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Abstract: Chatbots with personality have been shown to affect engagement and user subjective
satisfaction. Yet, the design of most chatbots focuses on functionality and accuracy rather than an
interpersonal communication style. Existing studies on personality-imbued chatbots have mostly
assessed the effect of chatbot personality on user preference and satisfaction. However, the influence
of chatbot personality on behavioral qualities, such as users’ trust, engagement, and perceived
authenticity of the chatbots, is largely unexplored. To bridge this gap, this study contributes: (1) A
detailed design of a personality-imbued chatbot used in academic advising. (2) Empirical findings
of an experiment with students who interacted with three different versions of the chatbot. Each
version, vetted by psychology experts, represents one of the three dominant traits, agreeableness,
conscientiousness, and extraversion. The experiment focused on the effect of chatbot personality on
trust, authenticity, engagement, and intention to use the chatbot. Furthermore, we assessed whether
gender plays a role in students’ perception of the personality-imbued chatbots. Our findings show a
positive impact of chatbot personality on perceived chatbot authenticity and intended engagement,
while student gender does not play a significant role in the students’ perception of chatbots.

Keywords: human–computer interaction; chatbot behavior; chatbot personality; authenticity; trust;
engagement; usage intention

1. Introduction

Chatbots, also called conversational agents, have grown tremendously and become a
part of several industries, including healthcare [1], consumer services [2], and education [3],
as they can automate services by conversing with users. A financial reflection of this growth
is that the size of the chatbot market is projected to reach 1.23 billion US dollars globally
by 2025 [4]. As the number of active chatbots rapidly increases, their interactions with
humans are growing equally [5]. According to some estimates, up to a third of online
interactions involve a form of a chatbot [6]. We believe the growing number of human–
chatbot interactions necessitates a deeper understanding of the key variables of these
interactions, as many services and decisions depend on the effectiveness of the interactions.

Recent research shows that humans perceive chatbots as social actors [7–9] and sub-
consciously assign them a personality [10]. Chatbot personality has been shown to affect
trust [11,12], engagement [6], subjective satisfaction [13,14], and consumer behavior [6].

Despite this, within the context of academic advising, most chatbot-based academic
advising systems, e.g., refs. [15,16] are designed with an emphasis on functionality and
accuracy rather than an interpersonal communication style, which is essential in building
trust and relationships. Little is known about the effect of chatbot personality in an academic
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setting. Related studies have investigated chatbot personality in other domains, including
driving assistance [11], commerce [17,18], and healthcare [10,19].

Furthermore, imbuing text-based chatbots with personalities has received little at-
tention. Much of the relevant research has focused on imbuing voice-based, embodied,
and robot-based chatbots with personalities using nonverbal cues, such as gestures [20,21]
gaze [22], voice tone and speed [23], and proximity [24].

Among the few attempts that attempted to design text-based chatbots with a per-
sonality are the works of Li et al. [25], Smestad and Volden [14], Völkel et al. [10], and
Völkel and Kaya [18]. These studies have mainly utilized the Big-Five model [26] to test the
effect of agreeableness [18], extraversion [10], or assertiveness [25] on users’ preferences
and intentions to use chatbots. However, little research has attempted to investigate the
effect of text-based chatbot personalities on other users’ behavioral qualities, such as trust,
perceived authenticity, and engagement. Such qualities are crucial to ensure the success and
acceptance of chatbots. For instance, trust is considered a crucial element of a successful
relationship with users [27] and should be factored into the design of chatbots [28] as an
essential aspect of trust is related to anthropomorphizing [27]. The authenticity of chatbot
conversations positively influences users’ intention to use the chatbot [29]. Engagement
affects the length of the user responses and the time they spend with the chatbot.

To bridge gaps in the literature, this study contributes: (1) A detailed design of a
personality-imbued text-based chatbot used in academic advising (MyAdvisor). The design
is based on the Big Five Factor model [26] and is validated by professional psychologists.
(2) The findings of an experiment with 43 students recruited from 3 different campuses
to test the effect of agreeable, conscientious, and extroverted chatbot personality on trust,
perceived authenticity, and engagement. Furthermore, we also report the findings as
to whether gender plays a role in students’ trust, perceived chatbot authenticity, usage
intention, and intended engagement with chatbots with various personalities.

The remainder of this article is structured as follows. Section 2 reviews the related
work, while Section 3 presents the research goal and hypotheses. Section 4 discusses the
design of the personality-imbued chatbots and explains the experiment setup, and Section 5
presents the findings. Section 6 discusses the findings and implications for future research.
Finally, Section 7 concludes the article.

2. Related Work
2.1. Human Personality

Human personality is the combination of characteristics, behavior, and emotions that
form a distinctive character [30]. The Five-Factor Model (FFM), also known as the Big
Five Factors, is a well-grounded taxonomy for studying personality as it covers the crucial
aspects of personality [31]. FFM has been utilized in Human–Computer Interaction (HCI)
to explain how different chatbots demonstrate behavior [8,32]. FFM consists of five global
factors or personality traits discovered due to lexical analysis rather than neuropsychologi-
cal experimentation [33]. The five factors are referred to as follows [6,34,35]: (1) Openness:
this dimension measures people’s inventiveness and curiosity. (2) Conscientiousness: this
personality attribute measures individuals’ degree of efficiency and organization. (3) Ex-
traversion: this dimension assesses the level of outgoingness and bubbliness individuals
demonstrate. (4) Agreeableness: this dimension assesses the level of friendliness and
compassion. (5) Neuroticism: this personality attribute evaluates the degree of nervousness
and moodiness.

The topic of personality has long been studied in research and has proved influential
in various social and economic situations and across various cultures [36,37]. For instance,
companies report an increase in sales if salespersons demonstrate high extraversion and
openness [38]. A salesperson’s personality has also positively affected customers’ trust [39].
Moreover, the extant literature has found a direct link between individuals’ satisfaction with
a product and their personalities and the emotions they experience when interacting with a
product [40]. Consequently, as advocated by user experience (UX) research, it is crucial to
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design positive experiences that cater for personalities and individuals’ personalities and
emotions [41]. Indeed, UX has become a crucial part in designing products and services [42].
However, in an educational setting, the literature has primarily focused on a student’s
personality and how it affects academic motivation [43] and academic achievement [44].

