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Abstract: This paper develops a Takagi-Sugeno fuzzy observer gain design algorithm to estimate
ship motion based on Automatic Identification System (AIS) data. Nowadays, AIS data is widely
applied in the maritime field. To solve the problem of safety, it is necessary to accurately estimate the
trajectory of ships. Firstly, a nonlinear ship dynamic system is considered to represent the dynamic
behaviors of ships. In the literature, nonlinear observer design methods have been studied to estimate
the ship path based on AIS data. However, the nonlinear observer design method is challenging to
create directly since some dynamic ship systems are more complex. This paper represents nonlinear
ship dynamic systems by the Takagi-Sugeno fuzzy model. Based on the Takagi-Sugeno fuzzy model,
a fuzzy observer design method is developed to solve the problem of estimating using AIS data.
Moreover, the observer gains of the fuzzy observer can be adjusted systemically by a novel algorithm.
Via the proposed algorithm, a more suitable or better observer can be obtained to achieve the
objectives of estimation. Corresponding to different AIS data, the better results can also be obtained
individually. Finally, the simulation results are presented to show the effectiveness and applicability
of the proposed fuzzy observer design method. Some comparisons with the previous nonlinear
observer design method are also given in the simulations.

Keywords: fuzzy observer design; Takagi-Sugeno fuzzy model; ship path estimation; AIS data

1. Introduction

The navigation safety problem of ships is always an essential issue in the maritime field.
For all maneuvering ships, accidents of collision often happen, especially in busy waterways
with a high density of ship traffic, such as ports, inland waterways, and canals [1,2]. Thus,
for investigating this problem it is necessary to consider Automatic Identification System
(AIS) data. AIS data contains various types of information, including a ship’s position,
speed, course, and type, among others [3,4]. The original communication of AIS data
between different ships or between ships and coastal stations is limited to equipment with
Very High Frequency (VHF) radio waves. The problem can be solved by transmitting
information with satellite and VHF transceivers. The applications and research based on
AIS data has increased rapidly in the last two decades. Not only so that AIS data can obtain
accurate ship information to avoid collisions, but also so the data can achieve surveillance
of a ship’s performance. Some researchers have investigated the performance of ships and
developed a realistic model for waterways to improve safety and efficiency [5,6]. Moreover,
AIS data can also be considered for voyage management of ships, which is helpful for high
traffic ports, canals, or fishing grounds [7]. It is known that AIS data has many benefits for
solving safety and cost-efficiency problems.

On the unpredictable seas, in practice a ship’s dynamic is usually a complex and
nonlinear system [8]. Because the effects of seas waves, winds, and currents exist simulta-
neously, more accuracy and safe ship steering become important issues. AIS data can also
perform a crucial role for ship dynamic modeling and analysis in ship steering problems.
It is known that nonlinear systems are more complicated to analyze directly than linear
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systems with some non-causality properties. For the design method of the controller or
observer, it is also not cost-efficient. In fuzzy control theory, the Takagi-Sugeno (T-S) fuzzy
model is proposed as a powerful tool for representing nonlinear systems [9–11]. The main
feature is that a class of nonlinear systems is expressed as many linear T-S fuzzy subsystems
with If–Then rules. The structure of each linear subsystem can be constructed after selecting
the operating point and membership function for practical nonlinear systems. Then, these
linear subsystems can all be blended together via the membership function to approximate
the original nonlinear systems. Via the T-S Fuzzy model, many fruitful linear control
theories and analysis methods can be applied to nonlinear systems. In the maneuvering
or steering of a ship, the accuracy and safety of the ship’s trajectory mainly depend on
the experience of experts. The concept of the fuzzy theory is to convert the thinking or
understanding of people into mathematical expressions. Thus, these experiences can also
be captured and represented in the membership function of the T-S fuzzy model. Based on
the T-S fuzzy model, many researchers have already put their efforts into controlling and an-
alyzing nonlinear ship steering systems [12,13]. Moreover, multiple performance problems
have also been discussed for the fuzzy controller design of continuous and discrete-time
ship dynamic systems [14,15]. Extending the results of the type-1 T-S fuzzy control method,
actuator saturated type-2 fuzzy control theory has been proposed [16]. From [12–16], it is
obvious that the T-S fuzzy can describe the nonlinear ship dynamic system well, and the
corresponding fuzzy controller provides a better controlled performance for the ship.

