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Abstract: Osteoporosis is still a serious public health issue in Thailand, particularly in postmenopausal
women; meanwhile, new effective screening tools are required for rapid diagnosis. This study
constructs and confirms an osteoporosis screening tool-based decision tree (DT) model. Four DT
algorithms, namely, classification and regression tree; chi-squared automatic interaction detection
(CHAID); quick, unbiased, efficient statistical tree; and C4.5, were implemented on 356 patients, of
whom 266 were abnormal and 90 normal. The investigation revealed that the DT algorithms have
insignificantly different performances regarding the accuracy, sensitivity, specificity, and area under
the curve. Each algorithm possesses its characteristic performance. The optimal model is selected
according to the performance of blind data testing and compared with traditional screening tools:
Osteoporosis Self-Assessment for Asians and the Khon Kaen Osteoporosis Study. The Decision Tree
for Postmenopausal Osteoporosis Screening (DTPOS) tool was developed from the best performance
of CHAID’s algorithms. The age of 58 years and weight at a cutoff of 57.8 kg were the essential
predictors of our tool. DTPOS provides a sensitivity of 92.3% and a positive predictive value of 82.8%,
which might be used to rule in subjects at risk of osteopenia and osteoporosis in a community-based
screening as it is simple to conduct.
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1. Introduction

Osteoporosis is considered a severe public health issue in Thailand since it can result in
fractures that leave people bedridden and immobile and eventually lead to illness, including
chronic diseases of the respiratory system, pressure ulcers, urinary tract inflammation
infection, and possibly death. Osteoporosis is a disease of the bone characterized by
a decrease in bone mass and changes in bone structure, leading to an increased risk of
fractures [1]. In the population more than 50 years of age, osteoporosis is more common,
occurring in 33% of females and 20% of males, due to the lack of estrogen in women
after menopause, reducing calcium binding to the bone tissue. The WHO reports that
osteoporosis occurs in 1/3 of women aged 60–70 and 2/3 aged 80 [2,3]. Diagnosing
and treating patients with osteoporosis are expensive. The estimated annual cost per
patient for hip fracture care is THB 116,459, of which the direct cost per patient is THB
59,881 [4]. Dual-energy X-ray absorptiometry (DEXA) for bone mineral density assessment
is the gold standard for diagnosing osteoporosis and consistently predicting the risk of
fractures caused by osteoporosis [1]. However, Thailand still has a shortage of DEXA
bone density scanners. Most bone density scanners are available at university hospitals,
private hospitals, hospitals in Bangkok, and some center hospitals. Therefore, most patients
with osteoporosis are undiagnosed because early osteoporosis is asymptomatic. Only
after fractures have occurred will patients be admitted for treatment and assessment.
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Some health care institutions employ heel-to-head ultrasound (QUS), which is affordable,
quick, and simple to obtain but has limited sensitivity and cannot replace a conventional
instrument [5]. Therefore, osteoporosis risk screening criteria are used before considering
whether the patients should be referred for examination with DEXA, which will assist with
reducing the cost of effective screening in the limited resource and rural areas. In 2001, the
risk of osteoporosis in Asian countries was studied, and the formula for determining the
risk of osteoporosis, known as the OSTA (Osteoporosis Self-Assessment for Asians) index,
was obtained: 0.2 × (weight-age), with body weight in kilograms and age in years [6].
In addition to OSTA screening, there is a Khon Kaen Osteoporosis Study (KKOS) score
method [7] that combines the scores from age (year) and weight (kg) and interprets the
results as follows: KKOS less than −1 indicates a high risk of developing osteoporosis and
KKOS greater than −1 shows a low risk of developing osteoporosis.

