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Abstract: An automated mechanical transmission (AMT) is proposed as a new soft starter for medium-
scale belt conveyors in this paper. The AMT is used to start the belt conveyor and shift gears step by
step to make the belt conveyor accelerate softly. Based on analyzing common soft-starting acceleration
curves, a segmented belt acceleration curve is proposed as a new soft-starting acceleration curve. By
analyzing the AMT soft-starting system, the system modeling is built and the AMT output shaft’s
angular acceleration is proposed to be controlled to control the belt acceleration. The AMT soft-
starting simulation model is established in the environment of AMESim, and simulation results of the
soft-starting process from the first to eighth gear positions are given. The main parameter curves of
the AMT soft-starting system including the belt, driving pulley, and AMT output shaft are analyzed.
The simulation model can indicate the viscoelastic property of the belt. The simulation results prove
that the segmented belt acceleration is appropriate for a medium-scale belt conveyor and provide a
theoretical and reasonable basis for using an AMT as a soft starter.

Keywords: automated mechanical transmission; shift gear; soft starting; belt conveyor; segmented
acceleration curve

1. Introduction

Belt conveyors are important transport equipment for transmitting bulk materials.
Compared with heavy-duty trucks and trains, belt conveyors have some specific advantages
such as large transport capacity, continuous operation, and low transport costs. More than
two million conveyors are in operation annually in the world. Belt conveyors with long
distances and heavy loads are widely used in coal mines, metallurgical industries, and
other industries where the use of trucks and trains is impractical [1–3]. Conveyor belts
are made of rubber, steel wire, and fiber, which have some viscoelastic properties that
give the belt conveyor complex dynamical characteristics. Serious accidents can take place
during startup if the belt acceleration is too large for a belt conveyor with long distance
and high power, such as slipping, tear, and severe wear [4–6]. Speed control of the belt
conveyors has become the key point of the medium-scale belt conveyors during starting
and stopping [7–11].

Soft-starting is required during startup for belt conveyors considering no slipping
and no tearing. The belt speed curve should meet the requirements of less speed and less
acceleration variation per unit time for the purpose of softness. Therefore, the parameters of
belt speed and acceleration should be controlled by means of equipment. Using soft-starting
equipment can realize the belt conveyor’s soft starting. The soft-starting technologies are
mainly AC variable frequency speed regulation technology and hydro-viscous variable
speed regulation technology. For variable frequency speed regulation technology, the
output speed of the three-phase asynchronous motor can be regulated by adjusting its
frequency [12,13]. It requires clean surroundings and sufficient ventilation, leading to high
maintenance costs. For hydro-viscous variable speed regulation technology, the output
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speed of the wet clutch can be regulated by adjusting hydraulic pressure [14,15]. Similarly,
it also requires excellent cleanliness and good ventilation. Apparently, the above two
soft-starting technologies cannot meet the requirements of dirty working conditions such as
those in underground coal mines. In addition, their purchasing costs are very high. Thus, a
soft-starting technology with low costs and high reliability is needed for the belt conveyors
used in adverse environments such as underground coal mines.

In the last two decades, AMT has been widely used in heavy-duty vehicles for some
advantages of large transmitted torque, high transmission efficiency, low purchasing costs,
low maintenance costs, and longer service life [16–20]. The AMT has a high transmission
efficiency of more than 90% [21,22], while other soft-starting technologies cannot provide
such a high transmission efficiency. With continuous study and design, the input torque
of the AMT supplied by ZF Friedrichshafen AG can reach 3400 N·m, which can meet the
requirements of the transmitted torque for the heavy-duty vehicles and medium-scale belt
conveyors with 500 kW. The author has published papers using AMT as a soft starter of the
belt conveyors since 2013 [23,24]. The AMT soft-starting system for belt conveyors mainly
contains a three-phase asynchronous motor, an AMT, a reducer, and a belt conveyor.

Researchers have done a great deal of theoretical and experimental studies on the soft-
starting acceleration or speed curves in the past four decades, for the purpose of decreasing
the belt acceleration and the belt jerk during starting. In 1983, Harrison proposed a sine
acceleration curve for the belt conveyors and obtained an S-type belt speed curve [25,26]. In
1987, Nordell et al. proposed a triangular acceleration curve as a soft-starting acceleration
curve for belt conveyors [27,28]. In 1994, Singh proposed a soft-starting acceleration curve
with a creep section [29]. In 1998, Song proposed a trapezoidal acceleration curve as a
soft-starting acceleration curve for belt conveyors [30]. In 2000, Bardos proposed a parabolic
acceleration curve as a soft-starting acceleration curve for belt conveyors [31]. All those
soft-starting acceleration curves can make the belt accelerate softly and result in the belt
speed curve being S-shaped. Therefore, designing a soft-starting acceleration for an AMT
as a soft starter is key in starting the medium-scale belt conveyors softly.

