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Abstract: Breast cancer accounts for 30% of all female cancers. Accurately distinguishing dangerous
malignant tumors from benign harmless ones is key to ensuring patients receive lifesaving treatments
on time. However, as doctors currently do not identify 10% to 30% of breast cancers during regular
assessment, automated methods to detect malignant tumors are desirable. Although several comput-
erized methods for breast cancer classification have been proposed, convolutional neural networks
(CNNs) have demonstrably outperformed other approaches. In this paper, we propose an automated
method for the binary classification of breast cancer tumors as either malignant or benign that utilizes
a bag of deep multi-resolution convolutional features (BoDMCF) extracted from histopathological
images at four resolutions (40×, 100×, 200×, and 400×) by three pre-trained state-of-the-art deep
CNN models: ResNet-50, EfficientNetb0, and Inception-v3. The BoDMCF extracted by the pre-trained
CNNs were pooled using global average pooling and classified using the support vector machine
(SVM) classifier. While some prior work has utilized CNNs for breast cancer classification, they did
not explore using CNNs to extract and pool a bag of deep multi-resolution features. Other prior work
utilized CNNs for deep multi-resolution feature extraction from chest X-ray radiographs to detect
other conditions such as pneumoconiosis but not for breast cancer detection from histopathological
images. In rigorous evaluation experiments, our deep BoDMCF feature approach with global pooling
achieved an average accuracy of 99.92%, sensitivity of 0.9987, specificity (or recall) of 0.9797, positive
prediction value (PPV) or precision of 0.99870, F1-Score of 0.9987, MCC of 0.9980, Kappa of 0.8368,
and AUC of 0.9990 on the publicly available BreaKHis breast cancer image dataset. The proposed
approach outperforms the prior state of the art for histopathological breast cancer classification
as well as a comprehensive set of CNN baselines, including ResNet18, InceptionV3, DenseNet201,
EfficientNetb0, SqueezeNet, and ShuffleNet, when classifying images at any individual resolutions
(40×, 100×, 200× or 400×) or when SVM is used to classify a BoDMCF extracted using any single
pre-trained CNN model. We also demonstrate through a carefully constructed set of experiments
that each component of our approach contributes non-trivially to its superior performance including
transfer learning (pre-training and fine-tuning), deep feature extraction at multiple resolutions, global
pooling of deep multiresolution features into a powerful BoDMCF representation, and classification
using SVM.

Keywords: breast cancer; classification; deep convolutional neural networks; deep features; bag of
convolutional features; malignant tumors; support vector machine (SVM)

1. Introduction

Breast cancer accounts for 30% of all female cancers [1,2], has the highest death rate of
all types of cancers [1], and the number of new cases is expected to rise by almost 70% in
the next two decades. There are two kinds of growth in breast tissue: non-harmful (benign)
and dangerous (malignant or cancerous) that should be distinguished from each other
during patient assessments. The World Health Organization (WHO) has stated that in
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order to increase the survival rates of patients with breast cancer from 30% to 50%, early
and precise diagnosis of malignancy is important [3]. However, due to variability in the
availability and know-how of experts, 10% to 30% of breast cancers are not detected during
regular assessment [4].

Computer-assisted diagnosis systems (CAD) for breast cancer detection have been pro-
posed to automate recognizing cancerous regions, for distinguishing normal vs. abnormal
tissues (tumors), and malignant vs benign tumors, increasing accuracy by up to 10% [5].
CAD systems are fast, readily accessible, and dependable for early diagnoses [6]. In most
contemporary CAD frameworks, machine learning is adopted for medical image analysis,
breast cancer detection, and diagnosis [3]. Automated therapeutic imaging techniques in-
cluding breast X-ray images, sonograms methods, magnetic resonance imaging, computed
tomography, and histopathological imaging are compelling for breast cancer detection [7,8],
as the accuracy of manual breast cancer screening varies depending on the pathologist’s
experience and knowledge. Human errors can occur, resulting in incorrect diagnoses.
Histopathological images are currently considered the highest quality for the clinical iden-
tification of cancer [9]. Automated and exact classification of histopathological images is
the foundation of many top-down and bottom-up image analyses such as nuclei classifi-
cation, mitosis detection, and gland segmentation [10]. However, of all histopathological
image examination tasks, tumor classification is the most important. Earlier image-based
breast cancer classification research utilized machine learning (ML) with handcrafted im-
age features [11–14]. However, due to their impressive performance in computer vision
and image processing tasks, approaches utilizing neural networks have recently become
popular. Convolutional neural networks (CNNs) have demonstrated superior performance
for a wide range of image analyses tasks, including image classification, ailment detection,
localization, segmentation [15], and the analyses of histopathological images [16].

Our approach: In this paper, we propose an ML method for binary classification
(malignant vs. benign) of breast histopathological breast cancer images. First, deep multi-
resolution convolutional features are extracted from four resolutions (40×, 100×, 200×, and
400×) of histopathological breast cancer images using three state-of-the-art CNN-based
backbone models: (1) (Efficientnet-b0) [17], (2) Inception deep architecture (Inception-
v3) [18], and (3) ResNet50 [19]. The multiresolution CNN features are then pooled using
global average pooling to create a bag of deep multiresolution convolutional features
(BoDMCF), which is then classified using a support vector machine (SVM) classifier [20].
Inception-V3 permits deeper neural networks without increasing parameters and contains
Inception modules, which achieve dimensionality reduction with stacked 1 × 1 convo-
lutions. EfficientNetb0 is the baseline model for EfficientNet, which utilizes compound
scaling, a novel scaling method, to scale the dimensions of the model uniformly, resulting
in increased performance. The ResNet-50 model of deep residual networks is a CNN
with 50 layers, which stacks residual blocks, mitigating the vanishing gradient descent
problem in order to maintain accuracy as the model becomes deeper. In medical image
analysis using ML, feature extraction is a fundamental image analysis step, and various
extraction strategies have been proposed for image-based classification of various ailments
in prior work [21–25]. There are three main classes of image feature extraction meth-
ods [26]: (1) handcrafted features, (2) unsupervised feature learning, and (3) deep feature
learning. Handcrafted feature extraction is tedious and error prone. In this paper, feature
and representation auto-learning using pre-trained, state-of-the-art deep CNN models
is utilized.

In rigorous evaluation experiments, our deep BoDMCF feature approach with global
pooling achieved an average accuracy of 99.92%, sensitivity of 0.9987, specificity (or recall)
of 0.9797, positive prediction value (PPV) or precision of 0.99870, F1-Score of 0.9987, MCC
of 0.9980, Kappa of 0.8368, and AUC of 0.9990 on the BreaKHis dataset [27]. The deep
BoDMCF approach outperforms the prior state of the art for classifying histopathological
breast cancer images and a comprehensive set of state-of-the-art CNN baselines includ-
ing ResNet18, InceptionV3, DenseNet201, EfficientNetb0, SqueezeNet, and ShuffleNet
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when classifying any single resolution (40×, 100×, 200× or 400×). In our evaluation, we
demonstrate through a carefully constructed set of experiments that each component of our
approach contributes non-trivially to its superior performance, including transfer learning
pre-training and fine-tuning, deep feature extraction at multiple resolutions, global pooling
of deep multiresolution features into a powerful BoDMCF representation, and classification
using SVM.

Novelty: Our work is novel because while some prior work has utilized CNNs for
breast cancer classification, they did not explore using CNNs to extract and pool a bag of
deep multi-resolution features. Other prior work utilized CNNs for deep multi-resolution
feature extraction from chest X-ray radiographs to detect other conditions such as pneumo-
coniosis but not for breast cancer detection from histopathological images. The BoDMCF
approach innovatively leverages several key insights. First, pre-training state-of-the-art
CNNs on larger repositories such as the 14 million image ImageNet repository equips them
with the intelligence to learn the most predictive features and low-level image attributes
such as edges and corners from histopathological breast cancer images. Secondly, extract-
ing and pooling features from multiple resolutions of histopathological images improves
classification accuracy as discriminative visual attributes may be most visible at different
resolutions. Thirdly, global pooling of multiresolution breast cancer features creates a bag
of features that is so powerful that classifying them using SVM achieves highly accurate
binary breast cancer classification (malignant vs. benign) of histopathological images.
The deep BoDMCF approach has yielded impressive results in other image classification
domains including multimedia image retrieval [28] and remote sensing image scene clas-
sification [26]. Ours is the first work to innovatively apply this powerful representation
learning technique to binary breast cancer image classification (malignant vs. benign).
The specific combination of state-of-the-art deep learning architectures we utilize are also
novel and were carefully selected after extensive, systematic experimentation.

