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Abstract: The overall goal of this study is to define an intelligent system for predicting citrus fruit
yield before the harvest period. This system uses a machine learning algorithm trained on historical
field data combined with spectral information extracted from satellite images. To this end, we used
5 years of historical data for a Moroccan orchard composed of 50 parcels. These data are related to
climate, amount of water used for irrigation, fertilization products by dose, phytosanitary treatment
dose, parcel size, and root-stock type on each parcel. Additionally, two very popular indices, the
normalized difference vegetation index and normalized difference water index were extracted from
Sentinel 2 and Landsat satellite images to improve prediction scores. We managed to build a total
dataset composed of 250 rows, representing the 50 parcels over a period of 5 years labeled with the
yield of each parcel. Several machine learning algorithms were tested with the necessary parameter
optimization, while the orthonormal automatic pursuit algorithm gave good prediction scores of
0.2489 (MAE: Mean Absolute Error) and 0.0843 (MSE: Mean Squared Error). Finally, the approach
followed in this study shows excellent potential for fruit yield prediction. In fact, the test was
performed on a citrus orchard, but the same approach can be used on other tree crops to achieve the
same goal.

Keywords: yield prediction; machine learning; precision farming; agricultural data; spectral data

1. Introduction

Precision farming is a new field that has used new technologies such as artificial
intelligence to improve agriculture around the world [1–4]. One of the main challenges in
this field is yield prediction [5], this information is vital for farmers to have an idea of the
orchard’s production and for decision makers to compare demand and supply to make the
decisions necessary to balance the market [6].

Yield estimation can be conducted for annual or tree crops. In the case of tree crops,
the existing works can be split into two parts. The first concerns the estimation of the
yield per tree. The idea is to prepare the training dataset by collecting data from each
tree individually, which means that the model should take data from only one tree as an
input and should be able to estimate the yield of this tree. In this case, the existing articles
focus more on counting trees and detecting fruits inside. The idea is to use specific object
detection algorithms such as Faster RCNN, Yolo, and retinanet (deep learning algorithms),
which take as input an RGB (red, green, and blue) image of a tree in order to count its
fruit [7–10]. The problem with this kind of method is that we have to wait for the fruit to
ripen to obtain results, which is not good for farmers and producers who want to predict
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the yield a few months before harvest. Moreover, this method needs a lot of effort and
becomes difficult when we have large orchards with hundreds of parcels with thousands
of trees in each parcel.

The second part concerns the estimation of the yield per parcel, which means that
the model must predict the total yield of a given parcel. To achieve this goal, a large
historical dataset with a maximum of factors correlated with yield is needed. In this regard,
some data can be collected directly in the field by parcel and during each year, such as the
quantity of water used for irrigation, the fertilization and phytosanitary treatment products
used, the root-stock type, and climatic data [11–15]. Other spectral information such as
vegetation and canopy size can be obtained from satellite or unmanned aerial vehicles
(UAV) images [16–18]. Xujun Ye et al. [19] tried to predict the yield of Satsuma tangerine
based on aerial hyperspectral images. The data used are composed of some vegetation
indices combined with the canopy size of trees. The indices extracted are: Normalized
Difference Vegetation Index (NDVI), Simple Ratio (SR), and Photochemical Reflectance
Index (PRI). Three images were used to obtain these indices over a period of three years
(one image per year). For the prediction model, a multiple linear regression (MLR) and
partial least squares (PLS) regression were used, and the result obtained is 0.5355 RRMSE
(Predictive Root Mean Squared Error).

Although spectral data and canopy size for predicting tree yield are important, we
found that most of the existing works use paid satellite data (high resolution images), which
are very expensive for farmers, and even with these images, the results are not convincing.
So, as we said at the beginning, the integration of field data is necessary to improve the
prediction results. De Ollas et al. [20] conducted a review study on climate change in the
Mediterranean basin and its impact on crop productivity in terms of yield and quality.
The study included four crops: sweet orange, clementine citrus, olive, and grapevine.
They found that the Mediterranean region is experiencing a significant climate change in
terms of decreased rainfall and a sharp increase in temperature, which significantly affects
tree production.

Vogel et al. [21] used the random forest algorithm to study the impact of climate
change on yield. A global dataset containing several agricultural crops was used, and they
found that certain climatic variables (temperature, precipitation, frost, hot days, and cold
nights) could impact the yield every year with a rate varying between 20 and 49%.

Good irrigation and the amount of water used in each parcel are also vital for yield.
Nagaz et al. [22] conducted a deficit irrigation experiment on two orange orchards, and the
result shows that the yield is reduced by 24% and 45%, respectively, in the two orchards,
which means that the amount of water used for irrigation directly influences the tree yield.

Fertilization and soil analysis are also two vital variables that have attracted many
researchers in recent years. These factors are considered the subject of many studies [23–26],
for example, the study of Zhiguo Li et al. [25] demonstrates that balanced fertilization in
nitrogen (N), phosphorus (P), and potassium (K) is necessary to have a perfect yield, which
means that the dose of each product used in the fertilization will help the prediction model
give a high score in the yield prediction.

Despite all these works that demonstrated the importance of field data for yield
prediction, collecting these data remains a challenge for precision agriculture. This requires
specific sensors with a technical team working in the field to control the quality of the data
collected, which is why historical and open source databases are very limited [27,28].

The main objective of this article is to present our approach for citrus yield prediction
per parcel based on the combination of field data and spectral information obtained from
satellite images.