The OSTA index and KKOS score were obtained from the conventional mathematic
modeling of the univariate models and logistic regression methods based solely on age
and weight factors. More recent tools have also been developed for a specific population
of Chinese that also used age and weight as predictors using the formula weight (kg) −
(2 × age (year)) + 50 [8]. In addition to these tools, the WHO conducted a population-based
cohort study in Europe, North America, Asia, and Australia. The FRAX® without bone
mineral density (BMD) tool was developed to assess the likelihood of fractures due to
osteoporosis in the next decade. The clinical risk associated with BMD was considered,
as femoral neck BMD was related to BMI based on age, sex, weight, height, and clinical
risk. A modified-FRAX® Thai was developed using the Thai standard value, but inputting
variables in the tool is complicated, making it potentially unsuitable for common use [9,10].
Other tools created from the conventional mathematic-based methods since the years of
1998–2002 for classifying the risk of osteoporosis or bone fracture in peri/postmenopausal
women include ABONE (predictive variables: age, weight, estrogen) [11], ORAI (predictive
variables: age, weight, estrogen) [12], OSIRIS (predictive variables: age, weight, hormone
therapy, impact fracture) [13], SCORE (predictive variables: age, weight, race, rheumatoid
arthritis, previous fracture, hormone therapy) [14], and SOFSURF (predictive variables: age,
weight, smoking, history of fracture) [15]. All of these required some parameters, including
estrogen use history, that could be missing due to no data record of the risk population or
could not be measured in a limited resource.

Recently, data science has come into play in the medical field by assisting in forecasting
disease risk more accurately than traditional methods. As established in a previous study
conducted outside Thailand, osteoporosis screening using data science methods is success-
ful for data analysis, highly accurate in predicting osteoporosis risk in postmenopausal
women and capable of identifying risk variables linked with osteoporosis [16–21]. A deci-
sion tree (DT) is one example of a machine learning technology dealing with data analysis
with a small assumption. Its primary objective is to perform different classification tasks
and establish decision rules. Although some studies have used DT in medicine to per-
form disease diagnoses [22,23], most of them were according to a single DT algorithm,
most frequently C4.5, or just compared with other machine learning algorithms [24,25].
Presently, few researchers have used algorithms such as classification and regression tree
(CART); chi-squared automatic interaction detection (CHAID); and quick, unbiased, effi-
cient statistical tree (QUEST) on project case studies and comprehensive analyses of rule
characteristics and classification results. Other machine learning algorithms, including
support vector machines, random forests, logistic regression, artificial neural network, and
eXtreme Gradient Boosting, can also be used for classification predictions, but their results
are challenging to interpret [26,27]. Instead, DT is a type of machine learning algorithm
and analysis technique that can be used to construct models quickly, perform predictions,
identify patterns and rules in data, and process large amounts of data.

In this study, we hypothesized that in comparison with the traditional screening tools,
a decision tree-based model could be accessed with high sensitivity sufficient to enhance
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the screening of osteopenia and osteoporosis in the era of machine learning algorithms for
postmenopausal Thai women.

2. Materials and Methods
2.1. Data Collection

We retrospectively collected the data from the electronic health records of post-
menopausal Thai women at the department of obstetrics and gynecology, Ramathibodi Hos-
pital, Bangkok. The inclusion criteria were postmenopausal women with anatomy suitable
for evaluation by DEXA of the total bone mass density, ability to read and give informed per-
mission, and readiness to participate in the study. The following were listed as exclusion cri-
teria: history or evidence of metabolic bone disease (other than postmenopausal bone loss),
presence of cancer with known metastasis to bone, evidence of significant renal impairment,
removal of the ovary, previous fracture or replacement of both hips, and prior treatment
with any bisphosphonate, fluoride, or calcitonin [6]. Total BMD was assessed by DEXA
(Lunar Prodigy, New York, NY, USA) scanning. The definitive diagnosis of osteoporosis was
based on WHO criteria [1]. Briefly, participants with a BMD T-score ≤ −2.5 standard devi-
ation (SD) below the normal were considered to have osteoporosis, whereas a BMD T-score
between −1 and −2.5 SD was classified as osteopenia. A BMD T-score ≥ −1.0 SD was con-
sidered normal. Overall, 266 abnormal (BMD T-score < −1.0 SD; osteopenia/osteoporosis
subjects) and 90 normal (BMD T-score ≥ −1.0 SD) postmenopausal women were included
in the study. We enrolled 11 simple biographical and anthropometric variables as pos-
sible presumptive variables in a model because these variables do not require a special
instrument to measure but only require well-trained people to collect accurate results.
A simple variable is more suitable as a screening variable in a field population. No missing
information was observed for age, weight, and height, while the percentage of missing
values in other variables was not more than 5 in both the normal and abnormal groups.
Characteristics of the study’s variables are presented in Table 1.

Table 1. Characteristics of the predictive variables.