Given a belt acceleration, the needed AMT output shaft’s angular acceleration can
be calculated by driveline system parameters between the AMT and the conveyor. For
the purpose of controlling the belt acceleration according to the designed curve, the AMT
output shaft’s angular acceleration should be controlled according to the corresponding
belt acceleration curve. In practice, the speed sensors measuring the AMT input and output
shafts can provide accurate information when the AMT is working. In addition, the angular
acceleration of the AMT input and output shafts can be calculated by the speed sensors.
Therefore, controlling the AMT output shaft’s angular acceleration is possible. The paper
provides a segmented belt acceleration curve for an AMT with many gears, which is a new
belt acceleration curve in comparison with traditional belt acceleration curves.

The paper is organized as follows: In Section 2, a segmented acceleration curve is
proposed for the AMT as a soft starter. In Section 3, the AMT soft starting system is
described and the dynamic model is built. In Section 4, the simulation model of the
AMT soft-starting system based on AMESim software is built and the simulation results
are analyzed.

2. Segmented Belt Acceleration Curve

The expressions of the four soft-starting acceleration curves as mentioned above are
analyzed below. By analyzing the characteristics of AMT, a new soft-starting acceleration
curve suitable to start the belt conveyors for AMT as a soft starter is developed.

The sine acceleration and its jerk curves are expressed as Equation (1).{
a(t) = π

2T vbsin
(

π
T t
)

j(t) = π2

2T2 vbcos
(

π
T t
) (0 ≤ t ≤ T) (1)
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where t is the time, vb is the belt target speed of the belt conveyor, T is the starting time of
the belt conveyor, and a(t) and j(t) are the belt acceleration and the belt jerk.

The triangular acceleration and its jerk curves are expressed as Equation (2).
a(t) =

{
4vb

t
T2 (0 ≤ t ≤ T/2)

4vb

(
1
T −

t
T2

)
(T/2 < t ≤ T)

j(t) =

{
4vb

1
T2 (0 ≤ t ≤ T/2)

−4vb
1

T2 (T/2 < t ≤ T)

(2)

The trapezoidal acceleration and its jerk curves are expressed as Equation (3).

a(t) =


N2vb

(N−1)T2 t (0 ≤ t ≤ ts)
Nvb

(N−1)T (ts < t < T − ts)
N2vb

(N−1)T2 (T − t) (T − ts ≤ t ≤ T)

j(t) =


N2vb

(N−1)T2 (0 ≤ t ≤ ts)

0 (ts < t < T − ts)

− N2vb
(N−1)T2 (T − ts ≤ t ≤ T)

(3)

where N is a natural number greater than or equal to 4 and ts is the ascent or descent
acceleration stage of the trapezoidal acceleration curve expressed as ts = T/N.

The parabolic acceleration and its jerk curves are expressed as Equation (4). a(t) = 6vb

(
t

T2 − t2

T3

)
j(t) = 6vb

(
1

T2 − 2 t
T3

) (0 ≤ t ≤ T) (4)

Under the conditions of the same starting time and same belt target speed, the above
four soft-starting accelerations and their jerk curves are presented in Figure 1. Figure 1a
gives the comparison results from the changes of the acceleration curves, and Figure 1b
gives the comparison results from the changes of the jerk curves.
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When N is greater than or equal to 4, ranking the maximum values of the belt accelera-
tion from large to small, triangular acceleration, sine acceleration, parabolic acceleration,
and trapezoidal acceleration curves occupy the first, second, third, and last places, respec-
tively. When N is equal to 4, ranking the maximum value of the belt jerk from large to
small, parabolic acceleration, trapezoidal acceleration, sine acceleration, and triangular
acceleration curves occupy the first, second, third, and last places, respectively. When N is
greater than 4, ranking the maximum values of the belt jerk from large to small, trapezoidal
acceleration, parabolic acceleration, sine acceleration, and triangular acceleration curves
occupy the first, second, third, and last places, respectively. Among the jerk curves, the tri-
angular acceleration and trapezoidal acceleration curves have sudden change phenomena.
From the perspective of control difficulties, the sine acceleration and parabolic acceleration
curves are complicated to control, making their acceleration algorithms more complex than
those of the other two soft-starting acceleration curves.

