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Abstract: As a new type of composite bridge, the dynamic structural characteristics of a tensioned
string bridge need to be deeply studied. In this paper, based on the structural characteristics of a
tensioned string bridge, the Rayleigh method is used to derive formulas for calculating the frequencies
of vertical, antisymmetric and lateral bending vibrations. The characteristics of the vertical and lateral
bending vibration frequencies are summarized. The fundamental frequencies of the antisymmetric
vertical bending and lateral bending of the tensioned string bridge are the same as that of the single-
span beam under the corresponding constraint conditions. The shape and physical characteristics of
the main cable have no effect on the frequency. The vertical bending symmetrical vibration frequency
of the tensioned string bridge is greater than the corresponding symmetrical vibration frequency of
the simply supported beam. The shape and physical characteristics of the main cable have a greater
impact on the vertical bending symmetrical vibration frequency than the lateral bending frequency,
and the vertical bending symmetrical vibration frequency increases with an increasing rise-to-span
ratio. The tension force of the main cable has no influence on the frequency of tensioned string bridges.
The first-order frequency of the tensioned string bridge is generally the vertical bending symmetrical
vibration frequency. By adopting a tensioned string bridge structure, the fundamental frequency of
a structure can be greatly increased, thereby increasing the overall rigidity of the structure. Finally,
an engineering example is applied with the finite element parameter analysis method to study the
vibration frequency characteristics of the tensioned string bridge, which verifies the correctness of the
formula derived in this paper. The finite element analysis results show that the errors between the
derived formula in this paper and the finite element calculation results are less than 2%, indicating
that the formula derived in this paper has high calculation accuracy and can meet the calculation
accuracy requirements of engineering applications.

Keywords: bridge engineering; tensioned string bridge; Rayleigh method; fundamental frequency;
approximation calculation

1. Introduction

As a newly developed beam and cable combination structure system, beam string
structures have been investigated during the past 20 years. Studies show that the beam
string structure is especially suitable for large-span spatial structures [1–7]. The beam string
structure is mainly applied in large span industrial and architecture structures such as
the roof structures of stadiums, convention and exhibition centers, terminal buildings and
platform canopies [8–11]. However, it is rarely used in bridge structures. In recent years,
due to the unique advantages of the string beam structure in urban construction, this new
structural system has been adopted in the design of urban pedestrian bridges.

Since cables are engineering structures, typically with nonlinear characteristics, re-
searchers have paid much attention to the study of both their vibration frequencies and
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their nonlinear mechanical behaviors. Irvine and Caughey [12] established the vibration
theory of cables with a small sag. Based on the cable vibration equation and geometric
deformation compatibility conditions, they derived the famous horizontal suspension
cable frequency equation of in-plane vibration, which plays an important role in the cable
vibration theory. Subsequently, Irvine [13] extended the horizontal cable vibration theory to
inclined cables with a small sag. Triantafyllou et al. [14,15] derived a more accurate solution
with the assumption of the spatial variability of the power cable and consideration of the
influence of the weight component parallel to the cable. Li Guoqiang et al. [16] found that
when the second-order term is considered in the deformation compatibility equation, the
free vibration of the cable exhibits nonlinear characteristics. Larsen et al. [17] studied the
dynamic characteristics of a three-span continuous suspension bridge without considering
the stiffness of the pylons and derived estimation formulas for the fundamental frequency
of symmetric vertical bending and torsion. In Li et al.’s research [18], it was concluded that
such cable structures themselves have rich nonlinear dynamic characteristics for suspension
bridges, including cable-stayed bridges. However, whether and how to consider these
nonlinear dynamics in engineering practice should be further investigated. Therefore, as a
special kind of nonlinear cable structure, the vibration frequency calculation formula and
structural vibration frequency characteristics of a tensioned string bridge structure need to
be studied in depth.