2.2. Chatbots in Education

Due to their capacity to engage students and personalize education, chatbots are
becoming prevalent in education [45]. In the last decade, chatbots have filled a range
of educational tasks, including tutors, coaches, and learning companions [46]. In addi-
tion, chatbots have been applied to address a wide range of educational needs, includ-
ing question-answering [47], tutoring [48,49], and language learning [48,49]. Moreover,
chatbots have been shown to be effective in various roles when engaging with students,
including teaching agents, peer agents, teachable agents, and motivational agents [3].

Although chatbots are regarded as social actors [8] and have grown rapidly in educa-
tion, most studies used chatbots only to enhance the learning process rather than social
engagement with the students. Nonetheless, a few studies [50–52] incorporated social
dialog into their design to engage students. Still, most studies applying chatbots in aca-
demic settings have not considered assigning a personality to social dialogue, despite
the growing evidence for chatbot personality affecting trust [11,12], engagement [6], and
subjective satisfaction [13,14]. A recent literature review calls for investigating the impact
of chatbot personality in an academic setting on students’ satisfaction [3]. This call is
supported by a recent study [53] that stresses the importance of assigning a personality to a
chatbot that advises students in an academic setting. To fill the gap, this work builds on
a previously developed text-based chatbot system used for academic advising, MyAdvi-
sor [54], by integrating three personalities into the chatbot (agreeableness, extraversion,
and conscientiousness).

2.3. Personality-Imbued Chatbots

Chatbots emulate conversation, a complex activity that is uniquely human. Con-
versations allow humans to show their personalities and build relationships [55]. When
human users interact with chatbots, they may implicitly form an idea about the chatbot’s
personality and communication style [56]. As such, it is crucial to design chatbots with
human users in mind. Indeed, human-centered design (HCD) advocates for invoking the
human perspective into the design of products and services [57].

There is a growing body of literature suggesting that it is possible to convey personality
in embodied, robot-based, and voice-based chatbots using body language and nonverbal
cues, such as voice pitch and speed [23,58], gaze [22], proximity [24], and gestures [20,59].
However, only a limited number of research has targeted purely text-based personality-
imbued chatbots. Table 1 shows an overview of these chatbots.

Völkel and Kaya [18] designed three chatbots with three levels of agreeableness:
agreeable, neutral, and disagreeable. The chatbots were helping users find a suitable
movie. The authors briefly explained the design by manipulating the chatbots based on
the defined characteristics of each personality. For instance, the agreeable chatbot uses
positive emotions and expresses concern for the user, whereas the disagreeable is critical
and uncooperative. Predictably, the users preferred the agreeable chatbot to other types.

Völkel et al. [10] designed three versions of a healthcare chatbot with three levels
of extraversion (extroverted, average, introverted). The design was based on a detailed
description of each personality with some references to the literature. The extroverted
chatbot uses emojis, while others do not. Furthermore, the extroverted chatbot is enthu-
siastic, referring to users by their names frequently assertive, and commanding. On the
other hand, the introverted chatbot is reserved and shares limited information. Finally, the
average chatbot demonstrates a medium level of extraversion and avoids traits associated
with highly extroverted or introverted personalities. The users interacted with the chatbots
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repetitively over four days. Regarding the rankings, users ranked the extroverted chatbot
first, followed by the introverted chatbot and the average chatbot.

Ruane et al. [56] presented two types of text-based chatbots: Chatbot A with high
extraversion and agreeableness, and Chatbot B with low extraversion and agreeableness.
The design was based on the FFM taxonomy, and the researchers provided language
queues for the personalities. However, the design was not validated by domain experts.
The researchers concluded that a personality could be reliably represented with text and
found that users were engaged more with Chatbot A.

Mehra [34] designed three different versions of chatbots helping users to make an
order: (1) Chatbot A, called WordHelper, with conscientiousness as a dominant trait, is
transactional and focuses on efficiency, accuracy, and speed. (2) Chatbot B, called WordAid,
with agreeableness as a dominant trait, and thus, has a prosocial personality and thus uses
a lot of friendly, helpful, and polite phrases. (3) Chatbot C, called Word!Baby, on the other
hand, demonstrated bubbliness and friend-like qualities. It used emojis and was rather
informal. The authors used the FFM taxonomy and did not verify their design with domain
experts, but verified the personality references using IBM’s Emotional Analyzer tool, which
is deprecated. The students interacted with all chatbots, and the results show that users
preferred chatbot C, followed by A, then B.

These works undoubtedly contributed to the literature. However, while the personality
design of these works was grounded in the FFM taxonomy and the literature, they have
not been assessed by domain experts to establish validity. Furthermore, the work primarily
focused on evaluating users’ general preference for a specific personality and whether users
are drawn to chatbots with the same personality as theirs.

To fill the gap in the literature, we contribute a text-based chatbot system used for
academic advising, MyAdvisor [54]. We designed three different versions of the chatbot
representing three personalities: agreeableness, extraversion, and conscientiousness. Our
design systematically used references from the Big-Five Inventory (BFI) [60] and was veri-
fied by professional psychologists. Furthermore, our work assessed behavioral attributes
such as trust, engagement, and perceived authenticity of the chatbot.

Table 1. An overview of text-based personality-imbued chatbots in the literature.

Reference Research Goal Application Area Findings Design

Völkel & Kaya [18] Testing users’ perception of
chatbot agreeableness Movie recommendation Users prefer the highly

agreeable chatbot
• Based on FFM and literature.
• Not validated by domain experts

Völkel et al. [10] Testing users’ perception of
chatbot extraversion Healthcare Users prefer the highly

extroverted chatbot
• Based on FFM and literature.
• Emojis used.
• Not validated by domain experts.

Ruane et al. [56]
Testing users’ perception of
chatbot agreeableness and

extraversion
Course recommendation Users prefer highly agreeable

and extroverted chatbots
• Based on FFM
• Not validated by domain experts.