Parameters

Normal
(BMD T-Score ≥ −1.0 SD)

(n = 90)

Abnormal Group
(BMD T-Score < −1.0 SD)

(n = 266)

Missing Value Missing Value

(n) % (n) %

Age (years) 0 0.0 0 0.0

Weight (kg) 0 0.0 0 0.0

Height (cm) 0 0.0 0 0.0

Body mass index (kg/m2) 2 2.2 0 0.0

Waist (cm) 2 2.2 4 1.5

Hip (cm) 2 2.2 5 1.9

Arm circumference (cm) 2 2.2 0 0.0

Triceps skinfold (mm) 2 2.2 2 0.8

Sub scapular skinfold (mm) 2 2.2 2 0.8

Arm span (cm) 2 2.2 1 0.4

Height arm span ratio 2 2.2 1 0.4

2.2. Experimental Design

This study proposes a tool for the high-performance screening of osteoporosis risk
using a DT. First, as shown in Figure 1, the initial data are categorized into experimental
and blind datasets. The missing information in the experiment dataset is treated using
k-nearest neighbor imputation before being split into the training and testing datasets
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randomly in 10 rounds in Python. Furthermore, the Synthetic Minority Oversampling
Technique (SMOTE) technique treats the imbalance problem in normal and abnormal
groups. The CART, CHAID, QUEST, and C4.5 algorithms are then applied to develop mod-
els for 10 datasets. The average accuracy, sensitivity, specificity, and AUC are calculated
for 10 models using the testing dataset for each algorithm and subsequently compared.
A representative model out of 10 is selected for each machine learning technique, consider-
ing the highest accuracy, sensitivity, specificity, AUC, and possibility of implementing the
model. The blind dataset is used with the four representative models and compared with
the conventional OSTA and KKOS tools, and subsequently, the optimal model is selected.
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Figure 1. Model construction and validation using machine learning algorithms.

2.3. Data Preparation

We preprocessed the experimental data, which involved missing data handling, ran-
domly separated them into 10 training and testing datasets, and balanced the training
datasets before conducting model construction.

2.3.1. Missing Data Handling

The primary set of predictor variables was subjected to Little’s missing completely at
random (MCAR) test. The results showed that missing values were MCAR for the dataset,
accounting for p-value = 1.00. A single imputation was employed in the dataset to fill in
the missing data. The k-nearest neighbor approach accounted for all predictor factors for
imputation, excluding the outcome variable.

2.3.2. Training and Testing Data

We randomized 10 rounds to achieve 10 datasets to ensure the lowest bias by chance
in the randomization. The experimental data were separated into training and testing sets
following imputation. The training set included 80% of the data for model development,
and the testing set consisted of the remaining 20% for internal model validation.

2.3.3. Imbalanced Data Handling

Most well-known machine learning algorithms perform best when the distribution
of positive and negative examples is balanced, and even DTs experience issues when the
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dataset is unbalanced. In these situations, DT models frequently produce results with
higher accuracy in most classes. Several studies have shown the benefits of SMOTE for
addressing uneven data sets [28,29]. Therefore, for this evaluation, we used SMOTE to
balance the data between the majority presented in the abnormal group (experimental
dataset, n = 240) and the minority class presented in a normal group (experimental dataset,
n = 81).

2.4. DT Algorithms
2.4.1. CART Algorithm

CART is a recursive partitioning algorithm applied to classification and regression. The
technique entails repeatedly separating subsets of the dataset into two child nodes using
all attributes, starting with the complete dataset. The best feature is selected according to
diversity measures (Gini, twoing, ordered twoing, and least-squared deviation) [30]. Here
Gini’s impurity for categorical target variables was used.

The Gini’s impurity index of a training set D is defined as follows:

Gini(D) = 1−
m

∑
i=1

p2
i

where pi represents the probability that an instance in D be underclass Ci (for i = 1, 2, . . . ,

m) and is calculated by |Ci,D|
|D| .

The Gini index considers a binary split for each attribute A, which is categorized into
D1 and D2. The Gini index of D, according to the partition, is

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

The reduction in impurity that binary spit would gain on attribute A is the following:

∆Gini(A) = Gini(D)− GiniA(D)

The attribute that maximizes the reduction in impurity (i.e., has the minimum Gini
index) is selected as the splitting attribute [31].