In the remaining part, we provide an explanation of how we collected our dataset
depending on some important factors, the data preparation methods that we used, the
machine learning algorithms that we developed with the necessary optimizations, and
finally, the validation method with the scores obtained.
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2. Materials and Methods
2.1. Study Region

The study orchard is located in Morocco, in the center of the Marrakech-Safi region.
The climate of this region is semi-arid and experiences large temporal fluctuations in
rainfall and temperature. The average annual rainfall is 199.6 mm, and the average annual
temperature is 18.5 °C [29]. This orchard is planted with citrus, with a variety of mandarin
Afourer, and the parcels size varies between 1 and 6 hectares.

2.2. Data
2.2.1. Data Acquisition

Data collection is a vital part of any data science project [30]. In our case, our dataset
includes two parts: field data, which is collected directly from the orchard, and spectral
data obtained from satellite images. For the first data category, we have 5 years of historical
information about irrigation, fertilization, and phytosanitary treatment. Moreover, a climate
station is installed inside the orchard to collect daily data on temperature, precipitation,
humidity, wind speed, and solar radiation. In detail, our field dataset is made up of
250 rows, which represent 50 parcels multiplied by 5 years; these data present the quantity
of water irrigated in each parcel for each agricultural year, the dose of phytosanitary
treatment used, and the different products with the doses that were used to fertilize the
parcels, as well as the climatic data. This data is labeled according to the yield of each
parcel during each crop year.

The different products used for fertilization and phytosanitary treatment during the
5 years of data are presented in the Table 1.

Table 1. Fertilization and phytosanitary treatment products.

Fertilization products

- N (nitrogen) - P(phosphorus) - K (Potassium) -
NITRIC ACID - PHOSPHORIC ACID -
SULFURIC ACID -ACTICAL - ACTIRAIL -
ENABLE - AMMONITRATE - Aggis TE Fe6 -
BERELEX (Lozenge) - BIOCURE -BORONIA
POWDER - BUDMAX - CALICO Ca-Mg -
CALCIUM - DEVSOL - FENGIB - FERTILOG
20 - FITOSOL - LIME BLOSSOM - FOSFITAL -
MANURE - GOËMAR BM 86 E - GREENSTIM
- KRISTAFEED 46N - KYLATE -Kelpak -
LIQUID MAP -MAXIM - MICROQUEL -
MOLYBDATE - NACAR - CALCIUM
NITRATE - POTASH NITRATE - NITROPLUS -
NITROPLUS 9+B GA - SEQUESTREN -
SIAPTON - SOLQUEL - COPPER SULFATE -
IRON SULFATE - MANGANESE SULPHATE -
SOLUBLE SULPHATE OF POTASH - ZINC
SULPHATE - SUPRALEX -Samfer - Stop it -
TENSOTEC - UREA - UREA 46% -VIGOMAX

Phytosanitary treatment products

Product against Mites - Product against
Whitefly - Product against Ceratitis - Product
against Snails - Product against California
rental - Product against aphids - growth
regulator - Product against Thrips

The second part of the data (spectral information) is composed of two elements: the
Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water
Stress Index (NDWI). These indices are obtained from the sentinel-2 [31] and Landsat [32]
satellite imagery, which are highly used in the agriculture field [33–35].

The NDVI and NDWI formulas are presented in Equations (1) and (2), respectively, of
which near-infrared radiation (NIR) is a reflection in the near-infrared spectrum, the Red



Informatics 2022, 9, 80 4 of 17

is a reflection in the red range of the spectrum, and the Short Wave Infrared (SWIR) is the
part of the range with wavelengths in the range of 0.841–0.876 nm.

NDVI = (NIR− Red)/(NIR + Red) (1)

NDWI = (NIR− SWIR)/(NIR + SWIR) (2)

2.2.2. Data Processing

To exploit the maximum field data in order to create a robust prediction model, each
part of the data (factor) is prepared according to a specific method as follows:

Phytosanitary treatment (C1): It consists of the quantities and doses used over the
agricultural year. These products are used against certain specific diseases which attack
citrus fruits such as mites, ceratitis, snails, etc. (Table 1). Sometimes, these products are
used in certain parcels among all, or in a specific year only. We therefore assigned a 0 to
the empty cells to complete our dataset. After having prepared this part of the data, we
obtained 52 columns, which contain the quantities and doses used in each parcel during
the 5 years.

Fertilization (C2): It consists of the quantities and doses of fertilization products used
during each year in each parcel (Table 1). For the preparation method, the same operation
used for phytosanitary treatment was followed for the fertilization part; so, we obtained
100 columns including the different quantities and doses of fertilization products used in
each parcel during each year.

Climate (C3): It is composed of 5 variables (temperature, precipitation, humidity, wind
speed, and solar radiation), which were averaged for each month to obtain 60 columns.

Irrigation (C4): We have just 1 column, which contains the total amount of water used
in each parcel during each year.

Parcels information (C5): It consists of some fixed information about each parcel such
as the size, the root-stock type, and agricultural year.

Yield (target): It presents the number of crates from each parcel after the harvest
period. We normalized it and, of course, this normalization keeps the same distribution
and percentage difference.

Finally, we combined all these columns to obtain a large dataset with a size of 216,250
(columns, rows) labeled by the yield of each parcel during the 5 years. Figure 1 summarizes
these factors and how we prepared them to construct the field data.

Figure 1. Field data preparation.

For spectral information, we used Google Earth Engine (cloud) to extract NDVI and
NDWI indices over a specific period (8 months) from March to October each year. This
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decision was made based on the life cycle of the Afourer mandarin in Morocco, which
begins in March after the harvest period. Then, we took the average of these indices during
the 8 months to obtain the NDVI and NDWI matrices per each parcel during each year.
Finally, we extracted the mean, max, min, and mode values from those bands to build our
spectral data (Figure 2).