Mehra [34] Testing users’ preference for
chatbots of three personalities Making a food order

Users preferred the
extroverted chatbot, followed
by the conscientious chatbot

• Based on FFM and validated by IBM
Emotional Analyzer

• The extroverted chatbot uses emojis
• Not validated by domain experts

3. Research Goals and Hypotheses

The main objective of this research is to assess the effect of chatbot personality and
user gender on user behavior, such as trust, perceived authenticity, usage intention, and
intended engaged.

Despite the widespread use of chatbots, users still lack trust in voice-based chat-
bots [61] due to privacy concerns and security vulnerabilities [62]. Trust is an essential
prerequisite for adopting systems [63,64], and it influences users’ intention to use chat-
bots [65]. Trust is also essential for a successful relationship with users [27] and should be
considered in the design of chatbots [28]. Yet, little attention has been given to the effect of
chatbot personality on trust. Notably, Reinkemeier and Gnewuch [58] investigated how
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personality and gender congruence between voice-based chatbots and users can affect a
person’s trust. The researchers found that the impact of being the same personality on users’
trust is significant. However, the effect of a gender match on users’ trust is nonsignificant.

Various researchers identified three major components essential to measuring trust [58,66,67]:
integrity, competence, and benevolence. Nine factors represent these major components: ability,
effectiveness, being knowledgeable, providing suitable advice, acting in the user’s best interest,
doing its best, caring about users’ answers, honesty, and sincerity.

Since trust has been associated with chatbot personality [68], and based on our discus-
sion, we hypothesize:

H1. Chatbot personality affects students’ trust.

For in-depth insights, Hypothesis 1 (H1) can be broken into three sub-hypotheses
to compare the effect of each pair of chatbot personalities (agreeable, conscientious, and
extroverted) on students’ trust. Thus, we hypothesize:

• H1A. There is a difference between students’ trust in the conscientious and extroverted chatbots.
• H1B. There is a difference between students’ trust in the conscientious and agreeable chatbots.
• H1C. There is a difference between students’ trust in the agreeable and extroverted chatbots.

Another essential quality of chatbots is perceived authenticity. An authentic chat-
bot is characterized by the ability to have a human-like conversation and display a clear
purpose [69]. Recent research has shown the effect of chatbot authenticity on usage in-
tention [29], engagement, and loyalty [70]. Yet, little attention has been given to whether
chatbot personality affects the users’ perceived authenticity of the chatbot. Given the rela-
tionship between authenticity and personality found in the psychology literature [71,72],
this research aims to shed light on this largely unexplored area in the context of chatbots.
Thus, we hypothesize:

H2. Chatbot personality affects students’ perceived authenticity of the chatbot.

We divide Hypothesis 2 (H2) into three sub-hypotheses to compare the effect of
each pair of chatbot personalities (agreeable, conscientious, and extroverted) on students’
perceived authenticity of the chatbot. Consequently, we hypothesize:

• H2A. There is a difference between students’ perceived authenticity of the conscientious and
extroverted chatbots.

• H2B. There is a difference between students’ perceived authenticity of the conscientious and
agreeable chatbots.

• H2C. There is a difference between students’ perceived authenticity of the agreeable and
extroverted chatbots.

It has been established in fields other than academic advising that chatbot personality
affects the users’ intention to use the chatbot. For instance, users prefer to use extroverted
chatbots more than those that are neutral or introverted [10]. Moreover, users prefer to use
agreeable chatbots compared to those that are less agreeable [18]. In addition, compared
to a conscientious chatbot, users prefer to use an agreeable chatbot [14]. Therefore, we
hypothesize:

H3. Chatbot personality affects students’ intention to use the chatbot.

To compare the effect of each pair of chatbot personalities (agreeable, conscientious,
and extroverted) on students’ intention to use the chatbot, Hypothesis 3 (H3) is split into
the following sub-hypotheses:

• H3A. There is a difference between students’ intention to use the conscientious and extro-
verted chatbots.

• H3B. There is a difference between students’ intention to use the conscientious and agree-
able chatbots.

• H3C. There is a difference between students’ intention to use the agreeable and extroverted chatbots.
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Several studies have shown that chatbot personality affects users’ engagement with
chatbots. Engagement can be measured by the users’ willingness to spend time with the
chatbot and their involvement with it [73]. A notable example is a study [6] concluding that
matching users and chatbot personalities results in increased engagement. Furthermore,
a study [12] revealed that users are engaged with a chatbot-based interviewer with a
friendly and warm personality. Moreover, a study [10] found that users have different
levels of engagement depending on the chatbot’s level of extraversion. Consequently, we
hypothesize:

H4. Chatbot personality affects students’ intended engagement with the chatbot.

To compare the effect of each pair of chatbot personalities (agreeable, conscientious,
and extroverted) on students’ intended engagement with the chatbot, Hypothesis 4 (H4) is
split into the following sub-hypotheses:

• H4A. There is a difference between students’ intended engagement with the conscientious and
extroverted chatbots.

• H4B. There is a difference between students’ intended engagement with the conscientious and
agreeable chatbots.

• H4C. There is a difference between students’ intended engagement with the agreeable and
extroverted chatbots.

The effect of gender on user behavior when interacting with a chatbot has received
little attention in the literature. A notable study [74] assessed the effect of gender on user
behavior but found no significant influence. However, since men and women may have
different personalities [75], we think it is interesting to examine the effect of gender on user
behavior when interacting with a chatbot. To this end, we hypothesize:

H5. Students’ gender affects students’ trust in the chatbot.

Hypothesis 5 (H5) is split into three sub-hypotheses to obtain detailed comparisons
between students’ gender effect on trust in the three different chatbots.

• H5A. There is a difference between male and female students’ trust in the conscientious chatbot.
• H5B. There is a difference between male and female students’ trust in the extroverted chatbot.
• H5C. There is a difference between male and female students’ trust in the agreeable chatbot.

H6. Students’ gender affects students’ perception of chatbot authenticity.

We divide Hypothesis 6 (H6) into three sub-hypotheses for detailed comparisons
between students’ gender effect on perceived authenticity of the three different chatbots.

• H6A. There is a difference between male and female students’ perceived authenticity of the
conscientious chatbot.

• H6B. There is a difference between male and female students’ perceived authenticity of the
extroverted chatbot.

• H6C. There is a difference between male and female students’ perceived authenticity of the
agreeable chatbot.

H7. Students’ gender affects students’ intention to use the chatbot.