The above soft-starting acceleration curves can effectively control the AC variable
frequency motor and the hydro-viscous start transmission. An AMT as a soft starter needs to
upshift gradually to accelerate the belt, and the above four soft-starting acceleration curves
cannot directly be used. Power needs to be cut using the clutch during upshifting, and
the soft-starting acceleration curve should be considered in this situation. The transmitted
torque of the clutch is related to the force of the diaphragm spring, and its value is a
third-order polynomial related to the big end displacement of the diaphragm [32,33]. While
the automatic clutch actuator is equipped to control the small end displacement of the
diaphragm spring through thrust bearing, the big end displacement of the diaphragm
spring can be controlled on account of the lever principle. Thus, the belt acceleration can
be controlled by the transmitted torque of the clutch, which can be controlled by the clutch
actuator. Considering the complexity of the shifting control and the clutch control, the
algorithm of the belt acceleration should not be too complicated. Therefore, the soft-starting
acceleration curve should be designed practically.

The clutch should be first disengaged for shifting and be engaged finally after shifting,
and the power flow is interrupted during this interval. Thus, the belt cannot be accelerated
during shifting. As can be seen from Figure 1, the maximum value of the trapezoidal
acceleration curve is lower than the maximum values of the other three soft-starting
curves under the condition of the same starting time. In addition, the horizontal line of
the trapezoidal acceleration curve lowers control difficulty for the clutch. Therefore, to
minimize the belt acceleration and belt jerk, the trapezoidal acceleration curve is chosen
as the basic acceleration curve and N is set equal to 4. A segmented acceleration curve is
proposed for an AMT as a soft starter based on the above analysis, as shown in Figure 2.
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Figure 2. Starting acceleration curve for AMT.

The segmented acceleration curve includes several trapezoidal acceleration curves
determined by the maximum running speed, motor rated speed, and gear positions. T1,
T2, T3, and T4 are the acceleration times for the respective gear positions. amax1, amax2,
amax3, and amax4 are designed maximum accelerations under the conditions of first gear,
second gear, third gear, and fourth gear, respectively. Ts2, Ts3, and Ts4 are starting times for
accelerations under second, third, and fourth gear positions. For the purpose of stretching
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the whole belt, the belt is kept running for longer than 5 s after the acceleration stage labeled
T1 under first gear is completed. Owing to the belt being too long, the end of the conveyor
end runs behind the head of the conveyor head during the acceleration process. That is to
say, the time difference value between Ts2 and T1 contains 5 s and shifting time for second
gear. The belt is kept running for more than 2 s for the purpose of making up the speed
loss between the belt head and the belt end after the acceleration stage is completed under
second gear or higher gear. Then, the AMT is shifted to another higher gear position. In
this way, the upshifting operation should be completed until the designed target belt speed
is reached and the soft-starting process of the belt conveyor is finished. Generally, more
than five gear positions are provided by a heavy-duty AMT, which can meet the needs for
belt speed.

The segmented acceleration curve for a conveyor belt is expressed as Equation (5).

a(t) =


4a1max

T1
t

(
0 ≤ t ≤ 1

4 T1

)
a1max ( 1

4 T1 < t < 3
4 T1)

4a1max
T1

(T1 − t)
( 3

4 T1 ≤ t ≤ T1
)

a(t) =


4a2max

T2
(t− Ts2)

(
Ts2 ≤ t ≤ Ts2 +

1
4 T2

)
a2max (Ts2 +

1
4 T2 < t < Ts2 +

3
4 T2)

4a2max
T2

(Ts2 + T2 − t)
(
Ts2 +

3
4 T2 ≤ t ≤ Ts2 + T2

)
a(t) =


4a3max

T3
(t− Ts3)

(
Ts3 ≤ t ≤ Ts3 +

1
4 T3

)
a3max (Ts3 +

1
4 T3 < t < Ts3 +

3
4 T3)

4a3max
T3

(Ts3 + T3 − t)
(
Ts3 +

3
4 T3 ≤ t ≤ Ts3 + T3

)
a(t) =


4a4max

T4
(t− Ts4)

(
Ts4 ≤ t ≤ Ts4 +

1
4 T4

)
a4max (Ts4 +

1
4 T4 < t < Ts4 +

3
4 T4)