Figure 2. Spectral data acquisition.

2.2.3. Data Exploration

Before starting the prediction phase using machine learning algorithms, data explo-
ration is a vital phase that helps to have a clear view of the variables and make the necessary
feature engineering. In our case, the target distribution (Figure 3), which starts from 2015
to 2019 with 50 parcels, follows a normal distribution, which is very beneficial for machine
learning models.

Figure 3. Distribution of the target.

In addition, Figure 4 presents the variation of the yield in some parcels during the
5 years of our data. The bar graphs in the figure show four samples taken at random
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from different locations in the orchard. Additionally, in each graph, the bars presents
the normalized yield by year. As you see, we have a considerable variation of yield in
each parcel; this means that there are other factors related to field and climate influencing
this yield.

Figure 4. Distribution of yield over the five years of study (a sample of four parcels).

In order to summarize the dataset, we tried to create a correlation matrix which
represents all the information hidden behind the features, the relationship between them,
as well as their relationship with the target [36]. Figure 5 presents a correlation matrix
(heatmap) of the input variables. As we have many variables, and it is impossible to
visualize them in the figure, we tried to reduce the number of variables; for example, we
averaged the values for each climatic variable over each year. Moreover, for fertilization
and phytosanitary treatment products, we only visualized their quantity.

As you see in the heatmap, a lot of variables are positively correlated (red color), and
others are negatively correlated (blue color), which means that there is a good dependency
between them. For example, we see that the climatic data are correlated with phytosanitary
treatment features. The interpretation of these results is that there are diseases which
attack the trees at a specific time of the year (for example Ceratitis capitata, which attacks
citrus fruits in winter [37]). Moreover, the correlation between fertilization and climate is
strongly demonstrated for the reason that the quantities of fertilization used during the
year sometimes depend on high temperature or on water stress, which is correlated with
the temperature [38]. This dependency is very important for the prediction algorithms to
perform good training, and it can help us to make some feature engineering.

Regarding the correlation between the input variables and the target (Figure 6), we
found that some variables such as quantity AMMONITRATE, parcels size, nitrogen, phos-
phorus, potassium, etc., have a good correlation of up to 0.5 and 0.6, which is a positive
indicator before starting the prediction phase. We also found that the variables related to the
phytosanitary treatment have a good correlation with the target, because the quantities and
the products used depend on the disease that attacked the parcel, which surely influence
the yield of this parcel. Generally, there is an agricultural expert who checks the parcels
each time, and when they observe a disease or an alteration requiring a specific product,
they initiate the treatment operation in the infected area.
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Figure 5. Correlation matrix between input variables.
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Figure 6. Correlation between input variables and target.
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2.3. Our Approach

Machine learning algorithms have demonstrated good performance in recent years,
which are used in most fields [39,40]. In our case, after collecting and preparing our dataset,
we decided to use machine learning algorithms to predict the yield of citrus fruits, in
particular the Afourer variety.

Technically, we have a regression problem, as we are trying to predict yield quantities.
Basically, we have a supervised learning problem with regression prediction. In this case,
there are linear algorithms such as linear regression, lasso regression, ridge regression,
etc. These algorithms analyze the relationships between the dependent variable Y and
the set of independent variables X. This relationship is expressed in the form of an equa-
tion that predicts the values of the target variable in the form of a linear combination of
parameters [41].

Other algorithms are widely used, such as decision tree regression, which determines
the best feature in the training dataset after dividing it into subsets containing the possible
values of the best feature. After this, the algorithm recursively generates new decision trees
using the created data subsets. When there is no more prediction based on this data, the
algorithm stops and returns the final model [42].

In addition, an ensembling learning technique has been used in recent years. This
technique builds multiple models with different parameters to increase the prediction score.
There are two main ensembling methods, boosting (sequential) and bagging (parallel) [43].
In the boosting ensemble learning method, the models train sequentially, and they try to
learn until they make mistakes. Regarding the bagging method, the models are trained
simultaneously, each one of them trains on a subsample of data, and the final model builds
based on voting among the final predictions [44].

Through ensembling learning techniques, several powerful algorithms have been built,
such as CatBoost Regressor, Light Gradient Boosting Machine, Random Forest Regressor,
Extreme Gradient Boosting, etc. [45,46]. Finally, a cross-validation technique with a tuning
parameter algorithm is needed to obtain the hyper-parameters and avoid overfitting [47].

In our case, we split our dataset into two parts, the training part and the test part. In
fact, this split is not random, we tried to imagine that our model could be used to predict
the yield of an agricultural year before the harvest period, so we took the data for the years
2015, 2016, 2017, and 2018 to train the models, and we made the test using the year 2019
(we used the past to predict the future). Figure 7 summarizes the steps of our approach.

To avoid overfitting and to select the best algorithm, we used the K-fold technique with
4 folds in the training and validation phase. During each round, a grid-search technique
is applied to find the best parameters for each algorithm. After the four iterations, we
obtained an average score, which can be considered as the trust validation score. Then, we
tested the models on another part of the data (test), which is completely new, in order to
have the prediction score.

Figure 8 illustrates the cross-validation steps.



Informatics 2022, 9, 80 9 of 17

Figure 7. The overall approach: the approach includes data engineering and machine learning steps.
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Figure 8. Cross-validation and parameters tuning.

3. Results and Discussion

To choose the best algorithm that fits our dataset, we tested several types of algorithms:
linear, decision trees, and some ensembling algorithms.

The metrics used for scoring are MAE and MSE, whose formulas are presented succes-
sively in Equations (3) and (4), where yi is the prediction, xi is the real value, and n is the
total number of data points.