Hypothesis 7 (H7) is further broken into three sub-hypotheses to compare the effect of
students’ gender on usage intention of the three different chatbots.

• H7A. There is a difference between male and female students’ intention to use the conscien-
tious chatbot.

• H7B. There is a difference between male and female students’ intention to use the extro-
verted chatbot.

• H7C. There is a difference between male and female students’ intention to use the agreeable chatbot.

H8. Students’ gender affects students’ engagement with the chatbot.
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We divide Hypothesis 8 (H8) into three sub-hypotheses to compare the effect of
students’ gender on engagement with the chatbot between the three different chatbots.

• H8A. There is a difference between male and female intended engagement with the conscien-
tious chatbot.

• H8B. There is a difference between male and female intended engagement with the extro-
verted chatbot.

• H8C. There is a difference between male and female intended engagement with the agree-
able chatbot.

4. Methodology

This section presents the design of the chatbots used in this study and explains the
study design.

4.1. Chatbot Design

We designed three chatbots representing the dominant personality traits of conscien-
tiousness, extraversion, and agreeableness by carefully manipulating the chatbots’ expres-
sions. The chatbots are designed to help students with academic advising and are based on
a chatbot-based advising system, MyAdvisor, presented in [54].

To ensure that the three chatbots preserved their assigned personalities, we utilized a
guided conversational style with scripted answers to specific questions. The conversation
content (i.e., questions and answers) are the same for all three chatbots. What distinguishes
the chatbots is the communication style representing the three personalities. All chatbots
are named “MyAdvisor,” a role that is purposely gender-neutral.

Initially, every chatbot greets the student, introduces itself, and guides the student
to ask the first question. For instance, Figure 1 shows an example of an agreeable chatbot
greeting the students, introducing itself by presenting how it can help, then as a suggestion,
inviting the student to ask the question corresponding to Task 1. Students can use their own
words to ask questions. There are five tasks that students interact with. The tasks inquire
about various aspects of academic advising, such as helping with poor performance,
helping with understanding course materials, enrolling in a senior project, and career
opportunities after graduation. The full details of the conversation script can be found
in [76]. Once the student is done typing a question corresponding to a certain task, the
chatbot provides an answer, then suggests to the student to move on to the next task serially
(e.g., Tasks 1, 2, 3, etc.) The chatbots are not designed to handle inquiries outside the
scope of the five tasks, but they can handle small talk. Consequently, the chatbots ask
students to follow the script and the task if they deviate from the flow. We implemented
the chatbots using Google Dialogflow [77]; thus, the chatbots were accessible on web and
mobile platforms.

4.2. Chatbot Personality Design and Validation

In designing the personalities of the chatbots, we first designed a neutral script for
the conversation, including the tasks associated with academic advising. Thereafter, we
systematically modified the language cues to indicate the three personalities of conscien-
tiousness, extraversion, and agreeableness. In doing so, we followed the Big-Five Inventory
(BFI) model [60]. As such, the conscientious chatbot is characterized by being thorough,
exceedingly careful, reliable, organized, industrious, efficient, focused, and a plan follower.
The extroverted chatbot is talkative, not reserved, full of energy, enthusiastic, neither shy
nor inhibited, outgoing, sociable, and assertive. The agreeable chatbot neither finds fault in
others nor does it start quarrels with others. Instead, it is warm, helpful, forgiving, trusting,
considerate, and cooperative.
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Figure 2 shows an example showing three greeting messages and another example
showing three responses representing the three personalities. We added language cues
corresponding to characteristics associated with the personalities as per the BFI model.
For instance, the greeting message of the chatbot with conscientiousness is mapped to
four characteristics associated with conscientiousness. We ensured that each personality
characteristic was mapped at least once. The process of embedding personality traits into
the chatbot messages was iterative and went through several revisions. The chatbots are
not designed to be purely conscientious, extroverted, or agreeable, but rather dominated
by one of these personalities. The references in the text bubbles in Figure 2 are to the
personality characteristics per the BFI model, but the references are not shown to students
in real interactions. The full details of mapping personality characteristics can be found
in [78].

To make certain that the chatbots are only differentiated by their personalities, we
ensured that the chatbot message sizes were comparable. Thus, we ran a T-Test to compare
the word counts of the messages of each pair of chatbots and did not find a significant
difference. Furthermore, all chatbots used purely text despite relevant works, e.g., ref. [10]
using emojis for extroverted chatbots. We conducted five pilot sessions with students and
identified vague or hard-to-understand phrases for some non-native English speakers in
the study. Consequently, we rewrote these phrases to address the identified shortcomings.
Furthermore, we also validated our chatbot personality design with four professional
psychologists by asking them to state the dominant personality of each of the three chatbots.
All psychologists confirmed our intended chatbot personality design.

4.3. Study Design

In the context of a chatbot-based advising system, we conducted this study to assess
the effect of chatbot personality (conscientiousness, extraversion, and agreeableness) on
user behavior (trust, perceived authenticity, intended engagement, and intention to use)
concerning the chatbot. As such, this research aims to test the hypotheses presented in
Section 3 and to identify the users’ preference for chatbot personality.
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Figure 3 shows the steps of the experiment. Prior to conducting the experiment, we
obtained ethical clearance from the Research Ethics Committee at Zayed University. We
recruited 48 students to participate in the experiment. However, 5 responses were removed
from the dataset as we processed the data due to several missing or corrupt data points.
The experiment consisted of three steps. First, the students watched a five-minute video
explaining the experiment’s purpose and steps. Second, informed consent was obtained
from all students involved in the study, and they provided demographical information.
Subsequently, the students interacted with the three chatbots with personalities dominated
by conscientiousness, extraversion, and agreeableness. To minimize the bias of the order
of chatbot interaction, we split the students into three groups: 1, 2, and 3. In Group
1, students first interacted with the conscientious chatbot, followed by the extroverted
chatbot and then the agreeable one. In Group 2, students first interact with the extroverted
chatbot, the agreeable chatbot and then the conscientious one. At last, in Group 3, the
students interacted with the agreeable chatbot, followed by the conscientious chatbot and
then the extroverted. The students were unaware of the chatbot order and were told that
they interacted with chatbots A, B, and C regardless of their assigned group. Initially,
the group sizes were equal. However, at later stages, we excluded the data of a few
participants making the group sizes slightly different (but they are still similar in size).
The third and last step of the experiment was that the students filled out a quantitative
and qualitative questionnaire to express their opinions on trust, perceived authenticity,
engagement, intention to use, and overall preference of the three different chatbots. On
average, the experiment lasted 50 min.
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4.4. Participants