The design problem for estimating ship motion has become an important issue [17–19].
For the information of AIS data, the received time between two AIS data sets has an interval.
Moreover, some AIS data may be wild points, which will seriously impair judgment and
decision-making of ships. In emergency situations, it will often cause accidents because of
the decision errors. Thus, realistically estimating a ship’s motion or position is necessary
to be developed. Nowadays, AIS data has also been applied to unmanned vessels [20,21].
With the growing number of ships and the development of unmanned aerial vehicle ships,
the accuracy and safety of the steering trajectory have become more critical problems.
Observer equipment is a helpful tool for estimating the states and parameters in dynamic
systems [22]. Via the design method of the observer, the state of the dynamic system can
be estimated when the error dynamic converges to zero. The observer design method has
been combined with various control theories and successfully applied to practical systems,
such as gasoline engines and underwater robots [23,24]. In [25], the observer has been
designed to estimate the surge and sway velocity for under-actuated ships. Using AIS
data, the nonlinear observer has also been applied in designing the exogenous Kalman
filter for the visualization and prediction of ship dynamics [26]. Via the T-S fuzzy model,
some fruitful fuzzy observer design methods have been developed to estimate and control
nonlinear systems such as singular systems [27]. However, the T-S fuzzy model-based
observer design method has not been applied to estimating ship dynamics with AIS data.

This paper provides an estimating method for ship trajectories based on AIS data via
the T-S fuzzy model. Referring to [26], nonlinear ship dynamic systems can be constructed,
and the AIS data measurement method is also applied to represent ship dynamics. Based
on nonlinear ship systems, a nonlinear observer is proposed to estimate ship dynamics.
However, a nonlinear observer is more challenging to design since the dynamics of the ship
become more complex. Thus, the T-S fuzzy model is applied to represent the nonlinear ship
dynamic system. Via selecting the appropriate operating point and range, each subsystem
of the T-S fuzzy model can be constructed. Considering the value of applied AIS data and
the T-S fuzzy modeling method, a nine rules T-S fuzzy model is obtained. Based on the T-S
fuzzy model, the observer can also be designed for each linear subsystem with the same
premise part of the model. The advantages of this T-S fuzzy observer can be summarized
in two aspects. Firstly, the more complex nonlinear observer design method is avoided.
Since nonlinear systems can be approximated by the T-S fuzzy model, the various linear
observer design methods developed by many professional researchers can be applied to
efficiently observe nonlinear system dynamics. Moreover, the overall T-S fuzzy observer is
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obtained by “blending” all the observer subsystems with membership functions. Finally,
the estimating results of AIS data are obtained for each state by the nonlinear observer and
T-S fuzzy observer separately.

Up to the present time, the problem of ship safety has always been a crucial issue,
especially in crowded areas such as ports canals with heavy traffic. How to reduce or
avoid collisions between ships is the most important thing. Nowadays, AIS data is widely
applied in the marine field. Because AIS data contains a lot of ship information, it plays an
important role in the problem of safety. It is known that well-known optimization methods
such as genetic algorithms or neural network methods can be used to estimate the trajectory
for ships. However, applying genetic algorithms or neural network methods requires a
great amount of data for training. In addition, large amounts of training data will cause the
estimation time to lengthen. Therefore, the purpose of this paper is to develop a simple and
effective observer design method based on the T-S fuzzy model to estimate a typical ship’s
trajectory via AIS data. It has also been shown that the proposed T-S fuzzy observer can be
successfully extended to estimate the trajectories of other ships. In the future, the proposed
design method could be combined with genetic algorithms or neural network methods to
produce a hybrid optimization approach to efficiently estimate a ship’s AIS data.