The analysis of structural dynamic characteristics is an important part of the design
and calculation of bridge structures. The approximate calculation of the natural frequency of
engineering structures is also a topic that has received attention from many researchers [19].
Low [20,21] used an eigenanalysis and Rayleigh’s estimation to analyze the frequency
characteristics of a beam carrying multiple point masses at various locations and verified
that the Rayleigh method can provide a better approximation, which can replace the solu-
tion of the complex eigenfrequency equation. H.R. Öz [22] studied the natural frequency
of a Euler–Bernoulli-type beam with a certain mass by using the finite element analysis
method and compared it with other methods, such as the Rayleigh method. Valle et al. [23]
proposed a new closed-form equation for beams subjected to axial loads. This equation
can very accurately simulate the relationship between the natural frequency of an axially
stressed beam and the axial load under different end conditions. Yang et al. [24] conducted
elastic and plastic experimental studies on the first natural frequency of fixed-supported
steel beams under different axial tensile loads and discussed the influence of plasticity on
the natural frequency of the structure. The current Chinese Bridge Wind Design Code [25]
also gives the basic frequency estimation formulas for cable-stayed bridges and suspen-
sion bridges. In recent years, studies on the dynamic characteristics of tensioned string
structures have been conducted considering engineering examples and applications. Based
on the parameter analysis method, Wang Xiuli et al. [26] determined the natural vibration
law and the influence of the rise-span ratio, vertical-span ratio, number of struts and other
parameters on the natural vibration characteristics of a string beam structure. He Yongjun
et al. [27] analyzed the order of appearance of the first-order vibration modes and the corre-
sponding natural vibration period of a tensioned giant grid structure. The change pattern
of stiffness of the structure in various directions with different parameters was studied
in detail as well. In Chen’s [28] research, the Galerkin method was applied to obtain the
analytical solution of an arched string structure. The results were compared with the model
test and nonlinear finite element analysis results, verifying the accuracy of the proposed
theoretical formula. Jiang [29] established a nonlinear dynamic finite element model of
a long-span string beam structure based on engineering examples, analyzed the natural
vibration characteristics of the string beam structure and discussed the distribution laws
of various frequencies and corresponding modes. Based on parameter analysis methods,
Shi [30] investigated the influence of prestress, number of struts, cable cross-sectional area
and restraint conditions on the natural vibration characteristics of long-span string truss
structures. The results show that the low-order mode of the tensioned truss structure is
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dominated by vertical vibration; the low-order mode vibration can rarely be affected by the
cross-sectional area of the cable, but is significantly influenced by constraint conditions.

Previous studies have mainly focused on the spatial string beam structure with param-
eter analysis and dynamic finite element methods. However, a tensioned string bridge is a
typical long structure, which is quite different from the large-span spatial string structure,
and no relevant research has been conducted on its fundamental frequency calculation and
frequency characteristics thus far. In this paper, based on the existing literature [31], the
Rayleigh method is applied to study the simplified calculation formula of the fundamental
frequency of a tensioned string bridge, and the corresponding frequency characteristics are
analyzed to provide a preliminary design calculation basis for the dynamic calculation of a
tensioned string bridge.

2. Rayleigh’s Method of Frequency Calculation

The basic principle of applying the Rayleigh method to calculate the vibration fre-
quency of a structure is based on the theory that when an undamped elastic system vibrates
freely, its total energy remains unchanged at any time point. When the velocity is zero, the
strain energy of the structure reaches the maximum, and when the structural strain energy
is zero, the structural kinetic energy is maximum; therefore:

Tmax = Umax (1)

where Tmax is the maximum kinetic energy when the strain energy of the system is zero
and Umax is the maximum strain energy when the kinetic energy of the system is zero.

Taking the free vibration of a typical distributed mass beam with equal cross-section
as an example, the vibration displacement at any time can be expressed as:

y(x, t) = φ(x) sin(ωt + α) (2)

where φ(x) is the displacement amplitude, ω is the natural frequency, and α is the initial
phase angle.