Challenges: First, the heterogeneity of the visual texture patterns observable on breast
histopathological images makes tumor malignancy classification a challenging task even
for CNNs, affecting their performance [29]. Secondly, the discriminative visual attributes of
tumor malignancy can be most visible at different resolutions of histopathological images.
By directly addressing these two challenges, the BoDMCF approach is particularly suited
to classifying tumor malignancy.

Related work that utilized Deep Learning and CNNs for breast cancer tumor classi-
fication are summarized in Table 1. While there has been some prior work that utilized
neural networks for breast cancer classification, none of them explored the deep BoDMCF
representation with a global pooling approach, which we propose. Maqsood et al. in [30]
classified screening mammogram using CNN and achieved average accuracy of 97.49%.
Spanhol et al. [31] utilized the AlexNet CNN model for classifying tumors in histopatho-
logical images as malignant or benign. Kowal et al. [32] explored deep learning models for
nuclei segmentation, in which the instances were classified as harmless or non-harmless on
a dataset of 269 images, achieving average accuracies from 80.2% to 92.4%. Shen et al. [33]
utilized an active learning approach to classify breast cancer images. Byra et al. [34] com-
bined statistical parameters with a CNN for breast cancer classification. Nejad et al. [35]
used a fast one-layer CNN for breast cancer classification that was tested on histopathologi-
cal images with a magnification factor of 40×. Nahid et al. in [36] used DNN models guided
by unsupervised clustering methods for breast cancer classification. Murtaza et al. [3] com-
prehensively reviewed cutting-edge deep-learning-based breast cancer classification using
medical images. Ogundokun et al. [37] utilized artificial neural networks and CNNs with
hyperparameter optimization for malignant vs. benign classification, while the support
vector machine (SVM) and multilayer perceptron (MLP) were utilized as baseline classifiers
for comparison. Vogado et al. [38] proposed a technique used to correctly classify images
with different characteristics derived from different image databases which does not re-
quire a segmentation process. Gandomkar et al. [39] classified breast histopathological
images into malignant and benign subtypes using deep residual networks. Han et al. [40]
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previously utilized deep neural networks in classifying histopathological breast images
into their sub-types and used majority voting for patient classification. Whilst their work
focused on classifying different breast histopathological images into their sub-types and
achieved 93.2% accuracy, we performed binary classification using BoDMCF extracted from
breast histopathological images without considering their image subtypes.

Table 1. Related Work on deep learning and CNNs for breast cancer tumor classification.

Authors Models ML Problem Summary of Approach Accuracy

R. Yan et al. [10] CNN and RNN
Four-class classification

into malignant and
benign subtypes

A CNN was used to extract image patches. Then
an RNN was used to fuse the patch features and

make the final image classification.
91.3%

M. Amrane [14]
Naive Bayes (NB)

and k-nearest
neighbor (KNN)

Binary classification
(malignant or benign)

For NB, data was split into blocks of 2 classes
and 2 sets of features T and classes D and

statistical analysis were performed. K-nearest
neighbor, pick an instance from the testing sets
and calculate its distance with the training set.

97.51% for KNN
and 96.19% for NB

S. H. Kassani, M. J.
Wesolowski, and K.
A. Schneider [29]

VGG19, MobileNet,
and DenseNet.

Binary classification
(malignant or benign)

Ensemble model was used for the feature
extraction. Then classification was done using a

Multi-Layer Perceptron (MLP) classifier
98.13%

F. A. Spanhol, L. S.
Oliveira, C.

Petitjean, and L.
Heutte [31]

Ensemble models Binary classification
(malignant or benign)

Various CNNs were using a fusion rule for breast
cancer classification 85.6%

Kowal et al. [32] Deep learning
model

Binary classification
(malignant or benign)

Segmentation, feature extraction and
classification were performed on individual cell

nuclei of cytological images.
92.4%

A. Al Nahid, M. A.
Mehrabi, and Y.

Kong [36]

CNN, LSTM,
K-means clustering,

Mean-Shift
clustering and SVM

Binary classification
(malignant or benign)

A set of biomedical breast cancer images were
classified using novel DNN models guided by an

unsupervised clustering method
96.0%

Z. Gandomkar, P. C.
Brennan, and C.

Mello-Thoms [39]

Deep residual
network (ResNet)

Multi class classification
into Subtypes of

malignant and benign

Approach consisted of two stages. In the first
stage, ResNet layers classified patches from the
images as benign or malignant. In the second
statge, images were classified into subtypes of

malignant and benign

98.52%, 97.90%,
98.33%, and 97.66%
in 40×, 100×, 200×

and 400×
magnification

factors respectively

Related work that used CNNs to extract deep features from medical images
Wichakam et al. proposed an automated system that uses a CNN for feature extraction and
an SVM for classification for mass detection on digital mammographic images [41] but
did not explore multi-resolution extraction and pooling to create a bag of deep features.
Devnath et al. [42] used CNN models for automated detection of pneumoconiosis by ex-
tracting deep multi-level features from X-ray images that were then classified using SVM.
Devnath et al. [43] conducted a systematic review of computer-aided diagnosis of coal
workers’ pneumoconiosis in chest X-ray radiographs using machine learning, which in-
cluded approaches that utilized CNNs for feature extraction. Devnath et al. [44] utilized the
CheXNet-121 model as a feature extractor as part of a method for detecting and visualizing
pneumoconiosis using an ensemble of multi-dimensional deep features learned from chest
X-rays. Firstly, they removed the last layer close to the output layer; next, a global average
pooling layer was added which converted the output of the model into one-dimensional
vectors. Huynh et al. [45] tested the optimal point at which to extract features from
pre-trained CNN, identifying the specific utility of transfer learning in computer-aided
diagnosis (CADx) systems. Zhang et al. [46] proposed to build ensemble learners through
fusing multiple deep CNN learners for pulmonary nodule classification. Other related
work includes research by Filipczuk et al. [47] and George et al., who previously extracted
nuclei features from fine needle biopsies. First, the circular Hough transform was utilized
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for detecting nuclei candidates and false-positive reduction, followed by using machine
learning and Otsu thresholding [48].

The rest of this paper is structured as follows. Section 2 presents some background
required to understand our work, including introducing the BreaKHis database, basic
concepts of CNNs, and a description of the pre-trained CNNs we explored for feature
extraction. Our proposed BoDMCF representation and machine learning methodology is
presented in Section 3. Section 4 presents our experimental results, and Section 5 discusses
our findings and Section 6 concludes the paper.

2. Background
2.1. BreakHis Breast Cancer Histopathological Image Dataset

Our neural networks breast cancer models were created by analyzing the BreaKHis
database [27], which contains 7,909 tiny histopathological biopsy images of benign and ma-
lignant breast tumors. The distribution of images in the BreakHis database is summarized
in Table 2. In an IRB-approved study, patients with traces of breast cancer who visited the
the P&D, Brazil, between January to December 2014 were recruited. Those who agreed
to participate properly consented. Breast tissue biopsy test slides were created by stain-
ing the samples with hematoxylin and eosin, prepared for histopathological examination,
and marked by pathologists at the P&D Lab. The widely accepted paraffin preparation
methodology was utilized. The overall preparation technique incorporates several steps
including fixation, dehydration, clearing, infiltration, inserting, and cutting [49]. Lastly,
an experienced pathologist diagnosed every case, which was confirmed by correlative tests,
such as by utilizing the immunohistochemistry assessment. An Olympus BX-50 magni-
fying device having a transfer focal point and magnification of 3.3× fixed to a Samsung
sophisticated digital camera SCC-131AN was employed to acquire digitized pictures from
the breast tissue slides. Images were procured in red, green, and blue channels (RGB)
color space (3-byte color depth, 1 byte for every color channel) utilizing amplifying factors
of 40×, 100×, 200×, and 400× and comparing the variables to target main points of 4×,
10×, 20×, and 40×. Four images—at the four amplification factors: (a) 40×, (b) 100×,
(c) 200×, and (d) 400× were generated. Images generated from a single slide of breast
tissue containing a malignant tumor (breast cancer) are shown in Figure 1.