2.4.2. QUEST Algorithm

QUEST is a binary DT algorithm that can be used for data mining and classification.
For each split, the algorithm computes the relationship between each input attribute and
each target attribute using the ANOVA F-test, Levene’s test (for ordinal and continuous
attributes), or Pearson’s chi-square (for nominal attributes). Using two-means clustering,
two super-classes are created if the target attribute is multinomial. It is decided which
feature will be split based on which one has the strongest correlation with the target
attribute. For the input attribute, the best splitting point is determined using quadratic
discriminant analysis. Ten-fold cross-validation is performed to prune the trees [32].

2.4.3. CHAID Algorithm

Kass [33] originally proposed the CHAID algorithm. The algorithm is used to deter-
mine whether there is a correlation between a categorical dependent variable and several
independent variables that could be categorical, numerical, or both. However, the coding
and transformation into categorical variables should be finished in advance for numeri-
cal variables. The CHAID algorithm is based on a criterion that recursively categorizes
the heterogeneous input data set into homogenous groups regarding the dependent vari-
able categories. The Pearson’s chi-square statistic is used as a criterion for division. The
procedure for testing and expressing conclusions is similar to the traditional approach
for statistically testing hypotheses. The algorithm is conducted in two steps: merging
and splitting.
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The nonsignificant categories for each independent variable were combined in the
merging step. Each independent variable’s final category would lead to a separate child
node if the independent variables were used to divide the node. The two variable types
with the highest p-values regarding the dependent variable were the most comparable,
so they were combined. If no new merging couples are found, or if the p-value for all
prospective pairs is less than the specified significance level, the search is continued. The
corrected p-value is also computed to apply it in the splitting stage. The p-value is calculated
for the merged categories when nonbinary independent variables are used using the
Bonferroni adjustment.

The independent variable that will split into the best nodes is determined by compar-
ing the modified p-values associated with each variable. If the adjusted p-value is less than
or equal to the significance threshold, the node is categorized into sub-nodes based on
the merged categories. If not, the node is considered the terminating node. When all the
independent variables in the input have p-values greater than the assigned split threshold,
the tree-building procedure ends. When a value is missing, CHAID addresses it by treating
every missing value as a valid independent category. CHAID does no pruning.

2.4.4. C4.5 Algorithm

C4.5 is a supervised learning algorithm that uses a splitting criterion known as a gain
ratio. The attribute selected as the splitting attribute has the highest gain ratio [31]. Given
that a training set D has m distinct values for the class label attribute Ci (for i = 1, 2, . . . , m).
The notations |D| and |Ci,D| denote the number of instances in D and Ci,D, respectively. If
the cases in D are categorized into ν groups according to the values of attribute A as shown
in the training data, A splits D into Dj partitions for j = 1, 2, . . . ,ν.

The information gain is defined as the following:

Gain(A) = In f o(D)− In f oA(D)

where In f o(D) = −
m
∑

i=1

|Ci,D|
|D| log2

|Ci,D|
|D| is the expected information and In f oA(D) =

v
∑

j=1

|Dj|
|D| In f o(Dj) is the expected information needed to categorize an instance from D

based on the partitioning by A.
The gain ratio of A is presented as follows:

GainRatio(A) =
Gain(A)

SplitIn f o(A)

SplitIn f o(A) = −
v

∑
j=1

∣∣Dj
∣∣

|D| log2

(∣∣Dj
∣∣

|D|

)

2.5. Model Construction and Selection

In this study, we implemented four DT algorithms, CART, CHAID, QUEST, and C4.5,
to the training and testing dataset. Each algorithm was run 10 times according to 10 training
and testing datasets. Average accuracy, sensitivity, specificity, and AUC were compared.
Each algorithm’s representative models were selected according to the best performance,
expert knowledge, and possible application. To identify the final optimized model, these
4 selected models were then tested by 35 samples of the blind dataset to achieve the most
effective model. The traditional tools OSTA and KKOS were used to compare (Figure 1).
Positive predictive value (PPV) and negative predictive value (NPV) were also selected as
criteria in this step. For CART, QUEST, and CHAID, we initially ranged the maximum tree
depth from 2 to 5, with fixed values for the minimum number of cases in parent and child
nodes of 100 and 50, respectively. Likewise, a confidence factor was set between 0.05 and
0.25 in increments of 0.05, and a minimum number of objects was set between 2 and 20 in
increment of 2. The optimal model of each algorithm was selected based on the initial high
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performance of the preliminary testing and simple interpretation. The hyperparameters
and conditions used for each algorithm are presented in Table 2. The performance criteria
that were used in the study were calculated as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN)
Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)
Positive Predictive value (PPV) = TP/(TP + FP)
Negative predictive value (NPV) = TN/(TN + FN)

where TP represents an outcome in which the model correctly predicts the osteoporosis
class, TN represents an outcome in which the model correctly predicts the normal class, FP
represents an outcome in which the model incorrectly predicts the osteoporosis class, and
FN represents an outcome in which the model incorrectly predicts the normal class.