Then, the maximum bending strain energy of the beam is derived as:

Umax =
1
2

∫ l

0
EI[φ′′ (x)]2dx (3)

where EI is the bending stiffness of the beam and l is the length of the beam.
The maximum kinetic energy of the beam is as follows:

Tmax =
1
2

ω2
∫ l

0
m[φ(x)]

2

dx (4)

where m is the mass per unit length of the beam. From Equation (1), the frequency of the
beam can be obtained as:

ω2 =

∫ l
0 EI[φ′′ (x)]2dx∫ l

0 m[φ(x)]
2
dx

(5)

As long as the structural mode shape function can be approximately determined, the
frequency corresponding to the mode shape can be obtained from Equation (5).

3. Structural Characteristics of the Tensioned String Bridge and Compatibility
Equation of the Main Cable Geometric Deformation
3.1. Characteristics of the Tensioned String Bridge

The tensioned string bridge is composed of three types of basic components: the
upper rigid main girder that bears compression and bending, the lower string (main cable)
that bears tensile force and the compression brace strut connecting these two components.
Simple support constraints are applied on the tensioned string bridge. By prestressing
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the lower chord cable, the whole structure is a typical prestressed self-balancing structure
system. A sketch of the tensioned string bridge is shown in Figure 1. For tensioned string
bridges, the main girder of the tensioned string bridge is subjected to a greater pressure,
and the rigidity of the main girder of the tensioned string bridge is relatively large, which
is different from suspension bridges. Therefore, the shape of the main cable is generally
designed as a secondary parabola or catenary with a rise-to-span ratio of approximately
1/10.
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Figure 1. Structural characteristics of the tensioned string bridge.

3.2. Geometric Deformation Compatibility Equation of the Main Cable of the Tensioned
String Bridge

A microsection is selected to derive the geometric deformation compatibility equation
of the main cable of the tensioned string bridge, as shown in Figure 2. Due to vibration, the
position is changed from the initial position AB to the final position A′B′ with the change
in length from ds0 to ds. u, η and ϕ are the horizontal, vertical and lateral displacements of
the main cable, respectively.
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According to the displacement geometric relationship shown in Figure 2, the elonga-
tion per unit cable length can be obtained as:

∆ds = ds− ds0 =
√
(dx + du)2 + (dz0 + dη)2 + dϕ2 −

√
dx2 + dz02

=

√
1 + 2 dx

ds ×
∂u
∂s + 2 dz0

ds ×
∂η
∂s + ( ∂u

∂s )
2
+ ( ∂η

∂s )
2
+ ( ∂ϕ

∂s )
2
ds− ds

≈
[

1 + dx
ds ×

∂u
∂s + dz0

ds ×
∂η
∂s + 1

2 (
∂u
∂s )

2
+ 1

2 (
∂η
∂s )

2
+ 1

2 (
∂ϕ
∂s )

2
]

ds− ds

=

[
dx
ds ×

∂u
∂s + dz0

ds ×
∂η
∂s + 1

2 (
∂u
∂s )

2
+ 1

2 (
∂η
∂s )

2
+ 1

2 (
∂ϕ
∂s )

2
]

ds

(6)

The relationship between the main cable force and displacement can be written as:

∆ds =
∆T

Ec Ac
ds (7)

where ∆T is the increment of tension caused by the main cable vibration and Ec and Ac are
the elastic modulus and cross-sectional area of the main cable, respectively. Considering
the horizontal force of ∆T, the increase in the horizontal force component of the main cable
due to vibration can be written as:

h = ∆T
dx
ds

(8)
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Substituting Equations(7) and(8) into Equation (6), the following can be obtained:

h
Ec Ac

(
ds
dx

)3
=

∂u
∂x

+
dz0

dx
× ∂η

∂x
+

1
2

(
∂u
∂x

)2
+

1
2

(
∂η

∂x

)2
+

1
2

(
∂ϕ

∂x

)2
(9)