4a4max
T4

(Ts4 + T4 − t)
(
Ts4 +

3
4 T4 ≤ t ≤ Ts4 + T4

)
· · ·

(5)

3. System Description and Modeling
3.1. Soft-Starting System

Figure 3 shows the soft-starting driving system based on AMT. The soft-starting
driving system mainly includes a three-phase induction motor, AMT, reducer, and belt
conveyor. Powered by a three-phase induction motor, the transmitted torque is increased
by AMT and reducer and drives the belt conveyor.
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AMT comprises transmission control unit (TCU), actuators, clutch, and transmission.
The TCU controls the clutch engagement and disengagement through the clutch actuator,
which is operated by high-speed on–off solenoid valves. The TCU controls shifting through
the choosing actuator, shifting actuator, and range actuator. The range actuator is used to
control two gear positions (low and high gear positions) of the auxiliary transmission box.
The shifting actuator is used to control several gear positions of the main transmission box.
Thus, more than 10 gear positions of the AMT can be obtained. The belt acceleration can be
controlled according to the designed segmented acceleration curve by the TCU, and the
soft-starting process of the belt conveyor is achieved.

3.2. AMT Driving Modeling

An AMT driving model for a soft-starting driving system can be built as shown in
Figure 4.
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The parameters in Figure 4 are illustrated in Table 1.

Table 1. Model parameters.

Signal Mean

Ji AMT input shaft’s moment of inertia
Ti Transmml:mitted torque of the AMT input shaft
ωi AMT input shaft’s speed
Jo AMT output shaft’s equivalent moment of inertia
To Transmml:mitted torque of the AMT output shaft
ωo AMT output shaft’s speed
ig AMT’s gear ratio ( ωi

ωo
) determined by the gear position

ηg AMT’s transmission efficiency
Tf Resistance torque of the AMT output shaft

The dynamic equation of the AMT driving dynamic model can be expressed as
Equation (6).

M
.

X + CX = F (6)

where M is mass matrix expressed as M =

[
Ji

Jo

]
, X is speed matrix expressed as

X = [ωi ωo]
T , C is damping matrix expressed as C =

[
Ci

Co

]
, and F is force matrix

expressed as F =

[
Ti − To

igηg

To − Tf

]
.

The transmitted torque of the AMT input shaft is the transmitting torque of the clutch,
which can be expressed as a third-order polynomial concerning the big end displacement
of the diaphragm spring [32,33]. In this way, the motor torque is determined by the clutch
control. Based on the lever principle, the clutch actuator can control its displacement to
control the big end displacement of the diaphragm spring. Thus, the clutch transmitting
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torque can also be expressed as a third-order polynomial concerning the displacement of
the clutch actuator, which can be expressed as Equation (7).

Ti = µ′
[
K1(x− x0) + K2(x− x0)

2 + K3(x− x0)
3
]

(7)

where µ′ is the friction coefficient of the clutch disk, x is the displacement of the clutch
actuator, and x0 is the displacement of the clutch actuator at the critical point for beginning
to transmit torque.

Based on the above Equations (6) and (7), the dynamic equation of the AMT output
shaft can be expressed as Equation (8).

Jo
.

ωo + Coωo = To − Tf
To = Tiigηg − Jii2gηg

.
ωo − Cii2gηgωo

Ti = µ′
[
K1(x− x0) + K2(x− x0)

2 + K3(x− x0)
3
] (8)

The discrete dynamic equation of the AMT output shaft can be expressed as Equation (9)
according to Equation (8).

Jo
.

ωo(k) + Coωo(k) = To(k)− Tf (k).
ωo(k) = 1

T (ωo(k)−ωo(k− 1))
To(k) = Ti(k)igηg − Jii2gηg

.
ωo(k)− Cii2gηgωo(k)

Ti(k) = µ′
[
K1(x(k)− x0) + K2(x(k)− x0)

2 + K3(x(k)− x0)
3
] (9)

where T is the sampling interval,
.

ωo(k) is the AMT output shaft’s angular acceleration at k
sampling time, ωo(k) and ωo(k− 1) are the AMT output shaft’s angular speed at k sampling
time and k − 1 sampling time, Ti(k) is the transmitted torque of the AMT input shaft, To(k)
is the transmitted torque of the AMT output shaft, Tf (k) is the resistance torque of the AMT
output shaft, and x(k) is the displacement of the clutch actuator at k sampling time.