Figure 1. Sample histopathological images. The top row shows benign images at 40×, 100×, 200×,
and 400× (left to right). The bottom row shows malignant images at 40×, 100×, 200×, and 400×
(left to right).
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Table 2. Distribution of the histopathological breast cancer images in the BreakHis dataset by
amplication factor and class.

Magnification Malignant Benign Total

40× 1370 (68.67%) 652 (32.68%) 1995

100× 1437 (69.05%) 644 (30.95%) 2081

200× 1390 (69.05%) 623 (30.94%) 2013

400× 1232 (67.69%) 588 (32.31%) 1820

Total 5429 (68.64%) 2480 (31.14%) 7909

2.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) have recently become the best performing
neural networks for image analyses and classification. The BoDMCF approach utilizes
pre-trained, state-of-the-art CNN models for feature extraction. This section provides
a summary of some of the technical details of the CNN architecture. CNNs are in the
category of feedforward neural network (FFN) models, where the signal passes within the
network without a loop back and can be expressed in Equation (1) [50].

G(x) = gH(gH−1(. . . (g1(x)))) (1)

where H indicates the number of hidden layers, and gi denotes the function in the matching
layer i. The core functional layers in a typical CNN model incorporate activation, fully
connected (FC), pooling layers, and a classification layer. The convolutional layer, f , is
comprised of various convolutional kernels ( f1 . . . fy−1, fy) where every fy denotes a linear
function in the yth kernel that can be represented by Equation (2)

f y(x, j) =
m

∑
u=−m

n

∑
v=−n

w

∑
d=−w

wy(u, v, w)I(x− u, j− v, z− w) (2)

The position of the pixel in the input I is denoted by the coordinates (x, j, z), the weight
for the yth kernel is denoted by Wy, and the height, width, and depth of the filter is denoted
by m, n, and w. The rectified linear unit (ReLU) is a pixel-wise non-linear function, g,
known as the activation layer, is represented in Equation (3) [50–52].

g(x) = max(0, x) (3)

The pooling layer, k, is a layered non-linear down-sampling function designed to
repeatedly decrease the feature representation size. The FC layer is considered a variation
of the convolutional layer whose kernel has the size 1 × 1. The classification SoftMax
layer (σ(~z)i =

ezi

∑K
j=1 ezj ) is typically added to the last fully connected layer to calculate the

probabilities of Ii fit into different classes. Figure 2 shows a simple example of a CNN
model that is made up of convolutional, ReLU, max-pooling, and FC layers. The first,
second, and fifth ReLu layers precede the maximum-pooling layer, which in turn precedes
the three FC layers. In order to express max-pooling formally, let Z′ be a nl × nl ×ml tensor.
Max-pooling involves determining the maximum value over the element-wise product of
subtensor Zl

k(i, j, q) and filter W, given by Equation (4).

max
(

Zl
k(i, j, q)�W

)
= max

a=1,2,··· ,k
b=1,2,··· ,k
c=1,2,··· ,r

{
zl

i+a−1,j+b−1,q+c−1 · wa,b,c

}
(4)
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Figure 2. The architecture of a convolutional neural network (CNN).

2.3. Pre-Trained CNNs for Deep Image Feature Extraction

To create the bag of deep multi-resolution convolutional features (BoDMCF) repre-
sentation, features are extracted from four resolutions (40×, 100×, 200×, and 400×) of
histopathological breast cancer images using three (3) state-of-the-art CNN-based mod-
els: (1) (Efficientnet-b0) [17], (2) Inception deep CNN architecture (Inception-v3) [18],
(3) ResNet50 [19]. These models were pre-trained on the ImageNet repository that has
14 million images in 1000 categories, enabling them to gain significant intelligence about
images [53]. Pre-training is part of a transfer learning approach, which yields higher start-
ing/initial model accuracy during training, faster convergence; and higher asymptotic
accuracy (the accuracy level to which the training converges). We now provide some
background on these state-of-the-art deep CNN image classification models.

EfficientNet [17]: This architecture and scaling method utilizes a compound coefficient
to uniformly scale all depth, width, and resolution dimensions of the CNN using a set
of fixed scale coefficients. Given a ConvNet defined as N =

⊙
i=1...s F

Li
i

(
X〈Hi ,Wi ,Ci〉

)
,

the EfficientNet architecture can be formulated as an optimization problem given by
Equation (5)

max
d,w,r

Accuracy(N (d, w, r))

s.t. N (d, w, r) =
⊙

i=1...s
F̂ d·L̂i

i

(
X〈r·Ĥi ,r·Ŵi ,w·Ĉi〉

)
Memory(N ) ≤ target_memory

FLOPS(N ) ≤ target_flops

(5)

In a principled manner, EfficientNet scales network width, depth, and resolution based
on a single δ compound coefficient as expressed in Equation (6).

depth: d = αφ

width: w = βφ

resolution: r = γφ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(6)

For instance, in order to utilize 2N times more computational resources, the network
depth can simply be increased by αN, the width by βN, and the image size by γN, where
α, β, and γ are constant coefficients determined by a small grid search on the original
small model. In order to capture more fine-grained patterns from a larger input image,
the compound scaling method uses more layers to increase the receptive field and more
channels to capture a larger number of channels. MobileNet-V2’s [49] inverted bottleneck
residual blocks along with squeeze-and-excite blocks are the basis of EfficientNet-B0’s base
network. Figure 3 is the architecture for the EfficientNet B0 model.
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Figure 3. EfficientNet B0 CNN architecture.

Inception: This architecture has introduced multiple versions. The first version of the
Inception CNN model was introduced as GoogLeNet [54], named Inceptionv1. The en-
hanced usage of computing resources within the inception1 network is the fundamental
feature of this architecture, accomplished by increasing the network’s depth and depth,
while sustaining the computational budget. Version 2, also named (Inception-v2), in-
corporated batch normalization [55]. Version 3 (called Inception-v3) utilized additional
factorization ideas [18] . The main distinction of Inception-V3 is that 5 × 5 convolutional
layers were used instead of two consecutive layers of 3 × 3 convolutions with up to 128 fil-
ters and also the addition of a Batch Norm (BN)-auxiliary. A BN auxiliary is a version of
the auxiliary classifier in which the fully connected layer is also normalized in addition to
the convolutions. The RMSProp optimizer was also utilized, which has an update rule that
can be expressed as:

E
[

g2
]

t
= βE

[
g2
]

t−1
+ (1− β)

(
δC
δw

)2

wt = wt−1 −
η√

E[g2]t

δC
δw

(7)

where E(g) is the moving average of squared gradients, ( δC
δw )

2 is the gradient of the cost
function with respect to the weight, η is the learning rate, and β is the moving average
parameter. The classification layers utilized label smoothing regularization (LSR). LSR can
be obtained by replacing a single cross entropy H(q, p) in the loss function with a pair of
losses in the cross entropy, H(q, p) and H(u, p), as given in Equation (8) below. The second
loss penalizes the deviation of predicted label distribution p from the prior u, with the
relative weight ε

1−ε . H(u, p) is a measure of how dissimilar the predicted distribution p is
to uniform.

H
(
q′, p

)
= −

K

∑
k=1

log p(k)q′(k) = (1− ε)H(q, p) + εH(u, p) (8)

The model is 48 layers deep and capable of classifying images into 1000 image classes,
including various object types, keyboard, mouse, pencil, and different animals. This pre-
training ensures that the model has gained knowledge of deep high-level feature depictions
of an extensive variety of images. Figure 4 is the architecture for the Inception-v3 model.