To recruit participants, the authors announced the experiment in their respective
institutions and on their professional networks. Since the authors are based in three
different universities, the recruited students were also located at the same universities
as the authors. Table 2 depicts the demographical information of the study participants.
All participants reported a good command of English. Most participants (86%) were
18–25 years old, while only 13.95% were 26–35. Approximately two-thirds (67.4%) of the
participants were female, and approximately a third (32.6%) were male. Approximately
half of the participants (51.2%) were recruited from Princess Noura Bint Abdulrahman
University in Saudi Arabia, while approximately a third (32.5%) were recruited from Zayed
University in the United Arab Emirates. Finally, the remaining students (16.3%) were
recruited from the University of Missouri-Kansas City in the United States. Most (86%)
participants were undergraduate students, with the remaining (14%) being postgraduate
students. At last, all students were familiar with chatbots and had at least basic IT skills
and were thus familiar with web browsing and document editing tools.

Table 2. Participants’ demographical information.

Characteristic Description

Age 18–25 (N = 37), 26–35 (N = 6)
Gender Female (N = 29), Male (N = 14)

Campus Location Saudi Arabia (N = 22), United Arab Emirates (N = 14), United
States (N = 7)

Education Level Undergraduate student (N = 37), Postgraduate student (N = 6)
Familiarity with chatbots All are familiar with chatbots.

IT Skills All at least have basic IT skills (familiar with web surfacing and
document editing tools)

4.5. Post-Interaction Questionnaire

The participants were asked to complete a questionnaire after interacting with the
three chatbots. The questionnaire included quantitative and qualitative questions. Figure 4
shows the questionnaire’s quantitative questions, which utilized a five-point Likert scale
ranging from 1 (Strongly disagree) to 5 (Strongly agree) to pose questions to participants
about trust, authenticity, usage intention, and engagement to help us assess the stated
hypotheses in Section 3. The participants were asked the same questions about each chatbot
(e.g., their perception of trust in the conscientious, extroverted, and agreeable chatbots).
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The participants were asked to keep the chatbot interaction tabs open while filling out the
questionnaire to refresh their memories of the interactions.

Trust was assessed by ten components (e.g., trustworthiness, competence, and ef-
fectiveness) as discussed in Section 3. Perceived authenticity was assessed by perceived
authenticity, human likeness, and clear purpose, while usage intention was assessed by
the participant’s desire to use the chatbot in the future. At last, intended engagement was
assessed by the user’s desire to engage, spend time, and frequently use the chatbot. For
attributes measured by multiple components, such as trust, we computed the components’
mean to calculate the attribute value.

The questionnaire also included qualitative questions. The participants were asked to
elaborate on their selections as to why they found certain chatbots trustworthy, authentic,
and engaging, and why they intended to use certain chatbots. Finally, the participants were
asked to rate their overall preference among the three chatbots and explain the reasons
behind their preferences.
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5. Results

This section presents the findings of our study. To test the hypotheses presented in
Section 3, we conducted Kruskal–Wallis H tests [79] to compare students’ trust, perceived
authenticity, usage intention, and intended engagement with the three chatbots (consci-
entious, extroverted, and agreeable). We also performed the Mann–Whitney U test [80]
to compare differences in students’ ratings (trust, perceived authenticity, usage intention,
and engagement) between pairs of chatbots (conscientious x extroverted, conscientious
x agreeable, and extroverted x agreeable). Kruskal–Wallis H and Mann–Whitney U tests
are suited for our data, which are ordinal and not normally distributed. Furthermore, we
examined the internal reliability of our data using Cronbach’s alpha (α). The result was
above 0.7, indicating acceptable reliability [81]. We also performed a thematic analysis to
analyze the qualitative data collected in this study.

5.1. Effect of Chatbot Personality on Trust, Authenticity, Usage Intention, and Engagement

Figure 5 shows a box plot of students’ trust, perceived authenticity, usage intention,
and intended engagement with the chatbots. Concerning trust, on average, the students
trusted the agreeable chatbot the most (Mdn = 4.1, M = 4.033, SD = 0.7733), followed by
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the extroverted chatbot (Mdn = 3.8, M = 3.788, SD = 0.893) and the conscientious chatbot
(Mdn = 3.6, M = 3.595, SD = 1.017).

On average, the students perceived the extroverted and agreeable chatbot to be almost
equally authentic, with a slight preference for the extroverted chatbot (Mdn = 4, M = 3.953,
SD = 0.113) over the agreeable chatbot (Mdn = 4, M = 3.922, SD = 0.126). In contrast, the
conscientious chatbot was perceived as less authentic (Mdn = 3.33, M = 3.233, SD = 0.151)
than the other two.
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Concerning usage intention, on average, the students intend to use the agreeable chatbot
the most (Mdn = 4, M = 3.721, SD = 0.209), followed by the extroverted chatbot (Mdn = 4,
M = 3.628, SD = 1.254) and the conscientious chatbot (Mdn = 3, M = 3.14, SD = 1.441).

For intended engagement, on average, the students intend to engage with the extro-
verted chatbot the most (Mdn = 4, M = 3.744, SD = 1.093), followed by the agreeable chatbot
(Mdn = 3.667, M = 3.605, SD = 0.174), and the conscientious chatbot (Mdn = 2.33, M = 2.853,
SD = 0.195).

The following subsections present the results of testing the first four hypotheses
defined in Section 3.

5.1.1. Testing Hypothesis 1 (Effect of Chatbot Personality on Trust)

Table 3 shows the results of testing Hypothesis 1. According to the Kruskal–Wallis
H test, the effect of chatbot personality on students’ trust is nonsignificant (p = 0.114). To
obtain more details, we tested the three sub-hypotheses: H1A, H1B, and H1C to compare
students’ trust in each pair of chatbots (Table 3). The results show no significant difference
between students’ trust in the conscientious and extroverted chatbots (p = 0.375). Likewise,
the difference between students’ trust in the agreeable and extroverted chatbots is non-
significant (p = 0.178). However, there is a significant difference between the students’ trust
in the conscientious and agreeable chatbots (p = 0.049).
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Table 3. Hypothesis 1 Testing Results.