Integrating the total length of the bridge on the left and right sides of Equation (9), the
following equation can be obtained:

∫ l

0

h
Ec Ac

(
ds
dx

)3
dx =

∫ l

0

[
∂u
∂x

+
dz0

dx
× ∂η

∂x
+

1
2

(
∂u
∂x

)2
+

1
2

(
∂η

∂x

)2
+

1
2

(
∂ϕ

∂x

)2
]

dx (10)

Since the horizontal force component increment is constant along the bridge span, the
following is obtained:

∫ l

0

h
Ec Ac

(
ds
dx

)3
dx =

hLE
Ec Ac

, LE =
∫ l

0

(
ds
dx

)3
dx (11)

∫ l

0

[
∂u
∂x

+
dz0
dx
× ∂η

∂x
+

1
2

(
∂u
∂x

)2
+

1
2

(
∂η

∂x

)2
+

1
2

(
∂ϕ

∂x

)2
]

dx = u(l)− u(0) +
d2z0

dx2

∫ l

0
ηdx +

1
2

∫ l

0

(
dη

dx

)2

dx+
1
2

∫ l

0

(
dϕ

dx

)2

dx (12)

Due to the structural characteristics of the tensioned string bridge, the horizontal
tension increment of the main cable is the same as the pressure on the main beam, and the
relative horizontal displacement of the tensioned string bridge at the two fulcrums is the
same. The relative horizontal displacement of the main beam and the main cable at the two
fulcrums can be written as:

u(l)− u(0) = − hl
Eb Ab

(13)

where Eb and Ab are the elastic modulus and cross-sectional area of the main cable, respectively.
The geometric deformation compatibility equation of the main cable can be derived

from Equations(11)–(13) as:

hLE
Ec Ac

=
d2z0

dx2

∫ l

0
ηdx +

1
2

∫ l

0

(
dη

dx

)2

dx+
1
2

∫ l

0

(
dϕ

dx

)2

dx− hl
Eb Ab

(14)

Neglecting the high-order terms, Equation (14) can be simplified as:

hLE
Ec Ac

=
d2z0

dx2

∫ l

0
ηdx− hl

Eb Ab
(15)

4. Basic Assumptions for the Frequency Calculation and System Energy of Tensioned
String Bridges

The determination of the vibration frequency of the tensioned string bridge is based
on the following assumptions:

(1). The main cable is completely flexible, and the stress–strain relationship satisfies
Hooke’s law;

(2). The struts are not elongated, and the deformation of the stiffening beam and the main
cable are coordinated when vibrating;

(3). Axial shortening of the main beam due to flexural deformation is ignored;
(4). The main cable shape is a secondary parabola under dead loads.

According to the deformation characteristics of the main cable, the strain energy of
the main cable can be obtained as:

Uc =
1
2

h2LE
Ec AC

+
1
2

Hg

∫ l

0

(
dη

dx

)2

dx+
1
2

Hg

∫ l

0

(
dϕ

dx

)2

dx (16)
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where Hg is the horizontal component of the self-reconfigurable tensile force of the main cable.
According to assumption (4), the shape of the main cable is a secondary parabola,

which can be obtained as:

ν =
d2z0

dx2 =
8 f
l2 (17)

where f is the rise of the tensioned string bridge.
According to the deformation compatibility Equations in (14) and (17), the following

can be obtained:

1
2

h2LE
Ec AC

=
1
2

νh
∫ l

0
ηdx+

h
4

∫ l

0

(
dη

dx

)2

dx+
h
4

∫ l

0

(
dϕ

dx

)2

dx− 1
2

h2l
Eb Ab

(18)

Ignoring the higher-order terms, the strain energy of the main cable is as follows:

