Table 7.

Table 7. Comparison of the results for parasite classification.

YOLOv5 Scaled YOLOv4

Precision 0.741 0.52
Recall 0.797 0.938
mAP 0.78 0.83
Loss 0.020 0.021
Time 52 min 5 s 3 h 26 min

Epochs 400 400
Image resolution 720 × 720 720 × 720

Batch size 16 16

The YOLOv5 model achieved a mAP of 78%, while the scaled YOLOv4 model achieved
a mAP of 83%. It was then concluded that the scaled YOLOv4 model was superior to the
YOLOv5 model for this application. Figure 12 provides graphical information about the
metrics: mean average precision, precision, and recall for the superior model, and scaled
YOLOv4 with the second dataset for stage classification.
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Figure 12. Metrics for scaled YOLOv4 for parasite classification.

Object detection models are not optimized for the detection of microorganisms from
microscopic images, as they are minuscule objects. The proposed model can be improvised
by adding more detection layers or by enhancing the accuracy of detection. Research
published by Abdurahman et al. (2021) worked on this to detect malarial parasites using
YOLOv3 and YOLOv4 algorithms (after additional optimization). Their results prove that
optimized object detection can be used to detect malarial parasites with an accuracy of
96.32% [29]. Their study focused on binary classification and proposed a pipeline that
focused on predicting the presence of only one parasite: plasmodium falciparum rather
than a multi class approach as considered in this paper. The algorithms proposed in
this paper are also expected to perform exponentially better after model optimization
and increasing the feature scale to accurately identify the malarial parasite. Additionally,
training the model for a larger number of epochs after optimizing its hyperparameters can
also boost its learning capabilities.

The parasite classification conducted by the best model, scaled YOLOv4 after testing,
is shown in Figure 13.
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Once again, we can see that the model is able to classify the cells according to the
parasite causing the infection highlighted by the bounding box with the name of the parasite.
Therefore, it may be concluded that with the right data, the proper stage classification of
malaria can be achieved. Parasite classification results also proved satisfactory but can be
improved upon further research and development. In a comparison between YOLOv5 and
scaled YOLOv4, scaled YOLOv4 proved to be superior in classifying the kind of parasite
as well as the stage of progression of the disease. One reason why the YOLOv4 model
outperformed the YOLOv5 model may be due to the fact that YOLOv5 suffers from higher
latency periods for larger batch sizes. This results in a lower accuracy than that of YOLOv5.
This is also taking into consideration that the dataset was of relatively poor resolution and
the objects themselves, being red blood cells, were very small. The architecture of YOLOv4
may also have suited the objects of interests, as it has a strong detector module. The future
scope of this project would begin with understanding the shortcomings of the dataset
and the models used for parasite and stage detection. Further, they can be optimized to
function more efficiently and predict the classes of the cells more accurately. This can aid
with quicker and correct diagnoses.

Another vital area that could help improve not only the results of this study, but
the entire field of digital pathology is increasing the amount of public data available for
research and development. Artificial intelligence algorithms rely heavily on the quality and
the quantity of the data used, and hence a vast database can be highly beneficial to both
employees of the healthcare industry as well as the patients. The accuracy and performance
of the models can also be improved by further pre-processing the images before beginning
the training process. Various cell segmentation processes could be applied to assist better
model learning [30,31].

It Is worth mentioning that cell segmentation process should not be mistaken for
segmentation algorithms, such as U-Net that have been extensively researched upon [11].
Hasan et al. reported an accuracy of 92.06% on employing U-Net for cell segmentation.
These results, while impressive, should not be compared to results from models employing
CNNs or object detection algorithms. This is because the objective functions of the two
models are distinct, and while segmentation algorithms focus on classifying each pixel of
the image into respective classes, object detection algorithms focus on classifying patches
of the image rather than pixels into their respective classes. A direct consequence is the
requirement of different metrics and loss functions to measure the quality of the two models,
thus rendering the results incomparable at face value.