3.3. Belt Conveyor Model

A belt conveyor is composed of a head pulley (driving pulley), tail pulley, tensioning
pulley, bend pulley, upward roller, and downward roller. The belt conveyor model is shown
in Figure 5. The whole conveyor belt can be tightened by applying tensioning force at
the tensioning pulley. Ft is the tensioning force at the tensioning pulley. Tensions of the
tight edge and the loose edge are F1 and F2, respectively; the driving force at the driving
pulley is Fd.
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Figure 5. Belt conveyor model.

The relationship between the driving force, the tight tensioning force, and the loose
tensioning is expressed as Equation (10).

Fd = F1 − F2 (10)

where Fd is driving force at the driving pulley.
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The relationship between the tight tensioning force and the loose tensioning force is
analyzed as below if the belt is about to slip. Regarding the belt contacting the head pulley
as the research object, taking a micro belt length dl for the purpose of force analysis, the
tensions of the micro belt length are analyzed as shown in Figure 6. dFN is the compressing
force of head pulley acting on the belt, µ is the friction coefficient, µdFN is the friction force
between the belt and the driving pulley, dα is the corresponding belt contact angle for the
micro belt length dl, α is the belt wrap angle between the belt and the driving pulley, and F
and F + dF are the tensioning forces at both sides of micro belt length dl.
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Figure 6. Tension analysis for belt drive.

The dynamic equation of micro belt length dl can be expressed as Equation (11) if the
belt is about to slip. {

µdFN = (F + dF)cos dα
2 − Fcos dα

2
dFN = (F + dF)sin dα

2 + Fsin dα
2

(11)

Supposing that dα is a small wrap angle, sin dα
2 and cos dα

2 are similar to dα
2 and 1,

respectively, under the infinitesimal transformation method; the value of dFsin dα
2 is a

high-order infinitesimal which is similar to 0. Then, Equation (12) can be obtained.{
dF
F = µdα∫ F1
F2

dF
F =

∫ α
0 µdα

(12)

Based on Equation (12), the relationship between the tight tensioning force and the
loose tensioning force is expressed as Equation (13) if the belt is about to slip.

F1 = F2eµα (13)

where eµα is the Euler coefficient.
Thus, the maximum of the effective driving force at the driving pulley is expressed as

Equation (14) according to Equations (10) and (13).

Fdmax = F1 − F2 = F2(eµα − 1) (14)

In conclusion, the condition of driving and no slipping can be obtained as Equation (15).

Ff ≤ Fd ≤ Fdmax (15)

where Fd is the driving force of the belt at the driving pulley and Ff is the belt resis-
tance force.

The conveyor belt is composed of rubber, fiber, and steel core. Thus, the conveyor belt
has some viscoelastic characteristics; a damp model is used to show the viscous characteris-
tics of the conveyor belt and an elastic model is used to show the elastic characteristics of
the conveyor belt. An elastic model and a damping model are connected in parallel to be
represented as a Kelvin–Vogit model [34], which is used to describe the viscous and elastic
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characteristics of the conveyor belt. Supposing the whole belt is divided into N units, a belt
unit model is built as shown in Figure 7 based on Kelvin–Vogit model.
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The dynamic equation of a belt unit model is expressed as Equation (16).

mbi
.
vbi + cbivbi + kbixbi = Fdi − Fd(i+1) − Ff i (16)

where mbi is mass of number N unit; cbi is tamping efficient of number N unit; kbi is the
elastic coefficient of number N unit; Fdi and Fd(i+1) are tensions of both ends of number N
unit; Ff i is resistance force of number N unit; and xbi, vbi, and

.
vbi are belt displacement, belt

speed, and belt acceleration of number N unit, respectively.
Then, the dynamic equation of the whole belt is expressed as Equation (17).

M
..
X + C

.
X + KX = F (17)

where M is mass matrix expressed as M =

 mb1
. . .

mbN

, X is displacement matrix

expressed as X = [xb1 · · · xbN ]
T , C is damping matrix expressed as C =

 cb1
. . .

cbN

,

K is elastic matrix expressed as K =

 kb1
. . .

kbN

, and F is force matrix expressed as

F =
[
(Fd1 − Fd2 − Ff 1

)
· · ·
(

FdN − FdN − Ff N

)
]T .