Uc =
1
2

νh
∫ l

0
ηdx− 1

2
h2l

Eb Ab
+

1
2

Hg

∫ l

0

(
dη

dx

)2

dx+
1
2

Hg

∫ l

0

(
dϕ

dx

)2

dx (19)

The strain energy of the main beam is as follows:

Ub =
1
2

Eb Iv

∫ l

0
(

∂2η

∂x2 )
2

dx +
1
2

Eb Iw

∫ l

0
(

∂2 ϕ

∂x2 )
2

dx +
h2l

2Eb Ab
− 1

2
Hg

∫ l

0

(
dη

dx

)2

dx−1
2

Hg

∫ l

0

(
dϕ

dx

)2

dx (20)

where Iv and Iw are the vertical and lateral bending moments of inertia of the main beam
section, respectively.

With the assumption that struts are not deformed, the strain energy of the struts is 0.
Combining Equations (19) and (20), the total strain energy of the cable and beam can be
obtained as:

Ut =
1
2

νh
∫ l

0
ηdx+

1
2

Eb Iv

∫ l

0
(

∂2η

∂x2 )
2

dx +
1
2

Eb Iw

∫ l

0
(

∂2 ϕ

∂x2 )
2

dx (21)

The deflection kinetic energy of the main beam is as follows:

Tb =
1
2

∫
l
mb(

∂η

∂t
)

2
dx +

1
2

∫
l
mb(

∂ϕ

∂t
)

2
dx (22)

The deflection kinetic energy of the main cable is as follows:

Tc =
1
2

∫
l
mc(

∂η

∂t
)

2
dx +

1
2

∫
l
mc(

∂ϕ

∂t
)

2
dx (23)

The deflection kinetic energy of the strut is as follows:

Ts =
1
2

∫
l
ms(

∂η

∂t
)

2
dx +

1
2

∫
l
ms(

∂ϕ

∂t
)

2
dx (24)

Then, the total kinetic energy of the tensioned string bridge structure can be ob-
tained as:

Tt =
1
2

∫
l
mt(

∂η

∂t
)

2
dx +

1
2

∫
l
mt(

∂ϕ

∂t
)

2
dx (25)

mt = mb + mc + ms

where mb, mc and ms are the unit masses of the main beam, main cable and struts, respec-
tively, and mt is the total mass per unit length of the tensioned string bridge.
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5. Fundamental Frequency Formula of Vertical and Lateral Bending Vibration
5.1. Vertical Bending Antisymmetric Vibration Frequency

When the suspension bridge vibrates in the vertical plane, the horizontal vibration
displacement of the main girder and the cable is zero, that is, ϕ(x) = 0.

Since the tensioned string bridge is an external simply supported constrained structure
in the vertical plane, for the vertical antisymmetric mode, the mode function can be taken as:

ηa = Aa sin
(

2πx
l

)
sin(ωat + a0) (26)

For the antisymmetric mode, h = 0. Then, the total strain energy of the structure can
be obtained from Equation (21) as:

Ut =
1
2

Eb Iv

∫ l

0
(

∂2ηa

∂x2 )
2

dx =
l
4

Eb Iv A2
a

(
2π

l

)4
sin2(ωat + a0) (27)

Umax =
l
4

Eb Iv A2
a

(
2π

l

)4
(28)

Substituting the mode function into Equation (25), the total kinetic energy of the
structure can be obtained as:

Tt =
1
2

∫ l

0
mt(

∂η

∂t
)

2
dx =

mt

4
A2

aω2
a l cos2(ωat + a0) (29)

Tmax =
l
4

mt A2
aω2

a (30)

From Equation (1), the frequency of the vertical antisymmetric mode can be ob-
tained as:

f a
b =

ωa

2π
=

2π

l2

√
Eb Iv

mt
(31)

Formula (31) shows that its frequency is the same as the vibration frequency of a
simply supported beam and has no relation with the pretension of the main cable or the
physical characteristics.