Table 2. Using the hyperparameters of the four algorithms.

DT
Algorithms

Measure Used to Select
Input Variable Hyperparameters Value

CART Gini index Maximum Tree Depth 5

Minimum Number of Cases: Parent node 100

Minimum Number of Cases: Child node 50

QUEST F/Chi-square test Maximum Tree Depth 5

Minimum Number of Cases: Parent node 100

Minimum Number of Cases: Child node 50

CHAID Chi-square test Significance Level for Split 0.05

Significance Level for Merge 0.05

Maximum Tree Depth 2

Minimum Number of Cases: Parent node 100

Minimum Number of Cases: Child node 50

C4.5 (J48) Entropy/information gain Confidence factor 0.25

Minimum number of objects 20

2.6. Statistical Analysis

A normality test was applied to all continuous variables. The mean and SD were
computed for the normally distributed data, whereas median and interquartile range (IQR)
values were calculated for non-normal distribution data. An independent t-test or Mann–
Whitney test was used to test the differentiation between the two comparative groups as
appropriate. In the case of more than two group comparisons, one-way ANOVA was used
to compare the differences. A p-value less than 0.05 was considered a significant difference.

3. Experimental Results
3.1. General Characteristics and the Difference in Parameters between the Normal and
Abnormal Groups

We proposed statistical analysis to initially notice the likelihood of the difference in
each parameter between the normal and abnormal groups. The results revealed that among
biography and anthropometric features, most features represent significant differences
except for height, arm span, and height arm span ratio (Table 3). The most correlated
features with osteoporosis status were age and weight (Figure 2). Even though not all
significant differences in features were found, we included all the features to perform
DT analysis because they may be included in a model tested by different decision tree
algorithms as machine learning algorithms have overcome the limitations of statistical-
based testing. DT algorithms construct splits on single features that improve classification
based on an impurity measure like Gini or entropy [34,35].
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Table 3. Characteristics of the parameters in the normal and abnormal groups.

Parameters

Normal Group
(T-Score ≥ −1.0 SD)

(n = 90)

Abnormal Group
(T-Score < −1.0 SD)

(n = 266) p-Value

Mean (SD) Median (IQR) Mean (SD) Median (IQR)

Age, years 52.80 (6.95) 53.00 (8.00) 58.67 (6.39) 59.00 (9.00) 0.000 a

Weight, kg 61.84 (10.32) 59.50 (13.60) 55.18 (8.46) 54.50 (9.60) 0.000 b

Height, cm 156.09 (5.43) 156.00 (8.00) 154.90 (5.25) 155.00 (7.00) 0.111 b

Body mass index, kg/m2 25.42 (3.98) 24.93 (6.18) 22.98 (3.14) 22.60 (3.92) 0.000 b

Waist, cm 82.02 (9.61) 81.00 (14.00) 77.65 (8.70) 77.00 (10.00) 0.000 b

Hip, cm 99.69 (7.64) 99.75 (9.80) 95.37 (7.10) 95.00 (6.50) 0.000 b

Arm circumference, cm 29.65 (7.51) 28.25 (5.50) 27.13 (2.86) 27.00 (4.00) 0.000 b

Triceps Skin fold, mm 23.24 (5.66) 24.00 (9.00) 21.34 (6.64) 21.00 (7.00) 0.003 b

Sub Scapular Skin Fold, mm 27.50 (6.90) 28.00 (9.50) 24.88(6.81) 24.00 (10.00) 0.003 b

Arm Span, cm 159.00 (7.26) 158.00 (10.80) 158.46 (7.18) 158.00 (9.50) 0.768 b

Height arm span ratio 0.98 (0.03) 0.98 (0.04) 0.98 (0.00) 0.98 (0.04) 0.617 b

a Tested with independent t-test, b Tested with Mann–Whitney test, p-value < 0.05 considered significant.
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3.2. Performance of Four Decision Tree Algorithms and the Selected Model