The driving force of the belt is created from the transmitted torque of the driving
pulley. The dynamic equation of the conveyor can be expressed as Equation (18).

mbab + cbvb + kbxb = Fd − Ff
mb = mbu + mbl + mload + mp

Fd = Td
rd

Td = Tiigirηgηr
vb =

.
xb

ab =
..
xb

(18)

where mb is the equivalent mass of the conveyor, ab is the belt acceleration, vb is the
belt speed, xb is the belt displacement, cb is the belt damping coefficient, kb is the belt
elastic coefficient, mbu is the equivalent mass of the upper belt and upper roller, mbl is the
equivalent mass of the lower belt and lower roller, mload is the load mass on the upper belt,
mp is the equivalent mass of all pulleys, Td is the driving torque of the driving pulley, rd
is the radius of the driving pulley, and ir and ηr are the gear ratio and the transmission
efficiency of the reducer.
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Limited by the condition of driving and no slipping shown in Equation (15), the
maximum value of the belt acceleration can be calculated by Equation (19) according to
Equation (18).

ab ≤
Fdmax − Ff − cbvb − kbxb

mb
(19)

Generally, the belt acceleration should be less than or equal to 0.3 m/s2 for an indus-
trial conveyor.

3.4. Segmented Angular Acceleration Curve of the AMT Output Shaft and Clutch Transmitted
Torque Algorithm

Given a belt acceleration, the needed AMT output shaft’s angular acceleration can be
calculated from Equation (20) according to the driveline.

.
ωo =

abir
rd

(20)

The AMT output shaft’s speed can be easily tested and calculated according to the
AMT output shaft’s speed sensor. In addition, the AMT output shaft’s angular acceleration
can be calculated further. Thus, the AMT output shaft’s angular acceleration can be used to
control the belt acceleration. The segmented angular acceleration curve of the AMT output
shaft corresponding to the segmented belt acceleration curve expressed from Equation (5)
can be calculated from Equation (21).

.
ωo(t) =


4a1max ir

T1rd
t

(
0 ≤ t ≤ 1

4 T1

)
a1max

ir
rd

( 1
4 T1 < t < 3

4 T1)
4a1max ir

T1rd
(T1 − t)

( 3
4 T1 ≤ t ≤ T1

)
.

ωo(t) =


4a2max ir

T2rd
(t− Ts2)

(
Ts2 ≤ t ≤ Ts2 +

1
4 T2

)
a2max

ir
rd

(Ts2 +
1
4 T2 < t < Ts2 +

3
4 T2)

4a2max ir
T2rd

(Ts2 + T2 − t)
(
Ts2 +

3
4 T2 ≤ t ≤ Ts2 + T2

)
.

ωo(t) =


4a3max ir

T3rd
(t− Ts3)

(
Ts3 ≤ t ≤ Ts3 +

1
4 T3

)
a3max

ir
rd

(Ts3 +
1
4 T3 < t < Ts3 +

3
4 T3)

4a3max ir
T3rd

(Ts3 + T3 − t)
(
Ts3 +

3
4 T3 ≤ t ≤ Ts3 + T3

)
.

ωo(t) =


4a4max ir

T4rd
(t− Ts4)

(
Ts4 ≤ t ≤ Ts4 +

1
4 T4

)
a4max

ir
rd

(Ts4 +
1
4 T4 < t < Ts4 +

3
4 T4)

4a4max
T4rd

(Ts4 + T4 − t)
(
Ts4 +

3
4 T4 ≤ t ≤ Ts4 + T4

)
· · ·

(21)

The resistance torques of the AMT output shaft can be calculated from Equation (22).

Tf =
Tf d

irηr
=

Ff rd

irηr
(22)

where Tf d is the resistance torque of the head pulley.
The needed transmitted torque of the clutch can be calculated from Equation (23)

according to Equation (8).

Ti =
1

igηg

[(
Jii2gηg + Jo

) .
ωo + (Cii2gηg + Co)ωo + Tf

]
(23)

where Jo is the AMT output shaft’s equivalent moment of inertia, which can be calculated
from Jo = Jt +

Jr
i2r
(Jr + mbr2

d). Jt is AMT’s moment of inertia at the output shaft. Jr is the
reducer’s moment of inertia at the output shaft.
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Suppose some parameters including the load inertia and damping coefficient are
invariable during the starting process. The discrete form of Equation (22) is expressed as
Equation (24).

Ti(k) =
1

igηg

[(
Jii2gηg + Jo

) .
ωo(k) + (Cii2gηg + Co)ωo(k) + Tf (k)

]
(24)

3.5. Motor Output Torque Model

Generally, given the maximum torque and the slip ratio, the output torque of the three-
phase induction motor can be expressed as Equation (25) according to the literature [35,36]. Tm = 2Tmax

S
Sm + Sm

S

S = n1−nm
n1

(25)

where Tm is the output torque, Tmax is the maximum torque or critical torque, s is the slip
ratio, n1 is the synchronous speed of the three-phase induction motor, nm is the rotor speed
of the three-phase induction motor, and Sm is the critical slip ratio corresponding to the
maximum torque or critical torque.