MAE =
∑n

i=1 |xi − yi|)
n

(3)

MSE =
∑n

i=1(xi − yi)
2

n
(4)

3.1. Cross-Validation and Model Selection

In the first time, we used all the data (field and spectral data) to perform cross-
validation. A k-fold technique with k = 4 is used, and the scores obtained are presented in
Table 2.

The results in Table 2 show a good performance in the prediction, with an average
score approaching 0.11 (MSE), this indicates that the data really helped the models to train
well. Moreover, the Orthogonal Matching Pursuit algorithm [48] gave a good score of 0.10
(MSE CV).

After performing cross-validation and parameter tuning using the grid-search algo-
rithm, we tried to train the new models on the all the training datasets and test them on
other new data that they have not really seen before (data corresponding to the year 2019).
Moreover, to see the importance of field data and the added value of spectral data, we tested
the models on two parts of data, the first part corresponds to the indicators collected in
the field (field data), and the second part contains the total data which contain the spectral
indicators (field data + spectral information). The test results are presented in Table 3.
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Table 2. Cross-validation scores including MAE and MSE metrics.

Model MAE MSE

ridge Ridge Regression 0.3225 0.1676
catboost CatBoost Regressor 0.2631 0.1174
gbr Gradient Boosting Regressor 0.2608 0.1107
rf Random Forest Regressor 0.2677 0.1175
en Elastic Net 0.2963 0.1435
ada AdaBoost Regressor 0.2618 0.1158
br Bayesian Ridge 0.2932 0.1392
lasso Lasso Regression 0.2918 0.1380
et Extra Trees Regressor 0.2767 0.1303
lightgbm Light Gradient Boosting Machine 0.2829 0.1311
xgboost Extreme Gradient Boosting 0.3192 0.1586
huber Huber Regressor 0.3506 0.2661
omp Orthogonal Matching Pursuit 0.2585 0.1092
llar Lasso Least Angle Regression 0.3025 0.1667
dt Decision Tree Regressor 0.3468 0.2114
knn K Neighbors Regressor 0.2705 0.1204
lr Linear Regression 0.6027 0.6159

Table 3. Yield prediction results including MAE and MSE metrics.

Model
Field Dat Field + Spectral Data

MAE MSE MAE MSE

ridge Ridge Regression 0.2680 0.1140 0.2525 0.1034
catboost CatBoost Regressor 0.2477 0.1057 0.2477 0.1057

gbr
Gradient
Boosting
Regressor

0.2649 0.1281 0.2475 0.1024

rf Random For-
est Regressor 0.2689 0.1287 0.2497 0.1046

en Elastic Net 0.2760 0.1287 0.2536 0.1049
ada AdaBoost Regressor 0.2682 0.1333 0.2484 0.1085
br Bayesian Ridge 0.2758 0.1299 0.2585 0.1093
lasso Lasso Regression 0.2759 0.1265 0.2592 0.1099

et Extra Trees Re-
gressor 0.2594 0.1187 0.2452 0.1092

lightgbm
Light Gradi-
ent Boosting
Machine

0.2593 0.1153 0.2610 0.1138

xgboost Extreme Gra-
dient Boosting 0.2926 0.1703 0.2645 0.1165

huber Huber Regressor 0.3816 0.2752 0.2825 0.1305

omp
Orthogonal
Matching
Pursuit

0.2489 0.0843 0.2315 0.0748

llar
Lasso Least
Angle Regres-
sion

0.3036 0.1666 0.2982 0.1665

dt Decision Tree
Regressor 0.3187 0.1828 0.3270 0.1678

knn K Neighbors
Regressor 0.3166 0.1789 0.3327 0.2036

lr Linear Regression 0.5705 0.5696 0.4129 0.3327

As you see in Table 3, the scores obtained by the chosen algorithms are very close to
each other, but the OMP algorithm gave good prediction scores, which are (0.2489 (MAE)
and 0.0843 (MSE)). After adding the NDVI and NDWI indices, the scores improved to
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(0.2315 (MAE) and 0.0748 (MSE)), which demonstrates the importance of satellite imagery
in predicting yield.

The hyper-parameters of the OMP algorithm that we obtained after the grid search, and
which were used to train the final model, are: OrthogonalMatchingPursuit( f it_intercept =
True, n_nonzero_coe f s = 44, normalize = True, precompute = ‘auto′, tol = None) where the
fit_intercept concerning the include an intercept of the model (Boolean), n_nonzero_coefsint,
is the desired number of non-zero entries in the solution. The normalized parameter, which
concerns the normalization of input data or not, precomputes to speed up the calculations,
and tol is the maximum norm of the residual.

To find out more about the OMP algorithm, the Algorithm 1 contains its learning steps
and how it chooses the right variables.

Algorithm 1 Orthogonal Matching Pursuit
Input: y, φ
Initialization: r0 = y, A0 = , l = 0;
Repeat

l = l + 1;
match step:
hl = ΦTrl−1;
identify step:
Al = AL−1 ∪

{
argmaxj

∣∣∣hl(j)
∣∣∣};

update step:
xlargminz:supp(z)⊆Al ‖ y− φz ‖2;

rl = y− φxl ;
Until stop criterion satisfied;
output : xk;

The key idea of the OMP algorithm is that it tries to reconstruct the support set A
of x iteratively, starting with A = . Then, in each iteration l, the inner products between
the columns of φ and the residuals rl−1 are calculated, then the absolute value of this
inner product is added to A. Here, the residual rl−1 from the former iteration represents
the component of the measurement vector y that cannot be spanned by the columns of φ
indexed by A. In this way, the columns φ, which are the most relative to y, are iteratively
chosen [48].