The results showed no statistically significant differences in the average accuracy,
sensitivity, specificity, or AUC of the four DT algorithms (p-value > 0.05). Each algorithm
presented distinct characteristics. The highest accuracy, sensitivity, specificity, and AUC
were found in the CART, C4.5, QUEST, and CHAID algorithms, respectively (Table 4).
For each machine learning algorithm, the best model was selected among 10 models
considering the testing dataset’s highest accuracy, sensitivity, specificity, and AUC and
the possibility of implementing the model. The performance of the representative model
for CART, CHAID, QUEST, and C4.5 is presented in Table 5. Among the 4 representative
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models, CHAID produces the highest accuracy (0.804) and sensitivity (0.875), whereas
QUEST expresses the highest specificity (0.880) and AUC (0.773). The representative
trees for CART, CHAID, QUEST, and C4.5 are shown in Figures 3–6, respectively. Weight
and age are the most vital features in CART and CHAID, whereas age is an essential
attribute in QUEST. The most critical parameters for the C4.5 algorithm are weight, age,
and BMI. For CART, QUEST, CHAID, and C4.5, the depth levels of the tree model are 2, 1, 2,
and 3, respectively.

Table 4. The performance of the four algorithms.

Models
Accuracy Sensitivity Specificity AUC

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

CART 0.699 (0.045) 0.709 (0.106) 0.646 (0.133) 0.686 (0.027)

QUEST 0.662 (0.042) 0.653 (0.123) 0.688 (0.137) 0.670 (0.061)

CHAID 0.665 (0.078) 0.661(0.123) 0.676 (0.101) 0.716 (0.060)

C4.5 0.677 (0.047) 0.710 (0.072) 0.584 (0.113) 0.672 (0.071)

p-value 0.433 0.591 0.243 0.156

Table 5. The performance of the representative models for CART, CHAID, QUEST, and C4.5.

Representative Algorithm Accuracy Sensitivity Specificity AUC

CART 0.784 0.847 0.600 0.702

QUEST 0.722 0.667 0.880 0.773

CHAID 0.804 0.875 0.600 0.735

C4.5 0.711 0.764 0.560 0.639
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3.3. Blind Data Testing, Final Model Selection and Rule Extraction

The blind records of 35 postmenopausal women were tested using the 4 representative
models as shown in Figures 3–6 and traditional approach tools, such as OSTA and KKOS
(Table 6). As presented in Table 7, the highest accuracy (0.800) and sensitivity (0.923)
are provided by the CHAID algorithm, whereas the specificity for CART, CHAID, and
C4.5 are comparable. Additionally, the OSTA and KKOS indicated the highest specificity
(0.889). The positive predictive value (PPV) and negative predictive value (NPV) range
from 0.808 to 0.938 and 0.348 to 0.667, respectively. Regarding health care, detecting the
risk of osteoporosis in postmenopausal women is more important than detecting normal
patients. Hence, we chose CHAID’s tree model because it has the best sensitivity and PPV
for detecting risk in postmenopausal women. The rule was extracted from the tree model
of the representative CHAID algorithm, as presented in Table 8. We named our model the
Decision Tree for Postmenopausal Osteoporosis Screening (DTPOS).

Table 6. Classifications for the 35 records of postmenopausal women using the 4 representative
models as well as the OSTA and KKOS approaches. Normal and abnormal groups are indicated by 0
and 1, respectively.

No. Age Weight BMI Diagnosis CART QUEST CHAID C4.5 OSTA KKOS

1 40 65.0 28.89 0 0 0 0 0 0 0
2 47 62.0 24.84 1 0 0 0 0 0 0
3 47 49.0 20.66 0 1 0 1 1 0 0
4 49 54.9 22.27 1 1 0 1 1 0 0
5 50 48.9 18.40 1 1 0 1 1 0 1
6 50 54.5 21.29 0 1 0 1 1 0 0
7 52 48.7 20.94 1 1 0 1 1 0 1
8 52 55.5 21.15 0 1 0 1 1 0 0
9 53 57.0 25.33 1 0 0 1 0 0 0

10 54 51.3 21.35 1 1 0 1 1 0 0
11 54 56.0 22.43 1 1 0 1 1 0 0
12 54 48.0 18.75 1 1 0 1 1 1 1
13 54 59.8 25.55 0 0 0 0 0 0 0
14 55 51.7 23.29 1 1 0 1 1 0 1
15 56 48.8 19.80 1 1 0 1 1 1 1
16 56 68.0 29.43 0 0 0 0 0 0 0
17 57 62.0 25.81 1 0 1 0 0 0 0
18 58 38.1 15.46 1 1 1 1 1 1 1
19 58 54.8 22.81 1 1 1 1 1 0 1
20 58 55.0 22.03 1 1 1 1 1 0 0
21 58 57.5 23.03 1 0 1 1 0 0 0
22 58 58.5 23.73 0 0 1 0 0 0 0
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Table 6. Cont.