The contributions of this paper can be summarized as follows. A T-S fuzzy observer
design method is proposed based on AIS data in this paper. The ship trajectories and
dynamics of most ships can be estimated by the proposed design method. Using the T-S
fuzzy modelling method, the nonlinear ship dynamic system can be represented in many
linear fuzzy subsystems. It also means that the nonlinear observer design method can be
converted into a linear design problem. Thus, the complex mathematical computation of
nonlinear systems can be avoided. Designing the linear observer is more cost-effective than
the nonlinear observer in practical applications. Based on the T-S fuzzy model, a T-S fuzzy
observer design method is developed in this paper to estimate ship dynamics which are
nonlinear. A nonlinear observer design method has been proposed in [26] to estimate AIS
data. However, selecting the observer gains for the observer cannot be known. In addition,
the observer developed in [26] is designed in a nonlinear form in which the observer gains
must be solved based on the designer’s experience. For this reason, a T-S observer gain
design algorithm is proposed in this paper to solve this problem. Combining the proposed
algorithm into the observer design method, the T-S fuzzy observer can be designed more
effectively and systematically. Moreover, with the T-S fuzzy observer, the route of each ship
is anticipated such that collisions can be avoided effectively.

The organization of this paper is presented as follows. In Section 2, the application
of AIS data is introduced, and a nonlinear observer is constructed by referring to [26]. In
Section 3, the modeling process of the nine rules T-S fuzzy model is proposed, and the
T-S fuzzy observer is also designed. In Section 4, the simulation results of the nonlinear
observer and T-S fuzzy observer are presented. In Section 5, some conclusions and future
works are given.

2. Applications of AIS Data and the Nonlinear Observer

This section introduces the nonlinear ship dynamic system and the application of AIS
data. Then, the nonlinear observer are designed to estimate ship dynamics with AIS data.
Referring to [26], the nonlinear observer design method and the application of AIS data
can be introduced as follows. Firstly, the following nonlinear dynamic equations can be
presented for the positioning of ships.

.
x1(t) = x3(t)cos(x4(t)) (1)

.
x2(t) = x3(t)sin(x4(t)) (2)

.
x3(t) = u1(t) (3)
.
x4(t) = u2(t) (4)
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where x1(t) denotes a north position of the ship, x2(t) denotes an east position, x3(t)
denotes forward speed, x4(t) denotes course, u1(t) denotes linear acceleration, and u2(t)
denotes course rate. In the nonlinear ship dynamic systems, the inputs u1(t) and u2(t) can
be designed as follows.

.
u1(t) =

1
T1

(sat(u1c)− u1(t)) (5)

.
u2(t) =

1
T2

(sat(u1c)− u2(t)) (6)

where T1 and T2 are given time constants, and sat(·) is the saturation function. The
saturation function is applied to avoid wild points of AIS data. In the dynamic system of
input (5) and (6), u1c and u2c are measured from AIS data as follows.

u1c =
(1− ε)uAIS

1(k) + εuAIS
1(k−1) + uAIS

1(k−2)

(1− ε)g1 + g2
(7)

u2c =
(1− ε)uAIS

2(k) + εuAIS
2(k−1) + uAIS

2(k−2)

(1− ε)g1 + g2
(8)

where ε = (g1+g2)
2

g2
1

, g1 = tk − tk−1, g2 = tk−1 − tk−2, (tk, tk−1, tk−2) denote the last three

measurement times,
(

uAIS
1(k), uAIS

1(k−1), uAIS
1(k−2)

)
denote the last three measurements of forward

speed of AIS data, and
(

uAIS
2(k), uAIS

2(k−1), uAIS
2(k−2)

)
denote the last three measurements of course

rate of AIS data.
It is noted that the saturation problem between the actuator and system control input

is an important issue for most practical engineering systems. Nowadays, the saturation
problem is also considered for system states in popular network systems, and a similar
saturation technique is applied [28]. Based on this method, the nonlinear dynamics of
a ship can be described as (1)–(8). The AIS measurement data need to be converted to
apply the nonlinear ship dynamic system (1)–(8) in practice. In AIS measurement data, the
positions of the ship are selected in longitude and latitude. Referring to [26], the World
Geodetic System (WGS-48) is applied to map longitude and latitude measurements into
Cartesian coordinates. For the sake of paper brevity the process of the mapping method,
which is detailed in [26], is not presented. The nonlinear observer is designed as follows
based on the nonlinear ship dynamic system (1)–(8).