In general, the OMP algorithm classifies the variables by their correlation with the
target before integrating them one by one for learning [49]. This technique is very effective
when the dataset contains many variables with a minimum of rows (small dataset).

3.2. Discussion of Results

In order to better understand and discuss the results obtained, we calculated the per-
centage error between the measured value and the actual value for each parcel (Formula (5)).

percentage error =
|Measured value - True value|

True value
(5)

Table 4 contains the prediction scores obtained by our model on 50 test parcels. The
first column shows the scores obtained using parcel information and climate data only, the
second column presents the scores after adding phytosanitary treatment data, the third
column shows the scores after adding fertilization data, and finally, the last column contains
the scores that are obtained using all field data combined with spectral information (NDVI
and NDWI).
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Table 4. Yield prediction percentage error per parcel.

Field Data Field + Spectral Data

Parcel_ID Parcel Information
and Climate

Parcel Information,
Climate and

Phytosanitary Treatment

Parcel Information,
Climate, Phytosanitary

Treatment
and Fertilization

Parcel Information,
Climate, Phytosanitary

Treatment,
Fertilization and

Spectral Data

0 0.3789 0.2853 0.2738 0.2731
1 0.2309 0.1667 0.1564 0.0929
2 0.1739 0.1697 0.1477 0.1424
3 0.3097 0.2397 0.0847 0.0421
4 0.5509 0.4903 0.23 0.1822
5 0.3201 0.2697 0.2642 0.2174
6 0.7632 0.2803 0.2366 0.1774
7 1.259 0.531 0.3538 0.2465
8 0.8286 0.373 0.2851 0.2353
9 0.8662 0.6127 0.3483 0.2976
10 0.6043 0.3091 0.1267 0.0846
11 0.2791 0.2722 0.2698 0.2319
12 0.2436 0.2252 0.1425 0.0966
13 0.2943 0.0306 0.1619 0.1175
14 0.4927 0.2881 0.2317 0.1954
15 0.3473 0.2983 0.1745 0.1516
16 0.2703 0.2523 0.2121 0.1651
17 0.2965 0.2625 0.2411 0.193
18 0.3455 0.2803 0.0972 0.0937
19 0.3957 0.3198 0.2981 0.2291
20 0.4877 0.396 0.1861 0.1401
21 0.7791 0.1548 0.0373 0.0191
22 0.3168 0.2838 0.2621 0.2523
23 0.3878 0.3806 0.3188 0.2805
24 0.3236 0.2997 0.2981 0.2918
25 0.1691 0.1638 0.1683 0.1625
26 0.3772 0.2373 0.0867 0.0489
27 0.3646 0.3188 0.0777 0.0701
28 0.2822 0.2492 0.1351 0.1484
29 0.44 0.3521 0.328 0.2698
30 0.0893 0.0589 0.0229 0.0155
31 0.2962 0.2553 0.0319 0.0037
32 0.3527 0.3522 0.2478 0.2183
33 0.2291 0.2221 0.2203 0.196
34 1.5524 0.3627 0.2954 0.0204
35 0.2556 0.2474 0.2297 0.2169
36 0.7512 0.5378 0.2104 0.1904
37 0.3316 0.3034 0.1884 0.1302
38 0.2945 0.294 0.2239 0.1986
39 0.4909 0.3789 0.1237 0.1027
40 0.6537 0.4716 0.2405 0.2244
41 0.1862 0.1775 0.1761 0.1563
42 0.4248 0.3129 0.279 0.2025
43 0.9766 0.8478 0.3093 0.2596
44 0.2824 0.0474 0.0357 0.0353
45 0.3354 0.318 0.3145 0.2666
46 0.208 0.1935 0.1888 0.1326
47 0.3784 0.3301 0.247 0.1955
48 0.3636 0.3032 0.1225 0.0637
49 0.3317 0.2708 0.219 0.168

Average 0.4392 0.3015 0.2032 0.1629
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As you see in Table 4, the parcel information combined with climate data (column 1)
does not give a good yield prediction result, the average prediction does not exceed 0.43,
and some parcels have scores ranging from up to 100% error. In general, the climatic data are
presented globally and are identical for all the parcels, this does not really help the model to
exploit the data, because it finds the same input with different output (yields), hence the fact
that parcel information gave meaning to the climate data. After adding the phytosanitary
treatment data, the scores are improved to 0.30 on average (column 2). We can clearly see
that some parcels have experienced a significant improvement (0,1,3,6,7,8,10,13,21,34 . . . );
this reflects that the yield of these parcels is very correlated with phytosanitary treatments
products. Moreover, we can conclude that these parcels are more likely to be exposed to
the diseases and insects that affect the crop the most. Other parcels’ prediction scores did
not have much difference (2,12,16,23,25,30 . . . ), which means that these parcels are little
affected, or they are more resistant to diseases than others.

In the third step (column 3), we added the fertilization data. We can clearly see that
the average score improved to 0.20; this score is very interesting and clearly shows that the
combination of climatic, phytosanitary treatment, and fertilization data is very important
for yield prediction. In this sense, we found that the score of the most parcels improved
positively. We also see that some parcels, which were not improved before, improved after
adding the fertilization data, such as parcel 26, which is predicted with a score of 0.08, and
parcel 27 with a score of 0.07. Although some parcels failed to improve their prediction
scores, such as the parcels 24 and 45, the prediction results using only field data are quite
interesting and original.

Finally, after adding the NDVI and NDWI data, the average error rate went from 0.20
to 0.16, which means that the results improved by more than 4%. Thus, the spectral data
played an important role in improving the results of many parcels, such as parcel 1, which
went from 15% error to 9%, and parcel 12 from 14% to 9%.