4. Simulation Analysis Based on AMESim
4.1. Simulation Model and Parameter Setting

To show the dynamic response of soft-starting system based on the designed soft-
starting acceleration curve for belt conveyor, a simulation model based on AMESim soft-
ware using AMT as the soft starter for the belt conveyor with 300 kW is built as shown in
Figure 8.
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The belt conveyor is built according to Equations (10), (16), and (17) from Section 3.3.
The upper and lower belts are divided into 10 parts separately. AMT model is composed of
two parts: a clutch model and a transmission model. The model of the clutch transmitted
torque is built according to Equation (23) from Section 3.4. The motor model is built
according to Equation (24) from Section 3.5.

Ignoring the transmission efficiency of the driveline, the main parameters of the
soft-starting system are listed in Table 2.
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Table 2. Main parameters of the AMT soft-starting system.

Parameter Unit Value Parameter Unit Value

mb kg 249,571 Ji kg·m2 0.135
rd m 0.5 Jt kg·m2 10
Ff N 50,819 Jr kg·m2 31.5
Cb N·s/m 11,928 mbu kg· 79,695
kb N/m 81,250 mbl kg· 57,876
Ci N·m/rpm 5 mload kg· 109,368
Ft N 66,540 mp kg· 2632

Tmax N·m 4456.67 ig
14.28, 10.62, 7.87, 5.87,

4.375, 3.26, 2.43, 1.8
n1 rpm 1500 ir 10
Co N·m/rpm 5 sm 0.0416
α rad π µ 0.02

Given the motor’s rated speed of 1485 rpm, the designed belt speeds from first to
eighth gear positions are 0.54, 0.73, 0.99, 1.32, 1.78, 2.38, 3.20, and 4.32 m/s, respectively.
Correspondingly, the AMT output shaft’s speeds from first to eighth gear positions are
103.99, 139.83, 188.69, 252.98, 339.43, 455.52, 611.11, and 825.00 rpm, respectively.

Limited by the belt’s maximum acceleration of 0.3 m/s2, the belt’s designed maximum
acceleration according to the segmented acceleration curve is designed to be less than
0.2 m/s2 under different gear positions in this paper. Therefore, the acceleration stage times
for every gear position are 4, 4, 4, 4, 6, 6, 8, and 10 s successively. After the acceleration
stage for the first gear position is finished, the run time is 5 s. The run time is 3 s after the
acceleration stage under other gear positions.

Owing to the needs of shifting and accelerating, clutch disengaging, shifting to neutral
gear, choosing gear, shifting to a higher gear, and clutch engaging should operate succes-
sively. The time for clutch disengaging is 0.2 s, including 0.1 s for transmitting torque and
0.1 s for no torque. The time for shifting to neutral gear is 0.1 s. The time for choosing gear
is 0.1 s. The time for shifting to a higher gear is 0.2 s. The time for clutch engaging before
belt accelerating is 0.3 s, including 0.1 s for no torque (to eliminate the gap between the
release bearing and the diaphragm small end) and 0.2 s for transmitting torque up to a
half-engagement point. The time for clutch engaging during the belt accelerating stage is
determined by the segmented acceleration curve for the gear position.

4.2. Simulation Results

Based on the above parameters, a simulation of the soft-starting process for a belt
conveyor with 300 kW was conducted. To show the characteristics of the belt, the conveyor,
and the AMT during the soft-starting process, some parameter variation curves are given
below. The print interval of the simulation results is 0.01 s. Figures 9–11 show the speed,
acceleration, and jerk of the upper belt, respectively. Figure 12 shows the belt tensions of
the upper belt. Figure 13 shows the tensions of the driving pulley of the conveyor. Figure 14
shows the speed, acceleration, and jerk of the AMT output shaft.