Hypothesis Testing H-Value p-Value Result

H1. Chatbot personality affects students’ trust. 4.339 0.114 n. s.

Sub-Hypothesis U-Value p-Value Result

H1A. There is a difference between students’ trust
in the conscientious and extroverted chatbots. 821.5 0.375 n.s

H1B. There is a difference between students’ trust
in the conscientious and agreeable chatbots. 696.5 0.049 supported

H1C. There is a difference between students’ trust
in the agreeable and extroverted chatbots. 768.5 0.178 n.s.

Note: n.s. = not supported.

5.1.2. Testing Hypothesis 2 (Effect of Chatbot Personality on Perceived Authenticity)

Table 4 depicts Hypothesis 2 test results. The results indicate a significant difference
(p = 0.001) between students’ perceived authenticity of the different chatbots. Further,
we tested the three related sub-hypotheses: H2A, H2B, and H2C to compare students’
perceived authenticity of each pair of chatbots. The results show a significant difference
between the students’ perceived authenticity of the conscientious and extroverted chatbots
(p = 0.001) and between the students’ perceived authenticity of the conscientious and
agreeable chatbots (p = 0.001). However, there is no significant difference between the
students’ perceived authenticity of the agreeable and extroverted chatbots (p = 0.838).

Table 4. Hypothesis 2 Testing Results.

Hypothesis H-Value p-Value Result

H2. Chatbot personality affects students’ perceived
authenticity of the chatbot. 15.059 0.001 supported

Sub-Hypothesis U-Value p-Value Result

H2A. There is a difference between students’ perceived
authenticity of the conscientious and extroverted chatbots. 525.5 0.001 supported

H2B. There is a difference between students’ perceived
authenticity of the conscientious and agreeable chatbots. 553 0.001 supported

H2C. There is a difference between students’ perceived
authenticity of the agreeable and extroverted chatbots. 948.5 0.838 n.s.

Note: n.s. = not supported.

5.1.3. Testing Hypothesis 3 (Effect of Chatbot Personality on Usage Intention)

Table 5 depicts the results of testing Hypothesis 3. The effect of chatbot personality
on students’ usage intention is nonsignificant (p = 0.114). Further, we tested the three sub-
hypotheses: H3A, H3B, and H3C to compare students’ perceived intention to use each pair of
chatbots (Table 5). The results show that there is no significant difference between the students’
intention to use the conscientious and extroverted chatbots (p = 0.118), between the students’
intention to use the conscientious and agreeable chatbots (p = 0.054), or between the students’
intention to use the agreeable and extroverted chatbots (p = 0.0591).
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Table 5. Hypothesis 3 Testing Results.

Hypothesis H-Value p-Value Result

H3. Chatbot personality affects students’ intention to use
the chatbot. 4.338 0.114 n. s.

Sub-Hypothesis U-Value p-Value Result

H3A. There is a difference between students’ intention to
use the conscientious and extroverted chatbots. 747.5 0.118 n.s.

H3B. There is a difference between students’ intention to
use the conscientious and agreeable chatbots. 707.5 0.054 n.s.

H3C. There is a difference between students’ intention to
use the agreeable and extroverted chatbots. 864 0.591 n.s.

Note: n.s. = not supported.

5.1.4. Testing Hypothesis 4 (Effect of Chabot Personality on Intended Engagement)

The results show that there is a significant difference (p = 0.002) between students’
intended engagement with the different chatbots (Table 6). We also tested the three related
sub-hypotheses: H4A, H4B, and H4C to compare students’ intended engagement with each
pair of chatbots (Table 6). The results show that there is a significant difference between
the students’ engagement with the conscientious and extroverted chatbots (p = 0.001).
However, there is no significant difference between the students’ intended engagement
with the conscientious and agreeable chatbots (p = 0.006) or between the students’ intended
engagement with the agreeable and extroverted chatbots (p = 0.557).

Table 6. Hypothesis 4 Testing Results.

Hypothesis H-Value p-Value Result

H4. Chatbot personality affects students’ intended
engagement with the chatbot. 12.413 0.002 supported

Sub-Hypothesis U-Value p-Value Result

H4A. There is a difference between students’ intended
engagement with the conscientious and extroverted chatbots. 549 0.001 supported

H4B. There is a difference between students’ intended
engagement with the conscientious and agreeable chatbots. 607 0.006 n.s.

H4C. There is a difference between students’ intended
engagement with the agreeable and extroverted chatbots. 992.5 0.557 n.s.

Note: n.s. = not supported.

5.2. Effect of User Gender on Behavior

Figure 6 shows the box plots of the students’ trust, perceived authenticity, usage intention,
and intended engagement ratings for the three different chatbots categorized by gender. On
average, male students trusted the conscientious (Mdn= 3.779, M = 3.65, SD = 1.102) and
extroverted (Mdn = 4.036, M = 4.1, SD = 0.908) chatbots more than their female counterparts
(conscientious: Mdn = 3.507, M = 3.5, SD = 1.102; extroverted: Mdn = 3.669, M = 3.8), but
the female students (Mdn = 3.857, M = 4.1, SD = 0.729) trusted the agreeable chatbot more
than their male (Mdn = 3.507, M = 4.15, SD = 1.102) counterparts. In comparison, on average,
male students perceived the conscientious chatbot as slightly more authentic (Mdn = 3.381,
M = 3.33, SD = 0.794) than their female counterparts (Mdn = 3.161, M = 3, SD = 1.079), while
male and female students perceived the authenticity of extroverted and agreeable chatbots
very similarly, with slightly higher medians and means for male students. Concerning usage
intention, male students intend to use the conscientious (Mdn = 3.571, M = 3.5, SD = 1.016)
and agreeable (Mdn = 3.857, M = 4.5, SD = 1.406) chatbots more than their female counterparts
(conscientious: Mdn = 2.931, M = 3, SD = 1.58; agreeable: Mdn = 3.655, M = 4), while the male
and female students intend to use the extroverted chatbot very similarly with slightly higher
median and mean values for male students. Regarding engagement, male students expressed
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more engagement with all chatbots than their female counterparts. Table 7 shows the results
of testing Hypotheses 5–8. The results indicate that the students’ gender has no significant
influence on their behavior in relation to the chatbots.
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Table 7. Testing of Hypotheses 5–8.