In general, some parcels were predicted with a very good score not exceeding 5% error,
such as parcels 3, 21, 26, 30, 31, 34, and 44. Moreover, most of the scores do not exceed 20%
error, which indicates that the data used is very interesting, and the approach followed in
this study showed the ability to generate excellent predictive results.

To conclude, the results obtained in this study are very satisfactory compared with
the state of the art (an average error of no more than 0.162). We tried to work with data
(irrigation, fertilization, phytosanitary treatments, and climate) easily collectible thanks to
the current evolution of agriculture, and we used open-source satellites that provide free
images. Therefore, this solution is inexpensive and farmers can use it to obtain a real idea
of the yield before the harvest period.

Finally, a bar chart graph was constructed (Figure 9) to show a visual comparison
between actual yield quantities (red color) and the predicted ones (green color). As you see,
there are some parcels that are very well-predicted (1,3,26,27,30,31,34,44). Other parcels
are very close, and others are not bad (0,11,23,24). However, overall, we are satisfied with
these results, and we recommend farmers start collecting field data to obtain a proactive
view of their yield.

Figure 9. Validation of the results.

4. Conclusions

Predicting tree yield is one of the most difficult tasks in modern agriculture. Most of the
existing work attempts to predict the productivity of trees by counting their fruits [18,50–52].
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This method is expensive and difficult, especially in the case of large orchards. In addition,
farmers need to know their yield at least one month before harvest and in a simple and
fast way. The main contribution of our research is to show the importance of field data in
predicting the yield of a parcel of trees.

The results obtained are very good and the power of field data was demonstrated. In
particular, data such as fertilization and phytosanitary treatment have greatly helped our
prediction model. Moreover, the proposed approach requires only data, it is inexpensive,
fast, and generates the result immediately.

Finally, even with the good results obtained, our team continues daily data collection,
and we are sure that feeding our dataset will improve the prediction scores. Moreover, we
trust that this experience can be generalized to other tree crops.

Author Contributions: Conceptualization, A.M., S.E.F., Y.Z., O.L., I.K., F.B., L.E.M. and Y.I.; data
curation, A.M. and Y.Z.; formal analysis, A.M., S.E.F., Y.Z. and F.B.; funding acquisition, A.M., Y.Z. and
I.K.; investigation, Y.Z., O.L., I.K., F.B., L.E.M. and Y.I.; methodology, A.M., S.E.F., Y.Z., O.L., I.K., F.B.,
L.E.M. and Y.I.; project administration, S.E.F., Y.Z., O.L., I.K., F.B., L.E.M. and Y.I.; resources, A.M., Y.Z.
and F.B.; software, A.M. and S.E.F.; supervision, S.E.F., Y.Z., O.L., I.K., F.B., L.E.M. and Y.I.; validation,
A.M., S.E.F., Y.Z. and F.B.; visualization, A.M.; writing—original draft, A.M.; writing—review and
editing, A.M., S.E.F., Y.Z. and O.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Hassan II Academy of Science and Technology under the
project entitled “multispectral satellite imagery, data mining, and agricultural applications”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review.

Comput. Electron. Agric. 2018, 153, 69–81. [CrossRef]
2. Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; G Olaizola, I.; Barriguinha, A.; Moysiadis, T.; et al.

Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy 2021, 11, 1227. [CrossRef]
3. Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review.

IEEE Access 2020, 9, 4843–4873. [CrossRef]
4. Lu, Y.; Young, S. A survey of public datasets for computer vision tasks in precision agriculture. Comput. Electron. Agric. 2020,

178, 105760. [CrossRef]
5. Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A comprehensive review of crop yield prediction using machine

learning approaches with special emphasis on palm oil yield prediction. IEEE Access 2021, 9, 63406–63439. [CrossRef]
6. Michler, J.D.; Tjernström, E.; Verkaart, S.; Mausch, K. Money matters: The role of yields and profits in agricultural technology

adoption. Am. J. Agric. Econ. 2019, 101, 710–731. [CrossRef]
7. Anderson, N.T.; Walsh, K.B.; Wulfsohn, D. Technologies for forecasting tree fruit load and harvest timing—From ground, sky and

time. Agronomy 2021, 11, 1409. [CrossRef]
8. Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A real-time apple targets detection method for picking robot based on improved YOLOv5.

Remote Sens. 2021, 13, 1619. [CrossRef]
9. Parico, A.I.B.; Ahamed, T. Real time pear fruit detection and counting using YOLOv4 models and deep SORT. Sensors 2021,

21, 4803. [CrossRef]
10. Wan, S.; Goudos, S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput. Netw. 2020, 168, 107036.

[CrossRef]
11. Nawaz, R.; Abbasi, N.A.; Hafiz, I.A.; Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus

nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 2020,
260, 108868. [CrossRef]

12. Wan, L.J.; Tian, Y.; He, M.; Zheng, Y.Q.; Lyu, Q.; Xie, R.J.; Ma, Y.Y.; Deng, L.; Yi, S.L. Effects of Chemical Fertilizer Combined with
Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield. Agriculture 2021, 11, 1207. [CrossRef]

13. Dutta, S.K.; Gurung, G.; Yadav, A.; Laha, R.; Mishra, V.K. Factors associated with citrus fruit abscission and management
strategies developed so far: A review. N. Z. J. Crop Hortic. Sci. 2022, 1–22. [CrossRef]

http://doi.org/10.1016/j.compag.2018.08.001
http://dx.doi.org/10.3390/agronomy11061227
http://dx.doi.org/10.1109/ACCESS.2020.3048415
http://dx.doi.org/10.1016/j.compag.2020.105760
http://dx.doi.org/10.1109/ACCESS.2021.3075159
http://dx.doi.org/10.1093/ajae/aay050
http://dx.doi.org/10.3390/agronomy11071409
http://dx.doi.org/10.3390/rs13091619
http://dx.doi.org/10.3390/s21144803
http://dx.doi.org/10.1016/j.comnet.2019.107036
http://dx.doi.org/10.1016/j.scienta.2019.108868
http://dx.doi.org/10.3390/agriculture11121207
http://dx.doi.org/10.1080/01140671.2022.2040545


Informatics 2022, 9, 80 16 of 17

14. Vincent, C.; Morillon, R.; Arbona, V.; Gómez-Cadenas, A. Citrus in changing environments. In The Genus Citrus; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 271–289.