By shifting from first to eighth gear and acceleration control, the belt speed increases
to the target speed of 4.32 m/s gradually, as shown in Figure 9a. The belt speed decreases
because of larger load inertia during the clutch disengaging for shifting. By comparison,
the belt speed of the rear part lags behind that of the front part in Figure 9b, which explains
the belt viscoelasticity. Therefore, several seconds are needed to make the whole belt run to
ensure that the rear part of the belt reaches the target speed after the front part of the belt
reaches the target speed under every gear position of the AMT.
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The belt acceleration curve from first to eighth gear is shown in Figure 10a. The
belt maximum acceleration of every gear position is less than 0.2 m/s2, which meets the
requirements of soft starting. The belt acceleration vibrates because of the belt resistance
force during the clutch disengaging for shifting. Basically, the belt is accelerated according
to the designed segmented acceleration curve. Obviously, the vibration of the front part
is not stronger than that of the rear part. The belt acceleration curve at the beginning



Processes 2022, 10, 106 16 of 18

stage of soft starting is quite consistent with the designed segmented acceleration curve in
Figure 10b. With the starting of the front part, the rear belt follows.

The belt jerk curve from first to eighth gear is shown in Figure 11a, which shows that
the belt jerk during the belt accelerating stage is quite smaller than that during the clutch
disengaging. The belt jerk changes with the belt acceleration. The belt maximum jerk of the
front part is obviously greater than that of the rear part during the clutch disengaging under
the influence of the driveline. The belt maximum jerk is 0.337 m/s3 at the moment of 22.15 s
during the belt accelerating process except for the time of power interruption because of
shifting. The belt jerk curve at the beginning of soft starting is shown in Figure 11b, which
shows that the belt jerk of the rear part changes with that of the front part.

The belt tension curve from first to eighth gear is shown in Figure 12. The belt
maximum tension of the front part is given to drive the whole belt; the maximum value is
130,086 N during the first gear position corresponding to the belt acceleration curve. The
belt maximum tension of the rear part is only 56,739 N during the first gear position. The
belt tensions of the front and rear parts are 84,033 N and 45,124 N, respectively. The tension
difference between the front and rear parts is needed to overcome the belt resistance force
of the upper belt.

The belt tension curve of the driving pulley from first to eighth gear is shown in
Figure 13. The belt tension of the tight edge varies with the belt acceleration curve derived
from the transmitted torque of the driving pulley. The belt tension of the loose edge changes
little because the loose edge of the driving pulley is near the tensioning pulley. The belt
tensions of the tight and loose edges are 84,033 N and 33,214 N, respectively, after the
acceleration stage is finished under the eighth gear position.

The AMT output shaft’s speed, angular acceleration, and angular jerk curves during
the whole soft-starting process from first to eighth gear are shown in Figure 14. The
AMT output shaft’s speed increases with the increasing of the gear position gradually,
which is consistent with the belt speed. It reaches the speed of 827.06 r/min, which is
determined by the motor speed and the transmission ratio of the eighth gear position. The
AMT output shaft’s angular acceleration curve changes almost in line with the designed
segmented acceleration curve if the power interruption is ignored. That is to say, the belt
acceleration can be controlled by controlling the AMT output shaft’s angular acceleration
determined by the clutch transmitted torque. The AMT output shaft’s maximum angular
jerk is 215.06 rad/s3 at the moment of 30.04 s.

By comparing the speed curves and the acceleration curves between the belt and the
AMT output shaft, it can be seen that their shapes are similar, which shows that controlling
the AMT output shaft’s accelerating process will control the belt accelerating process.
The soft-starting process of the belt conveyor can be shown from front to rear parts; the
parameters curves of the whole belt, including the belt speed, belt acceleration, and belt
jerk, are clearly manifested.

5. Conclusions

In this paper, a new segmented acceleration curve is proposed as the soft-starting
acceleration curve for belt conveyors based on AMT. The belt speed is increased by shifting
and accelerating until the speed reaches the target designed speed. The modeling of
the AMT soft-starting system is built, including the AMT driving modeling and the belt
conveyor modeling. The AMT output shaft’s angular acceleration can be taken as the
control parameter to control the belt acceleration because the AMT output shaft’s speed
and angular acceleration can be obtained and calculated from the AMT output shaft’s speed
sensor. In the environment of AMESim, the AMT soft-starting system simulation model
was built, and the simulation results of the acceleration process from first to eighth gear
position have been given. The results prove that the belt’s moving has a lag phenomenon
and the segmented acceleration curve is reasonable for the belt’s acceleration process in
terms of the belt’s viscoelastic characteristics. Except for the power interruption time of
clutch disengaging for shifting, the belt acceleration and the AMT output shaft’s angular
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acceleration curves are in line with the designed segmented acceleration curve. The paper
provides a theoretical and feasible solution for AMT to further research on the soft-starting
process of the medium-scale belt conveyors.
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