No. Age Weight BMI Diagnosis CART QUEST CHAID C4.5 OSTA KKOS

23 59 49.5 22.75 1 1 1 1 1 1 1
24 59 46.1 20.49 0 1 1 1 1 1 1
25 60 95.0 33.26 1 1 1 1 0 0 0
26 62 51.8 20.49 1 1 1 1 1 1 1
27 62 62.0 26.14 0 1 1 1 1 0 0
28 63 48.0 19.98 1 1 1 1 1 1 1
29 64 61.0 24.75 1 1 1 1 1 0 0
30 65 61.2 27.20 1 1 1 1 1 0 0
31 65 42.5 19.40 1 1 1 1 1 1 1
32 68 51.4 23.47 1 1 1 1 1 1 1
33 68 57.0 23.12 1 1 1 1 1 1 1
34 69 45.8 20.91 1 1 1 1 1 1 1
35 70 55.2 24.53 1 1 1 1 1 1 1

Table 7. Performance of the selected models and comparison with OSTA and KKOS in the blind data.

Model Accuracy Sensitivity Specificity PPV NPV No. of Variable Features in the Model

CART 0.743 0.846 0.444 0.815 0.500 2 age weight

QUEST 0.629 0.615 0.667 0.842 0.375 1 age

CHAID 0.800 0.923 0.444 0.828 0.667 2 age weight

C4.5 0.714 0.808 0.444 0.808 0.444 3 age weight BMI

OSTA 0.543 0.423 0.889 0.917 0.348 2 age weight

KKOS 0.657 0.577 0.889 0.938 0.421 2 age weight

Table 8. Decision Tree for Postmenopausal Osteoporosis Screening (DTPOS) rule.

Rule Length Condition Prediction

1 1 Age > 58 1, Abnormal

2 2 Age ≤ 58 and weight > 57.8 0, Normal

3 2 Age ≤ 58 and weight ≤ 57.8 1, Abnormal

4. Discussion

Studies on the prevalence of osteoporosis in hospitalized Thai women at Thai govern-
ment hospitals and random surveys of women in every region of Thailand in 2008 and 2011
indicate that 11%–13% of women over 40 are assumed to have femoral neck osteoporosis,
and 19%–21% of them have lumbar spine osteoporosis [36,37]. It was reported in 2015
that people with osteoporotic hip fractures in the northern part of the country had higher
death rates and other relevant characteristics. In the first year, the average death rate was
21.1%, which was 9.3 times higher than the general population rate. At the end of the
10th year, 68% of people had died [38]. These data showed that osteoporosis is a primary
life-threatening condition and a major problem in the country. Therefore, early screening
and diagnosis are crucial. Numerous screening tools have been developed with the same
goal of identifying the risk population to the entrance to BMD measurement to prevent
future bone fracture. Among the screening tools, KKOS, OSTA, and FRAX® are the most fre-
quently referred to in Thailand, as suggested by the Thai Osteoporosis Foundation [37,39].
The prevalence of osteoporosis and hip fracture has not significantly decreased since the
tools’ implementation and validation. Furthermore, the number of osteoporosis-related
fractures, the expense of health care related to fractures, and post-fracture mortality were
all predicted to increase as Thailand’s elderly population (those 60 and older) increases
from 14% of the total population in 2015 to approximately 30% by 2050 [40–43]. Therefore,
alternative tools with high sensitivity are required to support different approaches.
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The traditional screening tools were mainly developed based on mathematical assump-
tions that prevent the critical finding of the predictive variables or event from alternate
the cutoff point of the variable because the statistical model used had a strict assumption.
In the new era of data science, machine learning algorithms have been developed and
have overcome the limitation of mathematical and statistical-based modeling [34,35]. Our
study found that the DT approach could also identify the predictive variables. The most
crucial variables were age and weight, which also agree with several current statistical
and machine learning-based tools [8–16,18–21]. We noticed the highest performance with
CHAID algorithm, so its representative tree was then used to extract the rule, namely,
DTPOS. Postmenopausal women over age 58 have a BMD T-score < −1.0 as the predicting
condition of osteopenia or osteoporosis. Postmenopausal women whose age is less than or
equal to 58 and weight less than 57.8 kg also have a BMD T-score <−1.0, while those whose
weight is more than 57.8 kg are considered to have a BMD T-score ≥ −1.0 or predicted to
be in the normal group.