5.2. Positive Symmetrical Vibration Frequency of Vertical Bending

According to the constraint conditions of the structural support and its deformation
characteristics, the mode function of the vertical positive symmetric mode can be taken as:

ηs = As sin
(πx

l

)
sin(ωst + a0) (32)

For the positive symmetrical mode, the horizontal force increment h is not zero at this
time; therefore, it can be obtained from Equation (15) as:

h =
ν
∫ l

0 ηsdx
βl

=
νAs

2l
π sin(ωst + a0)

βl
(33)

β =
ξ

Ec Ac
+

1
Eb Ab

, LE = lξ (34)

For the secondary parabolic main cable:

ξ ≈ 1 + 8
(

f
l

)2
(35)
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The following can be obtained from Equation (21):

Ut =
1
2

ν2

(
2l
π

)2

βl
A2

s sin2(ωst + a0) + Eb Iv

(π

l

)4 l
4

A2
s sin2(ωst + a0) (36)

Umax =
1
2

ν2

(
2l
π

)2

βl
A2

s + Eb Iv

(π

l

)4 l
4

A2
s (37)

Tt =
1
2

∫ l

0
mt(

∂η

∂t
)

2
dx =

l
4

mt A2
s ω2

s cos2(ωst + a0) (38)

Tmax =
l
4

mt A2
s ω2

s (39)

From Equation (1), the vertical symmetrical mode frequency can be obtained as:

f s
b =

ωs

2π
=

π

2l2

√√√√Eb Iv +
512 f 2

βπ6

mt
(40)

The theoretical solution for the symmetrical frequency of the vertical bending of the
simply supported beam is as follows:

f s
b =

π

2l2

√
Eb Iv

m
(41)

Equations (40) and (41) show that the vertical bending symmetrical vibration frequency
of the tensioned string bridge is greater than the symmetrical vibration frequency of the
corresponding simply supported beam, which is due to the increase in structural rigidity
under uniform load mode.

5.3. Fundamental Frequency of Lateral Bending Vibration

When the suspension bridge vibrates horizontally, the vertical vibration displacement
of the main girder and main cable is zero, that is, η(x) = 0.

Based on the layout of the beam tensioned string bridge support, the constraint
condition of its lateral vibration can be approximated as a single-span beam with one end
fixed and one orientation support. Therefore, its mode function can be assumed to be the
displacement curve under a uniform load under the approximated constraint condition.
The constraint condition and its mode shape curve are shown in Figure 3.
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The mode function of lateral vibration can be written as:

ϕ(x) = A0

(
x2 − 2

x3

l
+

x4

l2

)
sin(ωwt + a0) (42)

The following can be obtained from Equation (21):

Ut =
1
2

∫ l

0
Eb Iw(

∂2 ϕ

∂x2 )
2

dx =
2
5

lEb Iw A2
0 sin2(ωwt + a0) (43)
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Umax =
2
5

lEb Iw A2
0 (44)

Tt =
1
2

∫ l

0
mt(

∂ϕ

∂t
)

2
dx =

1
1260

mt A2
0ω2

wl5 cos2(ωwt + a0) (45)

Tmax =
1

1260
l5mt A2

aω2
w (46)

From Equation (1), the vertical symmetrical mode frequency can be obtained as:

f w
b =

3.573
l2

√
Eb Iw

mt
(47)

Equation (47) shows that the transverse vibration frequency is the same as the exact
solution of the vibration frequency of a single-span beam fixed at both ends, and the trans-
verse vibration frequency has no relation with the pretension and physical characteristics
of the main cable.

5.4. Characteristics of the Frequency for Vertical Bending and Lateral Bending of Tensioned
String Bridges

Based on the derivation of the vertical bending frequency and lateral bending fre-
quency, the following can be concluded:

(1). The vertical bending antisymmetric frequency and lateral bending fundamental fre-
quency of the tensioned string bridge are the same as those of the single-span beam
under the corresponding constraint conditions. The shape and physical characteristics
of the main cable have no effect on the frequency.