ResNet: This architecture introduced a deep residual learning structure, which re-
formulates the CNN’s layers as learning residual functions of the layer inputs. Correctly
denoting the desired underlying mapping as K(i), the stacked non-linear layers were made
to fit another mapping of E(i) := K(i)− i. ResNet solved the vanishing gradient, whereby
the value of the neural network’s gradient decreases significantly during backpropagation
until its weights barely change. ResNet solved the vanishing gradient problem using a
skip connection by adding the original input to the output of the convolutional block. A
skip connection is a direct connection that skips over some of the model layers and can be
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expressed as y = F (x, {Wi}) + Wsx, where F (x, {Wi}) represents the residual mapping to
be learned. Resnet utilizes the SGD optimizer with momentum given by Equation (9)

vt = ρvt−1 +∇ f (xt−1)xt = xt−1 − αvt (9)

where vt+1 is the momentum value, ρ is a friction, ∇ f (xt−1) is the gradient of the objective
function at iteration t− 1, xt are parameters, and α is the learning rate. ResNet50 [19], which
our approach utilized, is a variant of ResNet. It has 48 convolutional layers and 1 MaxPool
layer as well as an average pool layer. Figure 5 is the architecture for the ResNet model.

Figure 4. Inception-V3 CNN architecture.

Figure 5. Resnet-50 CNN architecture.

3. Materials and Methods

Our overall approach involves extracting deep multi-resolution features from four
resolutions (40×, 100×, 200×, and 400×) of high resolution (2048× 1536) histopathological
breast cancer images using the Efficientnet-b0 [17], Inception-v3) [18], and ResNet50 [19]
pre-trained image pre-trained CNN models that are pooled using global pooling to create
a BoDMCF. A support vector machine (SVM) classifier then uses the BoDMCF to clas-
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sify histopathological breast cancer images as either malignant or benign. As shown in
Figure 6, the proposed framework of breast cancer classification consists of three main mod-
ules: (i) data pre-processin,g (ii) deep BoDMCF feature extraction, and (iii) classification
using SVM.

Figure 6. Our proposed approach: A bag of multiresolution CNN features (BoDMCF) are extracted
from multiple resolutions of samples of malignant and benign histopathological images, which are
then classified using a support vector machine (SVM) classifier.

3.1. Step 1: Histopathological Image Pre-Processing

During this step, each histopathological image is resized to fit into an input size
suitable for different deep CNN models. The histopathological images were resized from
2048 × 1536 to 299 × 299 for inception-v3 and EfficientNet-B0 and to 224 × 224 for resnet-
50. Random color data augmentation was also performed on each image by changing the
brightness of the image randomly between 50% (1− 0.5) and 150% (1 + 0.5) of the original
image. (See Figure 7) Data augmentation generates diverse samples, which enables the
model to learn a robust representation that is invariant to minor changes [56]. Examples of
resized histopathological images are shown in Figure 8. After pre-processing, training and
test sets were created using a 70:30 split ratio.

Figure 7. Example of brightness data augmentation operations (left = original, middle = brightness +
50, right = brightness + 150.
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Figure 8. Examples of images after resizing to dimensions 224 × 224 × 3.

3.2. Step 2: Deep Multi-Resolution Feature Extraction Using Pre-Trained CNNs

This stage involves extracting the BoDMCF by modifying the final layers of the three
pre-trained deep convolutional networks: Efficientnet-b0, Inception-v3, and ResNet50.
These pre-trained models were trained on full-sized ImageNet images, then transfer learn-
ing (fine-tuning) was performed on histopathological breast cancer images in our dataset.
These feature extractor CNN models utilized layer activations as features. The rich multi-
level activations (features) extracted from four resolutions of histopathological images were
then pooled to form the BoDMCF and finally used to train a support vector machine (SVM).

EfficientNet [17]: The input size of Efficientnet-b0 was 224 × 224, and Table 3 shows
the activation strengths of 56 features learned by the average pooling layer by setting
channels to be the vector of indices 1:56 and setting pyramid levels to 3 (three) so that the
images are not scaled.

Table 3. Activation strength on 56 features learned by the average pooling layer for efficientNet.

Iteration Activation Stength Pyramid Level

1 0.35 1
2 0.31 1
3 0.59 1
4 1.19 1
5 1.87 1
6 2.56 1
7 3.12 1
8 3.56 1
9 3.87 1
10 4.15 1

Inception-v3 [18]: The model accepts an image input size of 299 × 299. Table 4 shows
the activation strength of 56 features learned by the average pooling layer by setting
channels to be the vector of indices 1:56 and setting pyramid levels to 1 (one) so that images
are not scaled.
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Table 4. Activation strength of 56 features learned by the average pooling layer for Inception-V3.

Iteration Activation Strength Pyramid Level

1 0.32 1
2 0.35 1
3 0.58 1
4 0.98 1
5 1.51 1
6 1.94 1
7 2.37 1
8 2.73 1
9 3.09 1
10 3.29 1

ResNet-50 [19] The input size of ResNet18 is 224× 224 and Table 5 shows the activation
strengths of 56 features learned by the average pooling layer, derived by setting channels
to be the vector of indices 1:56 and setting pyramid levels to 1 (one) so that the images are
not scaled.

Table 5. Activation strength on 56 features learned by the average pooling layer for ResNet-18.

Iteration Activation Strength Pyramid Level

1 0.94 1
2 1.18 1
3 2.92 1
4 5.34 1
5 7.22 1
6 8.50 1
7 9.41 1
8 10.04 1
9 10.60 1
10 10.88 1

3.3. Step 3: Global Pooling of Features to Create BoDMCF

Features extracted by the three state-of-the-art CNN models (ResNet-50, InceptionV3,
and Efficientnet-b0) were pooled to acquire high-quality image descriptions using the
activations of the global pooling layers at the end of the network as shown in Figure 9.
The network constructs a hierarchical representation of input images. Deeper layers contain
higher-level features, constructed using the lower-level features of earlier layers. To obtain
the feature representations of the training and test images, activations on the global pooling
layer, ‘avg_pool’, at the end of the network are utilized. The global pooling layer pools the
input features over all spatial locations, giving 512 features in total as described in Figure 9.
For each spatial location, the f activations maps labelled f1, f2, f3, to f512 are collected,
forming 1 × 1 × f column features of dimensions 1,1, 1,2 to h,w. These multiple features
are then concatenated into a BoDMCF that is classified using SVM.
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Figure 9. Feature pooling approach to create bag of deep multiresolution convolutional features
(BoDMCF).

3.4. Step 4: BoDMCF Classification Using SVM

SVM was utilized to classify the BoDMCF extracted by the three CNN models as
described above. Given a training set and class label (Bn, An), n = 1, . . . , N, Bn ∈ RD, An ∈
1, 1, the support vector machine (SVM) classifier [57] tries to find a hyperplane in feature
space, which maximizes the margin between two classes (malignant vs. benign). SVM is
based on the theory of maximum linear discriminants. For two classes to be classified, SVM
finds peripheral data points in each class that are closest to the other class (called support
vectors). For a dataset D with n points xi in a d-dimensional space, a hyperplane function
h(x) can be defined as

h(x) = wTx + b = w1x1 + w2x2 + . . . + wdxd + b (10)

Overall, with n points, the margin of the linear classifier can be defined as the minimum
distance of a point from the separating hyperplane given as:

δ∗ = min
xi

{
yi
(
wTxi + b

)
‖w‖

}
(11)

The SVM classifier finds the optimal hyperplane dividing the two classes by solving
the minimization problem with an objective function:

min
wib

{
‖w‖2

2

}
(12)

with linear constraints:
h(x) = yi

(
wTx + b

)
≥ 1, ∀xi ∈ D (13)

Then, the class of a new point is predicted as:

ŷ = sign(h(z)) = sign
(

wTz + b
)

(14)

4. Evaluation and Results
4.1. Evaluation Metrics

The following metrics were used to evaluate all neural networks breast cancer classifi-
cation models.
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Accuracy (Acc): This demonstrates how many malignant cases are correctly predicted
and how many benign cases are correctly diagnosed. Equation (15) describes it.

ACC =
(TP + TN)

TP + TN + FP + FN
(15)

Sensitivity (Sens): This is the percentage of positive instances correctly predicted,
which can be computed using Equation (16).

Sens =
TP

TP + FN
(16)

Precision (Prec): This expresses how many of the positive predictions are actually
correct as expressed as Equation (17).

Prec =
TP

TP + FP
(17)

Specificity (Spec): This measures the percentage of correct negative predictions and
can be expressed as Equation (18):

Spec =
TN

TN + FP
(18)

F1-score (Fscore): This analyzes sensitivity and precision in harmony by applying a
penalty to extreme values in order to reflect their simultaneous impact and can be expressed
as Equation (19).