.
x̂1(t) = x3(t) cos(x4(t)) + K1(x1(t)− x̂1(t)) (9)

.
x̂2(t) = x3(t) sin(x4(t)) + K2(x2(t)− x̂2(t)) (10)

.
x̂3(t) = u1(t) + K3(x3(t)− x̂3(t)) (11)
.
x̂4(t) = u2(t) + K4(x4(t)− x̂4(t)) (12)

where x̂1(t), x̂2(t), x̂3(t), x̂4(t) is the observed state for the state of the system (1)–(4), and
K1, K2, K3, K4 are observer gains.

In the observer design method for (9) and (10), the observer gains K1, K2, K3, K4 must
be selected with positive values. The following dynamic error system can be obtained by
subtracting (9)–(12) from (1)–(4).

.
e(t) = −Ke(t) (13)

where e(t) =


e1(t)
e2(t)
e3(t)
e4(t)

 =


x1(t)− x̂1(t)
x2(t)− x̂2(t)
x3(t)− x̂3(t)
x4(t)− x̂4(t)

 and K =


K1 0 0 0
0 K2 0 0
0 0 K3 0
0 0 0 K4

.
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To estimate system states accurately, the dynamics of error system are required to
converge to zero. That is, a stable performance needs to be achieved for dynamic error
system (13). In control theory, the stability of (13) can be guaranteed since all the eigenvalues
of the matrix K have a positive real part. That is, the values of K1, K2, K3, K4 are all required
to be set as positive.

However, the nonlinear observer is challenging to design directly when the dynamic
ship system (1)–(8) is complex. The T-S fuzzy model is known as a powerful tool to
represent a nonlinear target system by many linear subsystems. Based on the T-S fuzzy
model, many linear observer design methods can also be applied to estimate the state
dynamics of nonlinear systems. Instead of the nonlinear observer, an efficient T-S fuzzy
modeling method is applied to construct a nonlinear ship dynamic system into the T-S
fuzzy model with nine fuzzy rules. Then, the T-S fuzzy observer can also be designed based
on the constructed model. Moreover, an observer gain design algorithm is also proposed to
adjust the observer gain. Then, the more suitable T-S fuzzy observer can be obtained to
solve the estimating problem of AIS data. In the next section, a T-S fuzzy observer design
method is proposed with an algorithm.

3. Takagi-Sugeno Fuzzy Modeling and Observer Design for AIS Data-Based
Ship Trajectories

In this section, the nonlinear ship dynamic system (1)–(9) is represented in a nine
rules T-S fuzzy model by modeling the proposed method [29]. Moreover, the T-S fuzzy
observer is also designed based on the model. Firstly, the operating point and range of
the membership function need to be selected. Referring to the AIS data applied in the
simulation of this paper, a range of about −120o to 120o is selected for the state x4(t) for
system (1)–(9). Moreover, the operating points are considered as follows.

xop1 =
[

0 0 0 0o ]T, xop2 =
[

0 0 0 30o ]T, xop3 =
[

0 0 0 −30o ]T,
xop4 =

[
0 0 0 60o ]T, xop5 =

[
0 0 0 −60o ]T, xop6 =

[
0 0 0 90o ]T,

xop7 =
[

0 0 0 −90o ]T, xop8 =
[

0 0 0 120o ]T, xop9 =
[

0 0 0 −120o ]T (14)

Then, the membership function can be presented in Figure 1 from the operating
points (14).
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In Figure 1, it can be seen that for the operating point xop1 =
[

0 0 0 0o ]T, the
fuzzy subsystem of Rule 1 is constructed. Similarly, the fuzzy subsystem of Rule 2 can
be constructed by selecting xop2 =

[
0 0 0 30o ]T. In fuzzy control theory, there are

many types of membership functions such as the triangular type, Gaussian type, etc. To
demonstrate the efficiency of the T-S fuzzy model, the more straightforward triangular
type is considered to establish the membership functions.
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Based on the membership function in Figure 1, the following T-S fuzzy model in nine
rules is presented.