15. Moussaid, A.; El Fkihi, S.; Zennayi, Y. Citrus Orchards Monitoring based on Remote Sensing and Artificial Intelligence Techniques:
A Review of the Literature. In Proceedings of the 2nd International Conference on Advanced Technologies for Humanity—ICATH,
Rabat, Morocco, 20–21 November 2020; IEEE: New York, NY, USA, 2020; pp. 172–178.

16. Mngadi, M.; Odindi, J.; Mutanga, O. The utility of Sentinel-2 spectral data in quantifying above-ground carbon stock in an urban
reforested landscape. Remote Sens. 2021, 13, 4281. [CrossRef]

17. Galphade, M.; More, N.; Wagh, A.; Nikam, V. Crop Yield Prediction Using Weather Data and NDVI Time Series Data. In Advances
in Data Computing, Communication and Security; Springer: Berlin/Heidelberg, Germany, 2022; pp. 261–271.

18. Moussaid, A.; Fkihi, S.E.; Zennayi, Y. Tree Crowns Segmentation and Classification in Overlapping Orchards Based on Satellite
Images and Unsupervised Learning Algorithms. J. Imaging 2021, 7, 241. [CrossRef]

19. Ye, X.; Sakai, K.; Manago, M.; Asada, S.i.; Sasao, A. Prediction of citrus yield from airborne hyperspectral imagery. Precis. Agric.
2007, 8, 111–125. [CrossRef]

20. De Ollas, C.; Morillón, R.; Fotopoulos, V.; Puértolas, J.; Ollitrault, P.; Gómez-Cadenas, A.; Arbona, V. Facing climate change:
Biotechnology of iconic Mediterranean woody crops. Front. Plant Sci. 2019, 10, 427. [CrossRef]

21. Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate
extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [CrossRef]

22. Nagaz, K.; El Mokh, F.; Ben Hassen, N.; Masmoudi, M.; Ben Mechlia, N.; Baba Sy, M.; Belkheiri, O.; Ghiglieri, G. Impact of deficit
irrigation on yield and fruit quality of orange Trees (Citrus sinensis, l. Osbeck, cv. Meski maltaise) in southern Tunisia. Irrig.
Drain. 2020, 69, 186–193. [CrossRef]

23. Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than
synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [CrossRef]

24. Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer
type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020,
178, 102736. [CrossRef]

25. Buczko, U.; van Laak, M.; Eichler-Löbermann, B.; Gans, W.; Merbach, I.; Panten, K.; Peiter, E.; Reitz, T.; Spiegel, H.; von Tucher, S.
Re-evaluation of the yield response to phosphorus fertilization based on meta-analyses of long-term field experiments. Ambio
2018, 47, 50–61. [CrossRef] [PubMed]

26. Li, Z.; Zhang, R.; Xia, S.; Wang, L.; Liu, C.; Zhang, R.; Fan, Z.; Chen, F.; Liu, Y. Interactions between N, P and K fertilizers affect
the environment and the yield and quality of satsumas. Glob. Ecol. Conserv. 2019, 19, e00663. [CrossRef]

27. Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big data in agriculture: A challenge for the future. Appl. Econ. Perspect. Policy
2018, 40, 79–96. [CrossRef]

28. Cravero, A.; Sepúlveda, S. Use and adaptations of machine learning in big data—Applications in real cases in agriculture.
Electronics 2021, 10, 552. [CrossRef]

29. Ihbach, F.Z.; Kchikach, A.; Jaffal, M.; El Azzab, D.; Chalikakis, K.; Mazzili, N.; Guerin, R.; Jourani, E.S. Study of an Aquifer in
a Semi-arid Area Using MRS, FDEM, TDEM and ERT Methods (Youssoufia and Khouribga, Morocco). In Proceedings of the
Conference of the Arabian Journal of Geosciences, Hammamet, Tunisia, 12–15 November 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 73–76.

30. Roh, Y.; Heo, G.; Whang, S.E. A survey on data collection for machine learning: A big data-ai integration perspective. IEEE Trans.
Knowl. Data Eng. 2019, 33, 1328–1347. [CrossRef]

31. Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features
and applications. Agronomy 2020, 10, 641. [CrossRef]

32. Leslie, C.R.; Servina, L.O.; Miller, H.M. Landsat and Agriculture: Case Studies on the Uses and Benefits of Landsat Imagery in Agricultural
Monitoring and Production; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2017.

33. Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of remote sensing in agriculture-A Review. Int. J. Curr.
Microbiol. Appl. Sci. 2019, 8, 2270–2283. [CrossRef]

34. Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote sensing vegetation indices in viticulture: A critical
review. Agriculture 2021, 11, 457. [CrossRef]

35. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136.
[CrossRef]

36. Rickman, J.; Balasubramanian, G.; Marvel, C.; Chan, H.; Burton, M.T. Machine learning strategies for high-entropy alloys. J. Appl.
Phys. 2020, 128, 221101. [CrossRef]

37. Khfif, K.; Mokrini, F.; Sbaghi, M. Population monitoring of males steriles of Mediterranean fruit fly (Ceratitis capitata Wiedemann,
1824) in citrus orchards of the Moulouya region. Afr. Mediterr. Agric. J. 2022, 135, 123–135.