Fscore =
TP

TP + 1
2 (FP + FN)

(19)

AUC: This is a probability curve that plots the True Postive Rate (TPR) against the
False Positive Rate (FPR) at various threshold values and essentially separates the ‘signal’
from the ‘noise’ and is expressed as Equation (20). AUC is a number that ranges from 0 to
1. An AUC value of one indicates a perfect model, while an AUC of 0.5 or below indicates
an inadequate model.

AUC =
∑i Ri

(
Ip
)
− Ip

(
Ip + 1

)
/2

Ip + In
(20)

where Ip and In denote the number of malignant and benign breast images, respectively,
and Ri is the rank of the ith positive image in the ranked list.

The Matthews Correlation Coefficient (MCC): This is a contingency matrix metric
for calculating the Pearson product-moment correlation coefficient between actual and
predicted values that is unaffected by the unbalanced datasets issue. MCC can be expressed
as Equation (21).

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(21)

Kappa (Kapp): This is a statistic that compares observed and expected accuracy. It is
a measure of how well the instances categorized by a classifier matched the data designated
as ground truth. Equation (22) can be used to calculate Kappa.

Kappa =
Observed Accuracy-Expected Accuracy

1− Expected Accuracy
(22)
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4.2. Baseline State-of-the-Art CNN Image Classification Architecture

Many of the baseline CNN models we selected for comparison were carefully selected
for various reasons, including being winning entries to image analysis and classification
competitions and are state of the art and/or performed well on similar problems. They include:

DenseNet201 [58]: This is a 201-layer CNN in which each layer is connected to every
other layer in a feedforward manner to eliminate the vanishing gradient problem, enhance
feature propagation, promote reuse of features, and drastically reduce the number of
parameters. DenseNet is based on the idea that convolutional networks can be more
accurate and efficient to train if they have shorter connections between the layers near the
input and the layers near the output. We selected DenseNet 201 because it was utilized in
prior work [59] as a feature extractor for deep hybrid architectures for binary classification
of breast cancer images.

SqueezNet [60]: This is a lightweight CNN that employs various design strategies that
reduce the number of parameters, particularly with use of fire modules which “squeeze”
parameters using 1 × 1 convolutions for the network to carry fewer parameters. The prob-
lem of storage efficiency and speed of models for prediction was solved using a technique
known as model compression, which it accomplished by: (i) compressing the perspective
of model weight values, and (ii) compressing the perspective of network architecture.
SqueezeNet was selected because it was previously utilized for deep feature extraction and
classification of breast ultrasound images [61].

ShuffleNet [62]: This is a convolutional neural network specifically designed for mobile
devices with low processing power. The architecture uses two new operations, pointwise
group convolution and channel shuffle, to reduce computation costs while preserving
accuracy. ShuffleNet was selected as a baseline because it was utilized for breast cancer
classification in prior work [63].

4.3. Experiments

In this section, experiments to rigorously evaluate our proposed BoDMCF approach using
the BreakHis dataset of histopathological breast cancer images [27] that is summarized in Table 2
are described. The classification task was performed by fine-tuning (transfer learning) the CNN
models that were previously pre-trained on the ImageNet dataset and on the BreakHis dataset.
Various hyperparameters shown in Table 6 were determined using grid search and specified,
followed by pre-processing, training, and validation of histopathological images. Test images
were then provided as inputs to the trained models. The fine-tuned, pre-trained CNN models
were used to extract features at four resolutions, which were pooled to form the BoDMCF
that was then classified using SVM. The classifier performance was evaluated with ten-fold
cross-validation with a cross-validation error of 0.0462.

Table 6. Optimal hyperparameters used for pre-trained models.

Hyperparameter Value

Train–Test ratio 70:30
optimization algorithm stochastic gradient descent
activation function ReLu
Mini Batch Size 20
Max Epochs 30
Initial Learn Rate 0.00125
Learn-Rate Drop Factor 0.1
Learn-Rate Drop Period 20

Experiment: train-test curves: Figure 10 shows sample train–test curves we generated
during training of the EfficientNetb0 model demonstrating model convergence after about
200 epochs.
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Figure 10. Efficientnetbo train–test performance. The small difference between the training and test
loss curves demonstrate that there is no overfitting.

Experiment: binary classification (benign vs. malignant) of individual magnifications
(40×, 100×, 200×, and 400×) of histopathological breast cancer images using baseline
models with model parameters (weights) determined by pre-training on ImageNet weights:
The goal of this experiment was to establish baseline performance of individual state-
of-the-art CNN image classification models (ResNet18, InceptionV3, InceptionResnetV2,
DenseNet201, ResNet50, EfficientNetB0, SqueezeNet, and ShuffleNet) using weights deter-
mined via pre-training on ImageNet (no fine-tuning on the BreakHis dataset). Classification
was at individual image resolution with no pooling of features to create the BoDMCF. Our
goal was to eventually demonstrate that pooling multiple resolutions of features to create
our BoDMCF approach outperforms these powerful baselines that perform classification on
single image resolutions. The results of this experiment are shown in Table 7. Except for the
precision metric (ResNet18 on 200× magified image hasthe highest precision), SqueezeNet
performed best on all other metrics (accuracy, F1 score, recall, AUC, Kappa, and MCC).
These results suggest that visual attributes that most clearly distinguish malignant tumors
from benign ones are most observable at 100× magnification and that the SqueezeNet
neural networks model outperforms all other baseline models when model weights learned
from ImageNet during pre-training (no fine-tuning on the BreakHis dataset) are utilized.
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Table 7. Binary (benign vs. malignant) classifier performance: comprehensive table of metrics for
classifying various magnification levels of histopathological images using baseline CNN models with
pre-trained weight from ImageNet (no fine-tuning of weights on the BreakHis dataset).

Model Accuracy Precision F1-Score Recall AUC Kappa MCC

40× Renent18 0.9064 0.8047 0.8607 0.9251 0.9115 0.8667 0.7950
40× InceptionResnetV2 0.7843 0.6021 0.7261 0.9144 0.8197 0.6924 0.5937
40× InceptionV3 0.8679 0.8418 0.7710 0.7112 0.8252 0.8247 0.6839
40× Densenet201 0.8963 0.9433 0.8110 0.7112 0.8459 0.8629 0.7555
40× Resnet50 0.9381 0.9261 0.8981 0.8717 0.9200 0.9135 0.8545
40× Efficientnetbo 0.8311 0.7389 0.7248 0.7112 0.7984 0.7749 0.6033
40× Squeezenet 0.9281 0.8429 0.8917 0.9465 0.9331 0.8970 0.8413
40× Shufflenet 0.8428 0.8252 0.7152 0.6310 0.7851 0.7972 0.6197

100× Renent18 0.9327 0.8995 0.8901 0.8808 0.9184 0.9060 0.8417
100× InceptionResnetV2 0.8173 0.7582 0.6705 0.6010 0.7576 0.7669 0.5535
100× InceptionV3 0.9022 0.9342 0.8232 0.7358 0.8563 0.8701 0.7673
100× Densenet201 0.9183 0.9329 0.8571 0.7927 0.8836 0.8892 0.8056
100× Resnet50 0.9119 0.8670 0.8556 0.8446 0.8933 0.8783 0.7924
100× Efficientnetbo 0.8526 0.8301 0.7341 0.6580 0.7989 0.8087 0.6422
100× Squeezenet 0.9455 0.8630 0.9175 0.9793 0.9548 0.9216 0.8809
100× Shufflenet 0.8606 0.7454 0.7873 0.8342 0.8533 0.8075 0.6865

200× Renent18 0.8791 0.9831 0.7607 0.6203 0.8078 0.8460 0.7178
200× InceptionResnetV2 0.8692 0.9030 0.7539 0.6471 0.8079 0.8313 0.6853
200× Inceptionv3 0.8957 0.9079 0.8142 0.7380 0.8522 0.8611 0.7504
200× Densenet201 0.8891 0.9000 0.8012 0.7219 0.8430 0.8531 0.7340
200× Resnet50 0.8642 0.7561 0.7908 0.8289 0.8545 0.8128 0.6922
200× Efficientnetbo 0.8245 0.7396 0.7022 0.6684 0.7815 0.7704 0.5798
200× Squeezenet 0.9205 0.9017 0.8667 0.8342 0.8967 0.8907 0.8114
200× Shufflenet 0.8526 0.8451 0.7295 0.6417 0.7945 0.8099 0.6421