(2). The vertical bending symmetrical vibration frequency of the tensioned string bridge
is greater than the symmetrical vibration frequency of the corresponding simply
supported beam. The shape and physical characteristics of the main cable have a
significant impact on the vertical bending symmetrical vibration frequency.

(3). The vibration frequency of the tensioned string bridge has nothing to do with the
pretension of the main cable, which is different from usual suspension bridges. This
agrees with the conclusion of reference [31] in regard to the static force characteris-
tics of tensioned string bridges. For a normal suspension bridge, one of the most
important features is that the main cable tension provides strong gravity stiffness. The
vertical stiffness of the suspension bridge structure is closely related to the main cable
tension force.

6. Verification by Engineering Application

An example of a pedestrian tension bridge with a calculated span of 55 and a rise-to-
span ratio of 1/11 is presented. The main girder is a flat steel box structure with a girder
height of 0.8 and a bridge deck width of 3. The main cable is a single high vanadium cable
with a basic linear catenary design that is designed with 9 V-shaped braces and 5.5 center
spacing of the braces. With the application of the finite element analysis software ANSYS,
the bridge is simulated as a spatial dynamic finite element model. The main beams and
struts are simulated by BEAM4 spatial beam elements, and the main cable is simulated
by LINK10 nonlinear cable elements. The prestress of the main cable is considered when
modeling structural rigidity. The established finite element model is shown in Figure 4, and
the analyzed first 3 modes are shown in Figures 5–7. The main parameters are as follows:

Eb = 2.06× 1011 N/m, Ec = 1.6× 1011 N/m Ab = 0.1095 m2, Ac = 0.0051 m2

Iv = 0.012 m4, Iw = 0.0792 m4 mb = 1129.2 kg/m, mc = 46.4 kg/m, and
ms = 40.6 kg/m.
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Figure 5. Symmetrical mode of vertical bending ( f s
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Table 1 shows that the error between the derived analytical solution and the finite
element calculation result is less than 2%, indicating that the derived analytical solution
result has a high accuracy, and the analytical solution is larger than the finite element
result, which is mainly because when the actual vibration curve is replaced by the assumed
vibration curve, it is equivalent to imposing certain constraints on the system, thereby
increasing the rigidity of the system and resulting in an increase in frequency.

Table 1. Fundamental frequency calculated by the proposed method.

Finite Element
Solution (Hz)

Formula Calculation
Result (Hz) Error %

Vertical bending symmetrical mode 1.63 1.65 1.2
Vertical bending antisymmetric mode 2.95 2.96 0.3

Lateral bending mode 4.27 4.33 1.4

The vertical bending symmetrical vibration frequency of the corresponding simply
supported beam from Equation (41) is 0.74 Hz, which is much smaller than the vibration
frequency of a tensioned string bridge with the same span. The frequency of a tensioned
string bridge is 2.2 times higher than that of a simply supported beam with the same span.

Meanwhile, it can be seen from the finite element analysis results of the engineering
example that the first mode of the beam tensioned string bridge is generally the vertical
bending symmetrical mode due to the greater rigidity of the main girder. Therefore, with
the utilization of string beam bridges, the fundamental frequency of the structure can be
greatly improved, that is, the overall rigidity of the structure is improved, which has great
practical significance for improving the dynamic stability of wind-resistant structures.

7. Analysis of Vibration Frequency Parameters by the Finite Element Method
7.1. Influence of the Pretension of the Main Cable on the Vibration Frequency

Based on the finite element model shown in Figure 3, the influence of the pretension
of the main cable on the vibration frequency is studied by adjusting the pretension of the
main cable. Three conditions are applied to conduct the parameter analysis, namely, the
establishment of three finite element models with 1.0 time, 1.5 times and 2.0 times the
main cable force (original bridge model). The comparison of the calculation results of the
vibration frequency of each model is shown in Table 2.