Compared with the KKOS and OSTA in the blind dataset testing, which represent the
same age and weight variables in the model, the DTPOS model has the highest accuracy,
sensitivity, and NPV. In contrast, the specificity of DTPOS is not very high, although its
PPV is comparable. These findings showed that the DTPOS model could identify more
osteopenia and osteoporosis in postmenopausal women. For instance, in the disagreement
prediction of the 13 abnormal cases (No. 4, 5, 7, 9–11, 17, 19–21, 25, and 29–30), DTPOS
correctly forecasted all 13 cases as abnormal, whereas OSTA missed all 13 cases and KKOS
missed 9 cases. The performance difference could be due to the different methods used
in model construction that provide the different cutoff levels. Overall, KKOS sensitivity
and specificity in the validation cohort are 70% and 73%, respectively [43]. Furthermore,
the OSTA model is based on the recruitment of samples from many nations, making it
non-nation-specific. Different tools based on different construction methods have their own
potential and characteristics for classification [20,44]. Implementing different models in
various nations results in several performances because of the different body sizes, lifestyles,
environmental, and genetic factors. Nine screening tools were evaluated in both men and
women among community-dwelling older people in Taiwan. Of these techniques, 6 could
deliver up to 100% sensitivity; however, the specificity was not satisfied [45]. A comparison
of 6 osteoporosis risk assessment tools among postmenopausal women in Kuala Lumpur,
Malaysia, indicated that SCORE had the best balance between recall (1.00), precision
(0.04–0.12), and AUC (0.072–0.161) [46]. In middle-aged Thai women, FRAX® without
BMD, SCORE, and OSTA have appropriate validity as tools for ruling out osteoporosis
with a specificity of more than 75%; however, the sensitivity range is only 1.43–57.33% [4].
For other Asian countries, including Vietnam, OSTA and the osteoporosis screening tool
for Chinese (OSTC) were evaluated in the community for osteoporosis screening. OSTA
and OSTC were useful self-assessment tools for osteoporosis detection in postmenopausal
Vietnamese women. The highest levels of OSTA’s sensitivity and specificity were 74.6%
and 81.4%, compared with 73.9% and 82.6% for OSTC [47].

These previous studies show that specific new development tools are required in
particular populations to enhance the sensitivity of osteoporosis findings. Our DT machine
learning approach could provide a simple rule that is very easy to use, particularly for
use in community-based screening. Very high sensitivity, up to 92.3%, showed that our
tool could be used to assess the risk of osteopenia and osteoporosis. The village health
volunteers can use the tool without any training and with greater frequency. Self-screening
is also simple for those with access to a weighted scale and a measuring tape. In the case
of those at a risk of osteoporosis, the volunteer or people themselves can immediately
change their behavior or lifestyle to reduce the risk of bone fracture and consult a doctor for
an osteoporosis diagnosis.

The DTPOS rule recruits a sample from a specific postmenopausal Thai population
from only one hospital. The results may not be generalizable for all postmenopausal women
in other areas who have distinct biological characteristics. The application’s usage may
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also be limited in other nations. Although it provides high sensitivity, PPV, and NPV, the
specificity is not high enough. The use of the tools is necessary to consider some missing
classifications. Because the model was not assessing the performance of people with
a high risk of osteoporosis, such as people with a history of fractures, clinical risk factors,
lifestyle habits (i.e., smoking and alcohol assumption), estrogen therapy, nutritional status
(i.e., vitamin D levels), and genetic predisposition factors, which were reported to affect
bone mass density [48–51], future studies are required to enhance the model’s performance
and investigate it in a large study and different settings.

5. Conclusions

We used DT machine learning algorithms to search for a new tool to improve osteo-
porosis screening in postmenopausal Thai women. We provide an appropriately simple
DTPOS tool to rule on the risk of osteoporosis in postmenopausal women. This tool may
be used for screening osteoporosis in a community with limited resources.
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