400× Renent18 0.8681 0.9127 0.7616 0.6534 0.8118 0.8273 0.6918
400× InceptionResnetV2 0.8168 0.7262 0.7093 0.6932 0.7844 0.7545 0.5760
400× InceptionV3 0.7253 0.5422 0.6901 0.9489 0.7839 0.5988 0.5351
400× Densenet201 0.8626 0.8686 0.7604 0.6761 0.8137 0.8183 0.6765
400× Resnet50 0.8846 0.9185 0.7974 0.7045 0.8374 0.8460 0.7311
400× Efficientnetbo 0.8278 0.6971 0.7552 0.8239 0.8268 0.7585 0.6290
400× Squeezenet 0.9231 0.9524 0.7947 0.6818 0.8328 0.8499 0.7383
400× Shufflenet 0.8736 0.9350 0.7692 0.6534 0.8159 0.8346 0.7068

Experiment: binary classification (benign vs. malignant) using features extracted
from individual magnifications (40×, 100×, 200×, and 400×) of histopathological breast
cancer images by baseline CNN models fine-tuned on the BreakHis dataset, which are
then classified using SVM: The goal of this experiment was to demonstrate the power
of pooling multiple resolutions of deep CNN features. Specifically, we benchmarked the
performance of deep features extracted at individual magnifications using state-of-the-art
fine-tuned CNN image classification models (ResNet18, InceptionV3, InceptionResnetV2,
DenseNet201, ResNet50, EfficientNetB0, SqueezeNet, and ShuffleNet) without pooling
multiple magnifications into a single BoDMCF representation as we proposed. The results
of this experiment are shown in Table 8. Except for the precision metric (ResNet50 on the
40×magnified image has the highest precision), DenseNet201 performed best on all other
metrics (accuracy, F1 score, recall, AUC, Kappa, and MCC). These results suggest that
when utilized as feature extractors, visual attributes that most clearly distinguish malignant
tumors from benign ones are most observable at 40× magnification and that using the
DenseNet201 with fine-tuning on the BreakHis dataset outperforms all other baselines as a
feature extractor.
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Table 8. Binary (benign vs. malignant) classifier performance: comprehensive table of metrics for deep
features extracted from different individual magnifications of histopathological images using fine-tuned
CNN models that are classified using SVM (no pooling of features to create a bag (BoDMCF).

Model Accuracy Precision F1-Score Recall AUC Kappa MCC

40× Resnet18 0.9064 0.8619 0.8478 0.8342 0.8867 0.8706 0.7804
40× InceptionResnetV2 0.9214 0.8723 0.8746 0.8770 0.9093 0.8899 0.8174
40× InceptionV3 0.9348 0.9353 0.8908 0.8503 0.9118 0.9095 0.8464
40× Densenet201 0.9615 0.9409 0.9383 0.9358 0.9545 0.9451 0.9104
40× Resnet50 0.9548 0.9546 0.9257 0.8984 0.9395 0.9364 0.8941
40× Efficientnetbo 0.9448 0.9326 0.9096 0.8877 0.9293 0.9225 0.8705
40× Squeezenet 0.8395 0.7301 0.7496 0.7701 0.8205 0.7817 0.6324
40× Shufflenet 0.8746 0.8146 0.7945 0.7754 0.8476 0.8297 0.7048

100× Renent18 0.9199 0.8743 0.8698 0.8653 0.9048 0.8887 0.8119
100× InceptionResnetV2 0.9006 0.8466 0.8377 0.8290 0.8809 0.8634 0.7662
100× InceptionV3 0.9022 0.8743 0.8338 0.7969 0.8729 0.8671 0.7663
100× Densenet201 0.9151 0.8763 0.8602 0.8446 0.8956 0.8828 0.7995
100× Resnet50 0.9391 0.8894 0.9031 0.9171 0.9330 0.9140 0.8589
100× Efficientnetb0 0.9295 0.8821 0.8866 0.8912 0.9189 0.9012 0.8355
100× Squeezenet 0.8542 0.7713 0.7612 0.7513 0.8258 0.8041 0.6563
100× Shufflenet 0.9022 0.8511 0.8399 0.8290 0.8820 0.8657 0.7697

200× Renent18 0.8940 0.8090 0.8342 0.8610 0.8849 0.8527 0.7572
200× InceptionResnetV2 0.9421 0.9000 0.9072 0.9144 0.9344 0.9182 0.8651
200× InceptionV3 0.8990 0.8663 0.8301 0.7968 0.8708 0.8627 0.7598
200× Densenet201 0.9400 0.8989 0.8767 0.8556 0.9062 0.8968 0.8239
200× Resnet50 0.9338 0.9016 0.8919 0.8824 0.9196 0.9075 0.8443
200× Efficientnetbo 0.9437 0.9048 0.9096 0.9144 0.9356 0.9206 0.8687
200× Squeezenet 0.9056 0.8385 0.8496 0.8610 0.8933 0.8689 0.7810
200× Shufflenet 0.9040 0.8817 0.8371 0.7968 0.8744 0.8695 0.7712

400× Renent18 0.8516 0.7811 0.7652 0.7500 0.8250 0.7977 0.6571
400× InceptionResnetV2 0.8663 0.8160 0.7847 0.7557 0.8373 0.8176 0.6890
400× InceptionV3 0.9011 0.8466 0.8466 0.8466 0.8868 0.8609 0.7736
400× Densenet201 0.8900 0.8650 0.8319 0.8011 0.8708 0.8555 0.7575
400× Resnet50 0.9176 0.8659 0.8732 0.8807 0.9079 0.8828 0.8123
400× Efficientnetbo 0.9176 0.8503 0.9034 0.8760 0.9139 0.8819 0.8152
400× Squeezenet 0.8626 0.7919 0.7851 0.7784 0.8406 0.8109 0.6842
400× Shufflenet 0.8828 0.8111 0.8202 0.8295 0.8688 0.8359 0.7334

Experiment: binary classification (benign vs. malignant) of a combined pool of all
four magnifications (40×, 100×, 200×, and 400×) of histopathological breast cancer images
using baseline models with model parameters (weights) determined by pre-training on
ImageNet: The main difference with our proposed approach is that, while all four mag-
nifications were pooled in this experiment, only a single CNN pre-trained model (one
of ResNet18, InceptionV3, InceptionResnetV2, DenseNet201, ResNet50, EfficientNetB0,
SqueezeNet. and ShuffleNet) was used for classifying the pool of images at a time. In con-
trast, our proposed approach extracts features using an ensemble of three CNN models
(ResNet18, InceptionV3, and ResNetInceptionV2). The results of this experiment are
shown in Table 9. Except for the precision metric (DenseNet201 has the highest precision),
SqueezeNet performed best on all other metrics (accuracy, F1 score, re- call, AUC, Kappa,
and MCC). These results suggest the SqueezeNet neural networks architecture outperforms
all other baselines on a multi-resolution bag of features when model weights learned from
ImageNet during pre-training are utilized.
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Table 9. Binary (benign vs. malignant) classifier performance: comprehensive table of metrics for
classifying a combined pool of all histopathological image magnifications (40×, 100×, 200×, and
400×) extracted using a single state-of-the-art baseline CNN model.