Rule 1 : IF x4(t) is about 0o, THEN
.
x(t) = A1x(t) + B1u(t) (15)

Rule 2 : IF x4(t) is about 30o, THEN
.
x(t) = A2x(t) + B2u(t) (16)

Rule 3 : IF x4(t) is about− 30o, THEN
.
x(t) = A3x(t) + B3u(t) (17)

Rule 4 : IF x4(t) is about 60o, THEN
.
x(t) = A4x(t) + B4u(t) (18)

Rule 5 : IF x4(t) is about− 60o, THEN
.
x(t) = A5x(t) + B5u(t) (19)

Rule 6 : IF x4(t) is about 90o, THEN
.
x(t) = A6x(t) + B6u(t) (20)

Rule 7 : IF x4(t) is about− 90o, THEN
.
x(t) = A7x(t) + B7u(t) (21)

Rule 8 : IF x4(t) is about 120o, THEN
.
x(t) = A8x(t) + B8u(t) (22)

Rule 9 : IF x4(t) is about− 120o, THEN
.
x(t) = A9x(t) + B9u(t) (23)

where A1 to A9 and B1 to B9 are the system matrices. Referring to the T-S fuzzy modeling
method in [29], the system matrices can be obtained with operating points (14) as follows.
Firstly, the nonlinear ship dynamic system (1)–(4) is considered as

.
x1(t) = x3(t) cos(x4(t)) = : z1(x) (24)

.
x2(t) = x3(t) sin(x4(t)) = : z2(x) (25)

.
x3(t) = u1(t) = : z3(x) (26)
.
x4(t) = u2(t) = : z4(x) (27)

Then, the state matrices A1 to A9 can be obtained as follows.

Ai =
[

ai1 ai2 ai3 ai4
]T (28)

aij =


∂zj
∂x
(
xopi

)
+

zj(xopi)−(xopi)
T ∂zj

∂x (xopi)
‖xopi‖2 xopi , i f xopi 6= 0

∂zj
∂x
(
xopi

)
, i f xopi = 0

(29)

where i = 1 ∼ 9 is the number of fuzzy rules and j = 1 ∼ 4. Via the computing method
of (29) with operating points xop1 to xop9 in (14), the following system matrices can be
obtained based on the form of (28).

A1 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

, A2 =


0 0 0.866 0
0 0 0.5 0
0 0 0 0
0 0 0 0

, A3 =


0 0 0.866 0
0 0 −0.5 0
0 0 0 0
0 0 0 0

,

A4 =


0 0 0.5 0
0 0 0.866 0
0 0 0 0
0 0 0 0

, A5 =


0 0 0.5 0
0 0 −0.866 0
0 0 0 0
0 0 0 0

, A6 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

,

A7 =


0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0

, A8 =


0 0 −0.5 0
0 0 0.866 0
0 0 0 0
0 0 0 0

, A9 =


0 0 −0.5 0
0 0 −0.866 0
0 0 0 0
0 0 0 0

.

(30)
Similarly, the input matrices can be obtained as follows. Thus, the input matrices for

each rule can be obtained as
Bi =

[
bi1 bi2

]T (31)
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where

bij =


∂zj
∂u
(
uopi

)
+

zj(uopi)−(uopi)
T ∂zj

∂u (uopi)
‖uopi‖2 uopi , i f uopi 6= 0

∂zj
∂u
(
uopi

)
, i f uopi = 0

(32)

Moreover, the items z1
(
xopi

)
to z4

(
xopi

)
are transferred into z1

(
uopi

)
to z4

(
uopi

)
for the

constructing process (32) of matrices Bi. The difference of operating points for a nonlinear
system (24)–(27) is related to the system state x4(t), which is the component of nonlinear
items. That is, the different operating points are not required for the control input. And
it will also increase the complexity in applications. It is same for x1(t) to x3(t) in the
constructing process of state matrices, the operating points of the control input are selected
for each rule as uop1∼op9 =

[
0 0

]T. Then, the following input matrices can be obtained
via the calculation of (32).

B1 = B2 = B3 = B4 = B5 = B6 = B7 = B8 = B9 =


0 0
0 0
1 0
0 1

 (33)

Then, the following overall T-S fuzzy model can be obtained by blending (15)–(23)
with the membership functions presented in Figure 1.