Hypothesis U-Value p-Value Result

H5. Students’ gender affects students’ trust of the chatbot

H5A. There is a difference between male and female students’ trust in the conscientious chatbot. 176 0.491 n.s.
H5B. There is a difference between male and female students’ trust in the extroverted chatbot. 150 0.173 n.s.
H5C. There is a difference between male and female students’ trust in the agreeable chatbot. 236 0.398 n.s.

H6. Students’ gender affects students’ perception of chatbot authenticity.
H6A. There is a difference between male and female students’ perceived authenticity of the conscientious
chatbot. 173.5 0.449 n.s.

H6B. There is a difference between male and female students’ perceived authenticity of the extroverted chatbot. 198 0.906 n.s.
H6C. There is a difference between male and female students’ perceived authenticity of the agreeable chatbot. 204.5 0.979 n.s.

H7. Students’ gender affects students’ intention to use the chatbot.
H7A. There is a difference between male and female students’ intention to use the conscientious chatbot. 155.5 0.213 n.s.
H7B. There is a difference between male and female students’ intention to use the extroverted chatbot. 134 0.066 n.s.
H7C. There is a difference between male and female students’ intention to use the agreeable chatbot. 185 0.633 n.s.

H8. Students’ gender affects students’ intended engagement with the chatbot
H8A. There is a difference between male and female intended engagement with the conscientious chatbot. 152 0.188 n. s.
H8B. There is a difference between male and female intended engagement with the extroverted chatbot. 179.5 0.548 n. s.
H8C. There is a difference between male and female intended engagement with the agreeable chatbot. 196.5 0.876 n. s.

Note: n.s. = not supported.

5.3. Thematic Analysis of Qualitative Data

To analyze the qualitative data provided by the students, we conducted a thematic
analysis following the method of Forbes [82], which included these steps: (1) becoming
familiar with the data, (2) generating initial codes, (3) searching for themes, (4) defining
themes, (5) iteratively reviewing themes, and (6) writing up the results.

5.3.1. Reasons for Trust, Perceived Authenticity, Usage Intention, and Intended
Engagement with the Chatbots

Figure A1 shows a visualization of the themes found when analyzing the provided
reasons for user behavior. Concerning trust, some students trust the conscientious chatbot
mainly for its clarity and competence and the extroverted chatbot for its human likeness,
competence, and stimulating nature, while trust in the agreeable chatbot is driven by its
empathy, human likeness, competence, and helpfulness.

With respect to perceived authenticity, some students perceived the conscientious chat-
bot to be authentic due to its human likeness, attention to detail, flexibility in understanding
the answers, and being true to its nature (not pretending to be human). In comparison, the
perceived authenticity of the extroverted chatbot is largely driven by its human likeness
and a little by its perceived honesty and friendliness. Likewise, the agreeable chatbot is
considered authentic due to its empathy, human likeness, honesty, and professionalism.

Some students intend to use the conscientious chatbot due to its competence, clarity,
and efficiency, while the usage intention of the extroverted chatbot is driven by its human
likeness, competence, and friendliness. Likewise, the agreeable chatbot is intended to be
used due to its human likeness, competence, and empathy.

In terms of intended engagement, some students intend to engage with the conscien-
tious chatbot due to its competence, honesty, and helpfulness, and the extroverted chatbot
due to its friendliness, fun nature, and helpfulness, while the agreeable chatbot’s intended
engagement is fueled by its competence, human likeness, and empathy.

5.3.2. Chatbot Preference

Figure A2 depicts the students’ preferences for the chatbots, while Figure A3 shows
the reasons the students cited for their preferred chatbots. The majority of the students
preferred the agreeable chatbots (40%), followed by the extroverted chatbot (32.5%), and
the conscientious chatbot (27.5%). The students preferring the agreeable chatbot cited
its empathy, human likeness, honesty, and competence, while the ones preferring the
extroverted chatbot highlighted its human likeness, empathy, honesty, competence, fun
nature, and directness.
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6. Discussion, Implications for Future Research, and Study Limitations

This section summarizes the findings, compares them with related research where
possible, discusses implications for future research, and presents the study limitations.

6.1. Effect of Chatbot Personality on Behavior

In general, our findings show that students indicate noticeably more trust, perceived
authenticity, usage intention, and intended engagement with agreeable and extroverted
chatbots than the conscientious one. This perception leads some students to cite competence,
honesty, and helpfulness as reasons for their preferred chatbots. In contrast, students
attribute incompetence and unhelpfulness to chatbots they do not prefer. This is surprising
as the three chatbots are designed to be equally competent, honest, and helpful.

Due to its human likeness, empathy, perceived competence, and helpfulness, students
trust the agreeable chatbot the most, followed by the extroverted chatbot, then the consci-
entious one. However, the results are statistically inconclusive, except that the difference
between the students’ trust in the conscientious and agreeable chatbots is significant. The
inconclusive results could stem from the students interacting with the chatbots briefly.
Thus, it is unrealistic for them to trust the chatbots regardless of their personalities. Related
works show that users trust chatbot personalities similar to theirs [11,58] in the context
of voice-based e-commerce and driving assistant chatbot-based applications. Our results
show that trust can be achieved without a personality congruence, providing fresh insight
into a largely unexplored area.

In terms of authenticity, due to their human likeness, empathy, friendliness, and
honesty, the students perceived the agreeable and extroverted to be almost equally more
authentic than the conscientious one. Generally, the difference between students’ perceived
chatbot authenticity of different chatbots is statistically significant. However, there is
no significant difference between the students’ perceived authenticity of the agreeable
and extroverted chatbots. To our knowledge, our findings are unique as the relationship
between chatbot personality and authenticity has not been previously studied. We believe
this contribution is crucial to practitioners and researchers striving to develop authentic
chatbots, which have increased loyalty and satisfaction [70].