Model Accuracy Precision F1-Score Recall AUC Kappa MCC

Renent18 0.8896 0.9382 0.7975 0.6935 0.8363 0.8548 0.7396

InceptionResnetV2 0.8609 0.8405 0.7559 0.6868 0.8136 0.8169 0.6666

InceptionV3 0.8845 0.9211 0.7896 0.6909 0.8319 0.8482 0.7262

Densenet201 0.9166 0.9535 0.8529 0.7715 0.8772 0.8872 0.8043

Resnet50 0.9048 0.8960 0.8383 0.7876 0.8729 0.8704 0.7745

Efficientnetb0 0.8281 0.8590 0.6634 0.5403 0.7499 0.7857 0.5827

Squeezenet 0.9460 0.9195 0.9201 0.9207 0.9419 0.9287 0.8835

Shufflenet 0.8643 0.8879 0.7500 0.6492 0.8059 0.8241 0.6752

Experiment: binary (benign vs. malignant) classifier performance: comprehensive
table of metrics for features extracted from a pooled combination of all four magnifications
(40×, 100×, 200×, and 400×) of histopathological images using baseline CNN models
that are classified using SVM The main difference with our proposed approach is that,
while all four magnifications were pooled in this experiment, features were extracted using
only a single CNN pre-trained model (one of ResNet18, InceptionV3, InceptionResnetV2,
DenseNet201, ResNet50, EfficientNetB0, SqueezeNet, and ShuffleNet) at a time. In contrast,
our proposed approach extracts features using an ensemble of three CNN models (ResNet18,
InceptionV3, and ResNetInceptionV2). The results of this experiment are shown in Table 10.
Except for the precision metric (DenseNet50 has the highest precision), EfficientNetB0
performed best on all other metrics (accuracy, F1 score, recall, AUC, Kappa, and MCC).
These results suggest the EfficientNetB0 neural networks architecture outperforms all
other baselines as a deep feature extractor from a pool of multiple magnifications of
histopathological images.

Table 10. Binary (benign vs. malignant) classifier performance: comprehensive table of metrics for
features extracted from a pooled combination of all four magnifications (40×, 100×, 200×, and 400×)
of histopathological images using baseline CNN models that are classified using SVM.

Model Accuracy Sensitivity AUC Fscore TPR FPR MCC Kappa Prec Spec

Densenet201 0.9815 0.9677 0.9777 0.9704 0.9677 0.0123 0.9569 0.8458 0.9730 0.9877

Resnet50 0.9899 0.9892 0.9897 0.9840 0.9892 0.0098 0.9766 0.8410 0.9787 0.9902

Efficientnetb0 0.9836 0.9718 0.9804 0.9737 0.9718 0.0110 0.9618 0.8447 0.9757 0.9890

InceptionResnetV2 0.9823 0.9866 0.9835 0.9722 0.9866 0.0196 0.9594 0.8439 0.9582 0.9804

InceptionV3 0.9836 0.9798 0.9826 0.9739 0.9798 0.0147 0.9620 0.8440 0.9681 0.9853

Renent18 0.9777 0.9798 0.9783 0.9649 0.9798 0.0233 0.9488 0.8461 0.9505 0.9767

Shufflenet 0.9794 0.9691 0.9766 0.9671 0.9691 0.0160 0.9521 0.8464 0.9652 0.9840

Squeezenet 0.9659 0.9664 0.9660 0.9467 0.9664 0.0344 0.9220 0.8512 0.9277 0.9656

Results of Our BoDMCF approach: Our approach has two key distinctions with the
baseline approaches presented thus far. First, we extract features from all four magnifica-
tions of histopathological images, which are then pooled into a BoDMCF. Secondly, we use
multiple (three) state-of-the-art CNN models (ResNet-50, InceptionV3, and Efficientnet-b0)
as feature extractors. The results of our approach, which are shown in Table 10 for indi-
vidual networks and Table 11, demonstrate that our approach outperforms the baseline
approaches. Figure 11 shows samples of test images with their predicted labels from our
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proposed method. Finally, to demonstrate that the difference in performance between
our BoDMCF approach and other ensemble baselines is was statistically significant, we
performed the Nemenyi post hoc test [64]. At a confidence level a = 0.05, the critical distance
(CD) is 1.2536.

Table 11. Results of our proposed approach with features extracted from all four histopathological
image magnifications (40×, 100×, 200,× and 400×) by three state-of-the-art CNN models (ResNet-50-,
InceptionV3, and EfficientNet-b0). The effects of the number of features used on model performance
are also shown. The 2- and 3-model combinations were based on best performing single model
performance in Table 9. Accuracy achieved by prior breast cancer binary classification work are also
shown in the bottom Table 12.

F. Extractors Size Bytes Acc. Sens. Spec. AUC F1-Sc. TPR FPR MCC Kappa Prec.

Efficientnetb0
$ Resnet50

Train_features
5536 × 3328
Test_features
2373 × 3328

Train_features
73,695,232

Test_features
31,589,376

0.9966 0.9987 0.9662 0.9972 0.9946 0.9987 0.0043 0.9922 0.8378 0.9907

Efficientnetb0
$ Inception-V3

Train_features
5536 × 2816
Test_features
2373 × 2816

Train_features
62,357,504

Test_features
26,729,472

0.9962 0.9933 0.9699 0.9352 0.9939 0.9933 0.0025 0.9912 0.9352 0.9946

Resnet50 $
Inception-V3

Train_features
5536 × 3584
Test_features
2373 × 3584

Train_features
79,364,096

Test_features
34,019,328

0.9979 0.9960 0.9705 0.9974 0.9966 0.9960 0.0012 0.9951 0.8375 0.9973

BoDMCF

Train_features
5536 × 4864
Test_features
2373 × 4864

Train_features
107,708,416

Test_features
46,169,088

0.9992 0.9987 0.9797 0.9990 0.9987 0.9987 0.0006 0.9980 0.8368 0.9987

Table 12. Accuracy achieved by prior breast cancer binary classification work are also shown in the
bottom table.

Authors Models Accuracy

M. Amrane [14] Naive Bayes (NB) k-nearest neighbor (KNN) 97.51% for KNN and 96.19% for NB

S. H. Kassani, M. J. Wesolowski, and K. A. Schneider [29] VGG19, MobileNet, and DenseNet 98.13%

F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L.
Heutte [31] Ensemble models 85.6%

Kowal et al. [32] Deep learning model 92.4%

A. Al Nahid, M. A. Mehrabi, and Y. Kong [36] CNN, LSTM, K-means clustering, Mean-Shift
clustering and SVM 96.0%

Our Proposed Approach BoDMCF + SVM 99.92%
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Figure 11. Four sample test images with their predicted labels from our proposed algorithm.

Experiment: ROC Curves The receiver operating characteristic (ROC) curve, shown in
Figure 12 for our approach, is a graphical plot that shows the diagnostic ability of a binary
classifier as its discrimination threshold is varied. In simple terms, the ROC curve plots our
approaches FPR vs. its TPR. The ROC curve is almost a perfect right angle at the top left
corner, demonstrating that our proposed approach achieves excellent FPR and TPR.

Figure 12. ROC Curves for our Approach.

Experiment: Confusion Matrix: To evaluate which classes were confounded by other
classes, we analyzed the confusion matrix. The confusion matrix of the top performing
technique is presented in Figure 13. The columns correspond to the targeted class, and the
rows correspond to the output class (anticipated class). The diagonal cells match with ob-
servations that are rightly classified. The off-diagonal cells refer to incorrect classifications.
The percentage of the overall number of observations and the number of observations in
every cell is also presented. The column on the extreme right displays the proportions of
incorrect (red color) and correct (green color) classifications that were predicted. These
metrics are referred to as the false discovery rate and the positive predictive value. While
the lowest row indicates the percentages of incorrect and correct classifications, and these
metrics are referred to as false negative rate (FNR) and true positive rate (TPR), the cell in
the bottom-most right shows the general precision. A column-normalized column sum-
mary displays the percentages of incorrectly and correctly classified observations for every
predicted class. A row-standardized row summary exhibits the percentages of incorrectly
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and correctly classified observations for every true class. In the confusion matrix, most of
the results fall on the leading diagonal with very few off the diagonal, which demonstrates
that the proposed approach did not confuse the benign and malignant classes.

Figure 13. Confusion matrix displaying the performance of the proposed BoDMCF approach.

Experiment: classifying the BoDMCF representation using different machine learning
classifiers: The goal of this experiment was to compare the performance of the support
vector machines (SVM) with other traditional machine learning (ML) classifiers for the task
of classifying the BoDMCF representation into target labels of “Benign” and “Malignant”.
Results in Table 13 show that SVM outperformed all other ML classifiers for this binary
classification task. This is likely because SVM is well-known to perform well on binary
classification tasks.

Table 13. Results of classifying the BoDMCF with various machine learning (ML) classifiers.