Table 2. Frequency calculation of the main cable force variation (Hz).

1 Time the Main
Cable Force

1.5 Times the Main
Cable Force

2 Times the Main
Cable Force

Vertical bending
symmetrical mode 1.6284 1.6283 1.6283

Vertical bending
antisymmetric mode 2.9490 2.9489 2.9488

Lateral bending mode 4.2683 4.2684 4.2685

From the calculation results in Table 2, it can be seen that the frequencies of the
symmetrical vertical bending, antisymmetric vertical bending and lateral bending modes
are identical. The main cable force has essentially no effect on the calculation results of each
vibration frequency. The finite element parameter analysis results are consistent with the
formulas derived in this paper, which verifies their correctness.

7.2. Influence of the Rise-Span Ratio on the Vibration Frequency

To study the effect of the rise-span ratio on the vibration frequency, the finite element
model shown in Figure 3 is also applied. With the other parameters unchanged, the rises
are set as 4 m (the original bridge model), 5 m and 6 m. The corresponding rise-span ratios
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are 1/13.75, 1/11 and 1/9.17. The comparison of the calculation results of the vibration
frequency of each model is shown in Table 3.

Table 3. Frequency calculation of the rise-to-span ratio variation(Hz).

Rise (4 m) Rise (5 m) Rise (6 m)

Vertical bending symmetrical mode 1.3941 1.6284 1.8567
Vertical bending antisymmetric mode 2.9648 2.9490 2.9326

Lateral bending mode 4.2958 4.2683 4.2384

From the calculation results in Table 3, it can be seen that the symmetrical vibration
frequency of vertical bending significantly increases with increasing rise-to-span ratio.
When the rise increases from 4 m to 6 m, the vertical bending symmetric frequency increases
from 1.3941 Hz to 1.8567 Hz, with an increase of 33%. However, the frequencies of the
antisymmetric and lateral vertical bending modes are unchanged with the rise-to-span
ratio, and it can be concluded that the change in the main cable force has no influence on
the frequency; that is, the shape and physical characteristics of the main cable have no
effect on it. The above analysis shows that the finite element parameter analysis results are
consistent with the formulas derived in this paper, verifying the accuracy of the derivation.

The analysis of the above parameters shows that changing the rise-span ratio and the
main cable force provides a design idea for adjusting the basic frequency and structural
rigidity of a tensioned string bridge.

8. Conclusions

In this research, by studying the nonlinear mechanical characteristics of tensioned
string bridges, based on theoretical derivation and parameter analysis of engineering
examples, a number of conclusions are obtained.

According to the structural characteristics of the tensioned string bridge, based on the
Rayleigh method, the fundamental frequency calculation formulas of the vertical bending
symmetric, vertical bending antisymmetric and lateral bending vibrations of the tensioned
string bridge are derived, and the main characteristics of the frequency calculation equation
of the tensioned string bridge are summarized.

Based on the finite element parameter analysis of an engineering example, the analysis
results show that the main cable force has no influence on the vibration frequency. The
symmetrical vibration frequency of vertical bending increases with the increase of the rise-
span ratio, while the vibration frequency of the vertical bending antisymmetric and lateral
bending modes has no relation with the rise-span ratio, which agrees with the calculation
results based on the derived equation.

The errors between the calculation results based on the derived formula and the finite
element analysis results are less than 2%, indicating that the calculation results from the
formula have a high calculation accuracy and can meet the requirements of engineering
applications.

Due to the greater rigidity of the main beam, the first mode of the tensioned string
bridge is generally a vertical bending symmetrical mode. Therefore, with the utilization
of a tensioned string structure, the fundamental frequency of the structure can be greatly
improved, that is, the overall rigidity of the structure is improved, which is of great
significance for improving the dynamic stability of wind-resistant structures of tensioned
string bridges.
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