Driven by their human likeness, competence, empathy, and friendliness, students
intend to use the agreeable and extroverted chatbots nearly equally more than the con-
scientious one. Our findings are akin to those reported in [18], where the authors found
that users prefer to use agreeable chatbots. However, the effect of chatbot personality on
usage intention is not statistically significant. An explanation of this could be due to the
students interacting with the chatbots briefly; thus, it is hard for them to decide on the
usage intention.

Because of their friendliness, fun nature, and helpfulness, students found the extro-
verted chatbot to be the most engaging, followed by the agreeable, then the conscientious
chatbot. Statistically, there is a significant difference between students’ intended engage-
ment with the three different chatbots. However, there is no significant difference among
individual differences between the engagement with the conscientious and agreeable chat-
bots as well as the agreeable and extroverted chatbots. Our findings are similar to those
of [6], citing students who increased engagement with extroverted chatbots. In comparison,
the study by [10] did not find a difference between users’ engagement with chatbots of dif-
ferent levels of extroversion. However, the two studies measured engagement by counting
the number of words instead of engagement intention, which we measured in our study.

An interesting finding of this study is that some students expressed that the communi-
cation style of the extroverted chatbot was informal and not suited for academic advising,
while other students pointed out that both extroverted and agreeable chatbots seemed
unreal as they were excessively and unbelievably positive. Similar insights were reported
in [10].
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6.2. Effect of User Gender on Behavior

There are small differences between how male and female students rated different
chatbots on trust, perceived authenticity, usage intention, and intended engagement. How-
ever, the results are inconclusive statistically. Our findings are similar to those reported
in [74], which found no significance for gender on user behavior when interacting with a
virtual agent. Similarly, another related work [58] found no significant effect on matching
the gender of users and chatbots. However, it is crucial to point out that the population
sample in this study is dominated by females (N = 29), and male students only constitute
32.5% (N = 14) of the population. Consequently, researchers are encouraged to replicate
our results with a more gender-balanced population.

6.3. Chatbot Personality Preference

Due to its empathy, human likeness, honesty, and competence, the results show
that students preferred the agreeable chatbot the most, followed by the extroverted and
conscientious chatbots. Students preferring extroverted chatbots mainly cite their human
likeness, while those preferring the conscientious chatbot highlight its clarity and efficiency.

The results are consistent with the literature, as users prefer agreeable [18] and ex-
troverted chatbots [10]. However, our findings shed light on the reasons for students’
preference for personality-imbued chatbots. Furthermore, our results also show that more
than a quarter of the students preferred the conscientious chatbot, calling for further inves-
tigation in the future as to how the qualities of a conscientious chatbot could be used in
service chatbots.

6.4. Future Research Considerations

This research highlighted a new territory in the literature and contributed fresh in-
sights. Furthermore, our findings open new avenues for future researchers to investigate.
First, this research has identified why certain students do not provide positive ratings
of certain chatbots. For example, some students cited that the extroverted chatbot was
too informal for a serious task, such as academic advising. In contrast, other students
highlighted that the extroverted and agreeable chatbot seemed unreal. As such, it would be
interesting to assess further students’ negative views of the chatbots and investigate how
to address them.

Second, this research has identified that users have varied preferences and reasons
for their ratings of different chatbots, calling for future investigation to accommodate
users’ perspectives. A possible future work could be to investigate combining the traits
of different personalities. For instance, the effect of combining the empathy of agreeable
chatbots and outgoing nature could be studied further. Another possible future work is to
study the effect of user-chatbot personality congruence in the context of academic advising.

Third, it would be interesting to elicit more insights from students by conducting
lengthy interviews on their perception of the chatbots. Finally, we could conduct a lon-
gitudinal study to explore the effect of chatbot personality over a longer period. Longer
individual chats may also yield more definitive results.

Fourth, this research reported a within-subject study to allow the participants to
compare their preference of the three different chatbots. However, future researchers could
potentially conduct this research by performing a between-subjects study and investigate
the relation between user personality and chatbot personality.

6.5. Study Limitations

Several limitations may have affected the results of our study. First, since the par-
ticipants in the study interacted with three different versions of a chatbot as opposed to
one, this may have influenced users’ perception. If users interacted with one chatbot with
one personality, the results may have been different [83]. Second, the participants were
recruited only from three different geographical locations, which is not representative of
users worldwide. Future researchers are encouraged to replicate our results in various
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locations and cultures. Third, most of the participants are non-native speakers of English,
yet they interacted with English-speaking chatbots. While the participants reported a good
command of English, we still think this may have affected the results. As such, future
researchers could replicate our results, while ensuring the lack of a language barrier.

7. Conclusions

This study shows, in the context of academic advising, evidence of chatbot personality
influencing aspects of user behavior such as users’ intended engagement and authenticity
of the chatbots. However, the results were inconclusive about the impact of chatbot
personality on trust and usage intention, possibly due to the limited interaction with
the chatbots during the study. In general, students express higher trust in the agreeable
chatbot and intend to engage with the extroverted chatbot more than other chatbots. In
contrast, students perceive the agreeable and extroverted chatbots to be equally more
authentic and intend to use them more than the conscientious chatbot. Furthermore, in
general, the findings also show that students prefer the agreeable chatbot the most, while
approximately a third of them prefer the extroverted chatbot, and approximately a quarter
prefer the conscientious chatbot.

Students justify their perception of the chatbots due to the expected traits of the
chatbots, for instance, the empathy of the agreeable chatbot, the human likeness of the
extroverted chatbot, and the clarity of the conscientious chatbot. However, to our surprise,
some students attribute competence and honesty only to their preferred chatbots, although
all chatbots were designed to be equally competent and honest. This leads us to speculate
that chatbot personality is perhaps a more important way for chatbots to connect to a range
of users than previously thought.

Furthermore, the findings also show that students generally prefer the agreeable
chatbot the most due to its empathetic and human-like nature. In contrast, approximately
a third of the students prefer the extroverted chatbot due to its simulation of a human
character and its fun nature.

Future researchers should investigate the effect of chatbot personality over a longer
time, the effect of combined personality traits on user behavior, and the effect of the chatbot
personality in different contexts.
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