38. Otero, A.; Goni, C.; Jifon, J.; Syvertsen, J. High temperature effects on citrus orange leaf gas exchange, flowering, fruit quality and
yield. In Proceedings of the IX International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in
Orchard Systems 903, Geneva, NY, USA, 4–8 August 2008; pp. 1069–1075.

39. Emmert-Streib, F.; Yli-Harja, O.; Dehmer, M. Explainable artificial intelligence and machine learning: A reality rooted perspective.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1368. [CrossRef]

http://dx.doi.org/10.3390/rs13214281
http://dx.doi.org/10.3390/jimaging7110241
http://dx.doi.org/10.1007/s11119-007-9032-2
http://dx.doi.org/10.3389/fpls.2019.00427
http://dx.doi.org/10.1088/1748-9326/ab154b
http://dx.doi.org/10.1002/ird.2201
http://dx.doi.org/10.1016/j.still.2018.12.022
http://dx.doi.org/10.1016/j.agsy.2019.102736
http://dx.doi.org/10.1007/s13280-017-0971-1
http://www.ncbi.nlm.nih.gov/pubmed/29159451
http://dx.doi.org/10.1016/j.gecco.2019.e00663
http://dx.doi.org/10.1093/aepp/ppx056
http://dx.doi.org/10.3390/electronics10050552
http://dx.doi.org/10.1109/TKDE.2019.2946162
http://dx.doi.org/10.3390/agronomy10050641
http://dx.doi.org/10.20546/ijcmas.2019.801.238
http://dx.doi.org/10.3390/agriculture11050457
http://dx.doi.org/10.3390/rs12193136
http://dx.doi.org/10.1063/5.0030367
http://dx.doi.org/10.1002/widm.1368


Informatics 2022, 9, 80 17 of 17

40. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A review of machine learning interpretability methods.
Entropy 2020, 23, 18. [CrossRef] [PubMed]

41. Wang, P.; Mou, S.; Lian, J.; Ren, W. Solving a system of linear equations: From centralized to distributed algorithms. Annu. Rev.
Control. 2019, 47, 306–322. [CrossRef]

42. Jiao, S.; Song, J.; Liu, B. A Review of Decision Tree Classification Algorithms for Continuous Variables. In Proceedings of the
Journal of Physics: Conference Series, The 2020 second International Conference on Artificial Intelligence Technologies and
Application (ICAITA), Dalian, China, 21–23 August 2020; Volume 1651, p. 012083.

43. Huettmann, F. Boosting, Bagging and Ensembles in the Real World: An Overview, some Explanations and a Practical Synthesis
for Holistic Global Wildlife Conservation Applications Based on Machine Learning with Decision Trees. In Machine Learning for
Ecology and Sustainable Natural Resource Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–83.

44. Azmi, S.S.; Baliga, S. An Overview of Boosting Decision Tree Algorithms utilizing AdaBoost and XGBoost Boosting strategies.
Int. Res. J. Eng. Technol. 2020, 7, 6867–6870.

45. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 1–45. [CrossRef]
46. Kadiyala, A.; Kumar, A. Applications of python to evaluate the performance of decision tree-based boosting algorithms. Environ.

Prog. Sustain. Energy 2018, 37, 618–623. [CrossRef]
47. Siedhoff, N.E.; Schwaneberg, U.; Davari, M.D. Machine learning-assisted enzyme engineering. Methods Enzymol. 2020,

643, 281–315.
48. Ding, J.; Chen, L.; Gu, Y. Perturbation analysis of orthogonal matching pursuit. IEEE Trans. Signal Process. 2013, 61, 398–410.

[CrossRef]
49. Khosravy, M.; Gupta, N.; Patel, N.; Duque, C.A. Recovery in compressive sensing: A review. Compressive Sens. Healthc. 2020,

25–42. [CrossRef]
50. Koc-San, D.; Selim, S.; Aslan, N.; San, B.T. Automatic citrus tree extraction from UAV images and digital surface models using

circular Hough transform. Comput. Electron. Agric. 2018, 150, 289–301. [CrossRef]
51. Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of citrus trees from unmanned aerial vehicle imagery using

convolutional neural networks. Drones 2018, 2, 39. [CrossRef]
52. Osco, L.P.; De Arruda, M.d.S.; Junior, J.M.; Da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.;

Matsubara, E.T.; et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral
imagery. Isprs J. Photogramm. Remote Sens. 2020, 160, 97–106. [CrossRef]

http://dx.doi.org/10.3390/e23010018
http://www.ncbi.nlm.nih.gov/pubmed/33375658
http://dx.doi.org/10.1016/j.arcontrol.2019.04.008
http://dx.doi.org/10.1186/s40537-020-00369-8
http://dx.doi.org/10.1002/ep.12888
http://dx.doi.org/10.1109/TSP.2012.2222377
http://dx.doi.org/10.1016/B978-0-12-821247-9.00007-X
http://dx.doi.org/10.1016/j.compag.2018.05.001
http://dx.doi.org/10.3390/drones2040039
http://dx.doi.org/10.1016/j.isprsjprs.2019.12.010

	Introduction
	Materials and Methods
	Study Region
	Data
	Data Acquisition
	Data Processing
	Data Exploration

	Our Approach

	Results and Discussion
	Cross-Validation and Model Selection
	Discussion of Results

	Conclusions
	References