ML Classifier Acc. Sens. Spec. AUC F1 TPR FPR MCC Kappa Prec.

Binary Decision Classifier 0.9660 0.9449 0.9761 0.9605 0.9462 0.9449 0.0239 0.9216 0.8529 0.9474

Linear Discriminant
Analysis (LDA) 0.9900 0.9892 0.9902 0.9897 0.9840 0.9892 0.0098 0.9766 0.8410 0.9787

Generalized Additive
Model 0.9660 0.9489 0.9742 0.9616 0.9464 0.9489 0.0258 0.9218 0.8526 0.9439

Gradient Boosted
Machines (GBM) 0.9870 0.9812 0.9890 0.9851 0.9786 0.9812 0.0110 0.9687 0.8429 0.9759

K-Nearest Neighbor
(KNN) 0.9800 0.9960 0.9724 0.9842 0.9686 0.9960 0.0276 0.9545 0.8440 0.9427

Naive Bayes (NB) 0.9730 0.9919 0.9638 0.9779 0.9578 0.9919 0.0362 0.9388 0.8468 0.9260

Support Vector Machines
(SVM) 0.9992 0.9987 0.9797 0.9990 0.9987 0.9987 0.0006 0.9980 0.8368 0.9987
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Figure 14. Sample heatmaps of regions of interest generated by grad-cam (left pair = malignant
original image and grad-cam heatmap, right pair = benign original image and grad-cam heatmap.

Experiment: CNN model interpretability using grad-cam [65] The goal of this experi-
ment was to ensure that the breast cancer classification model focused on the appropriate
regions of the image when analyzing the image. Grad-cam computes the gradient of
the ranking score in relation to the CNN characteristics map, highlighting the specific
ROIs based on the greatest gradient score. Grad-cam computes the gradients with re-
spect to feature maps of a convolutional layer, which are then global-average-pooled to
obtain the importance weights αc

k; αc
k represents a partial linearization of the deep network

downstream from A, capturing the importance of feature map k for a target class c

αc
k =

global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂yc

∂Ak
ij︸︷︷︸

gradients via backprop

(23)

∂yc

∂Ak
ij

is the gradient of the score for class c, yc, with respect to feature maps Ak of a convolu-

tional layer. A grad-cam heatmap is then generated as a weighted combination of forward
activation feature maps, but followed by a ReLU activation function

Lc
Grad−CAM = Re LU

(
∑
k

αc
k Ak

)
︸ ︷︷ ︸

linear combination

(24)

where Lc
Grad−CAM is the class-discriminative localization map. Grad-cam was applied to

produce a coarse localized map highlighting the most important ROIs in the histopatho-
logical images to classify the images as benign or malignant. Sample grad-cam results are
shown in Figure 14.

Figure 15. Sample misclassified images. Left is a misclassified malignant image, and right is
a misclassified benign image.

Experiment: analysis of misclassified images: The objective of this experiment was
to discover reasons behind model misclassifications, which could be addressed either to
improve this manuscript or in future work. Misclassifications resulted for benign images
that looked similar to malignant images or vice versa. One example each of misclassified
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malignant and benign histopathological images, respectively, from the Breakhis dataset
is shown in Figure 15. The outline and uniformity of the texture differences in the benign
image are comparable to those in a malignant image. There is less dispersion of cells in
misclassified malignant images than in ordinary malignant images. Consequently, the cells
appear benign, resulting in misclassification. Benign histopathology images usually have
fewer dispersed cells and only a few spreads elsewhere.

5. Discussion

Through rigorous experimentation, as shown in Table 11, we demonstrated that the
proposed BoDMCF approach outperforms a comprehensive set of baselines as well as
the prior state-of-the-art methods (Table 12) for binary classification of histopathological
images. Our results also demonstrate that all key components of our approach contribute
non-trivially to its superior results, including:

Transfer learning by pre-training on a large image repository (ImageNet) with fine-
tuning on the BreakHis breast cancer image dataset that enables the CNN feature extractors
models to learn a robust image representation from the large image repository. Fine-tuning
on the BreakHis breast cancer dataset transfers the learned intelligence to the task of
analyzing and classifying breast cancer. This conclusion is evident by comparing results in
Tables 7 (pre-training with no fine-tuning) and 8 (pre-training with fine-tuning).

Using an ensemble of CNNs for deep feature extractors achieves superior performance
to using any single pre-trained CNN for feature extraction, which is evident by comparing
results in Tables 10 and 11. In fact, as shown by the results in Table 11, we also show that
the three specific state-of-the-art CNN models (ResNet-50, InceptionV3, and Efficientnet-
b0) discovered through extensive experimentation and utilized for feature extraction,
outperform other CNN combinations and ensembles. Intuitively, each CNN extracts
slightly different image features. Feature extraction using multiple CNNs combines these
different features into a superset of features that outperforms features extracted from any
single CNN.

Extracting deep features for four magnifications (40×, 100×, 200×, and 400×) of
histopathological images that are then pooled into a BoDMCF, is important as the visual
attributes that distinguish malignant from benign tumors may be most discernable at differ-
ent resolutions. This conclusion is evident because the results of the pooled, multiresolution
BoDMCF features (Table 13) outperform results of classifying deep features extracted from
any individual single resolution as shown in Table 8.

Global pooling of multiresolution features to create a bag (BoDMCF0) is an essen-
tial step that also enables downstream classification using traditional machine learning
algorithms such as SVM. Deep BoDMCFs are a powerful representation, which had the
best performance for all combinations of CNN models explored in this study as shown in
Table 13. The proposed technique of using BoDMCF features, pooled and classified using
SVM, outperformed single CNN model approaches in Table 10.

SVM outperformed all other traditional ML classification algorithms for classifying
the BoDMCF into malignant and benign target classes as shown in Table 13. We believe
that this is because SVM’s maximal margin hyperplane determination approach performs
well on binary classification.

Limitations of this work and potential future work: The results acquired show that
very significant classification performance can be achieved. While our proposed approach
is shown to perform well on the BreakHis dataset, one of the most widely distributed
histopathological images hosted on the public domain, some limitations can be addressed
in future work. Firstly, extending the dataset to include more images from more magnifica-
tions could yield more robust classifiers before deployment for use in hospitals. Secondly,
we used three existing deep models. In future, fusing deeper models could yield better
performance. Third, we would like to validate our results on other histopathological breast
cancer datasets. Finally, implementing our methods on mobile devices can be a promis-
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ing direction that facilitates deployment in under-resourced environments such as third
world countries.

6. Conclusions

We have proposed an automatic classification method for breast cancer histopatholog-
ical images into malignant vs. benign categories. Particularly, we have shown that a deep
BoDMCF feature extraction from multiple magnifications (40×, 100×, 200×, and 400×) of
histopathological images using three state-of-the-art pre-trained CNN models (ResNet-50,
Inception-v3, and EfficientNet-b0) with pooling and classification using SVM, can also be
leveraged for binary (malignant vs. benign) breast cancer classification. Moreover, combin-
ing deep rich features from various global average pooling layers of various pre-trained
convolutional deep models was shown to yield improved classification performance. In rig-
orous evaluation experiments, our deep BoDMCF feature approach with global pooling
achieved an average accuracy of 99.92% for the classification task, sensitivity of 0.9987,
specificity (or recall) of 0.9797, positive prediction value (PPV) or precision of 0.99870,
F1-Score of 0.9987, MCC of 0.9980, Kappa of 0.8368, and AUC of 0.9990 on the BreaKHis
dataset [27]. Our deep BoMCF approach outperforms state-of-the-art CNN baselines in-
cluding ResNet18, InceptionV3, DenseNet201, EfficientNetb0, SqueezeNet, and ShuffleNet
when classifying any of the individual resolutions (40×, 100×, 200× or 400×) or when SVM
is used to classify a BoMCF extracted using any single pre-trained CNN model. The high
accuracy, sensitivity, PPV, and F1 score achieved by our approach is extremely encouraging
and could be useful in supporting the work of health practitioners in low-resource settings
with few experts. However, before deployment, a careful validation study and comparison
of our model’s performance to human experts needs to be conducted. In future work,
combining several other image magnifications using emerging CNN models could yield
even better breast cancer classification models.
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