Other image processing methods, such as feature scaling, may also be employed to
facilitate better feature extraction and can significantly increase the learning ability of the
models used [5,32,33]. Furthermore, models can be developed to ascertain the concentration
of the parasite in the blood smear to better understand the rapid progression of the disease
and make an appropriate diagnosis [33].

Optimized models that meet the required specifications can then be integrated with a
microscope. The microscope is used to take the picture of the blood smear and then run it
through the model to identify the parasite causing the infection and the stage of progression
of the disease. This can be a great tool, as early treatment is a crucial factor for the recovery
of the patient due to the rapidly progressive nature of the disease [34]. The authors would
like to note that in the case of real-world deployment, the use of tools such as LabelImg for
annotation and the Roboflow platform for augmentation is purely restricted to the data
pre-processing pipeline, and they will not be required during deployment. They are only
used to process the dataset used to train the optimized model. Once the model undergoes
training, validation and testing and achieves satisfactory results, only the classification
model will be deployed to detect and classify the malaria parasites.

The algorithms can also be used in telemedicine, where blood smears of patients in
rural or places far from a laboratory are collected [35]. The images may then be sent to the
concerned individuals and run through the algorithm. Thus, it can be used to treat patients
in rural areas with poor resources and help change and better a pathologist’s approach to
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diagnosis [36,37]. Applications can also be built, such as portable impedance analyzers for
rapid screening tests [38].

The approaches discussed in this project as well as the previous work conducted in the
area cover a variety of model architectures, each with different objective functions. They
are all, however, focused on a common goal: computer-aided malaria detection, or CAM
detection. These CAM detection approaches offer a new perspective or second opinion to
doctors [39,40]. Ranging from clustering algorithms to segmentation algorithms, there is
great potential in computer-aided detection, and this can be the next revolutionary step in
the healthcare industry.

4. Conclusions

Presently, many researchers focus on deep learning for the detection of malaria. How-
ever, these techniques vary from traditional segmentation or morphological operations
to those that employ cutting edge deep learning or machine learning techniques. In this
article, we explored the use of object detection techniques for the classification of the type of
malarial parasite and the stage of progression of the disease. For the stage task, the dataset
employed contained 1330 images of microscopic blood smears from patients infected with
malaria. The label information for the images was extracted from the corresponding csv
file, and the images were manually annotated using the LabelImg tool and then uploaded
to the ‘Roboflow’ website for pre-processing and augmentation. The YOLOv5 and scaled
YOLOv4 object detection models were then trained on this dataset. When this returned
unsatisfactory results, changes were made to the pre-processing pipeline and the training
pipeline to observe any significant changes in the training accuracy. This also returned un-
satisfactory results, and thus the dataset was discarded. It is suspected that these data were
unsuitable due to the large imbalances between the classes. Many were underrepresented,
while few were vastly overrepresented. Thus, a second dataset was annotated (again
using LabelImg). The data were uploaded to Roboflow and underwent pre-processing and
augmentation, and then were used to train the models. By comparing the results obtained,
we can conclude that the scaled YOLOv4 model is superior to the YOLOv5 model, scoring
a mean average precision of 68.4% and is considered relevant to the research.

For the parasite classification part of the problem, the revised dataset used for stage
classification was again annotated according to the classes fitting this task, using LabelImg,
and then uploaded to Roboflow for pre-processing and augmentation. Then the data were
used to train the YOLOv5 and scaled YOLOv4 models. On comparing the two models
in the given reported study, it was observed that the scaled YOLOv4 model was better
than the YOLOv5 model, achieving mean average precisions of 83% and 78%, respectively.
The results of these models, while significant, can be improved in terms of mAP, precision,
and recall.

The future scope of this research lies in improving the object detection models by
adding depth to the model architecture and/or incorporating feature scaling to better
suit tiny object detection as required for small objects, such as infected red blood cells in
microscopic slides. The authors strongly believe that with the implementations of these
improvements, the model can be deployed in real-world situations to assist clinicians in
delivering accurate, fast and reliable treatment not only at hospitals, but also to rural areas
of the world that lack access to healthcare resources. This can also help advance the field
of telemedicine and promote affordable, accessible, and safe healthcare for everyone who
needs it.
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