.
x(t) =

9

∑
i=1

ηi(x4(t)){Aix(t) + Biu(t)} (34)

where ηi(x4(t)) = Mi4(x4(t))/
9
∑

i=1
Mi4(x4(t)) , ηi(x4(t)) ≥ 0,

9
∑

i=1
ηi(x4(t)) = 1 and Mi4(x4(t))

is the grade of the membership of x4(t). Note that the y-axis of the membership functions
in Figure 1 are called membership grades. That is, Mi4(x4(t)) is the value of the y-axis,
which is possibly from 0 to 1 and related to the state x4(t) at each time point.

Based on the T-S fuzzy model (15)–(23), the T-S fuzzy observer can be designed for
each subsystem as follows.
Observer Rule i:

IF x4(t) is about Mi4, THEN
.
x̂(t) = Aix(t) + Biu(t) + L(x(t)− x̂(t)) for i = 1 ∼ 9 (35)

Note that each observer is constructed with the same premise part of the T-S fuzzy
model (15)–(23) such that the observer rule is guaranteed to design for each related model
rule. For observer rule (35), Mi4 represents the fuzzy sets named as “Rule i” in Figure 1.
For example, Mi4 is applied as a triangular set “Rule 1” in Figure 1. Moreover, the fuzzy
set “Rule 1” can also be described as the system’s operating point about 0o. Thus, the
expression method of the T-S fuzzy model (35) is the same as the meaning of (15)–(23).
Similar to the process from (15)–(23) to (34), the following overall observer is obtained by
blending.

.
x̂(t) =

9

∑
i=1

ηi(x4(t)){Aix(t) + Biu(t) + L(x(t)− x̂(t))} (36)

where L =


L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 L4

 denotes the observer gains of the T-S fuzzy model. For

the same reason of the nonlinear observer mentioned above, the values of L1, L2, L3, L4 are
required to be positive.

The above nine rules T-S fuzzy model is constructed for the nonlinear ship dynamic
system (1)–(4) by an efficient T-S fuzzy modeling method. Via the T-S fuzzy model repre-
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sentation, many valuable linear controller or observer design methods can be applied to
nonlinear systems. Considering the nonlinear ship dynamic system (1)–(4), the T-S fuzzy
observer is designed as (36) for estimating the state of dynamic ship motion based on
AIS data. This paper proposes an algorithm to design observer gain L for the T-S fuzzy
observer (36). With this algorithm, the applications of the proposed T-S fuzzy observer
can be improved efficiently. To begin with the algorithm, the AIS data must be set for the
T-S fuzzy observer. Thus, the vector χD1 ∈ RD is established with the north-position data,
and χD2 ∈ RD, χD3 ∈ RD and χD4 ∈ RD are established with the east-position AIS data,
forward speed and course, respectively. It has to be noted that these vectors are a series of
discrete data which can represent the above ship information corresponding to the data of
each received time. To implement the T-S fuzzy observer (36), all these discrete-time data
are necessary to be converted into a continuous-time function. Considering the accuracy
in practical applications, an efficient method called first-order hold [30] is utilized for the
vectors χD1, χD2, χD3, χD4, such that the sampling time is set as the received time of AIS
data. Then, the state function x1(t), x2(t), x3(t), x4(t) can be defined, and the state vector
x(t) =

[
x1(t) x2(t) x3(t) x4(t)

]T can be obtained to be the objective state vector for
the T-S fuzzy observer (36). Based on the above statements, the algorithm of the design of
observer gain L can be proposed for the T-S fuzzy observer (36) as follows.
<T-S Fuzzy Observer Gain Design Algorithm>
Step 1.

Set the vector χD1, χD2, χD3 and χD4 by the objective AIS data, and obtain the state
function x1(t), x2(t), x3(t), x4(t) by the first-order hold method [30]. Define index k as the
k-th simulation, and select the constant values ηa

v, ηb
v, ηc

v with the relationship ηa
v > ηb

v > ηc
v,

for the judgment range of the estimation error. Choose the constant values τa
v , τb

v , τc
v , which

have the relationship τa
v > τb

v > τc
v , to determine the multiples of growth of the observer

gain.
Step 2.

Let k = 1 and choose the initial values for observer states x̂1(0), x̂2(0), x̂3(0), x̂4(0) for
the simulation. Select the observer gains for the first simulation as L1 = `

(0)
1 , L2 = `

(0)
2 ,

L3 = `
(0)
3 and L4 = `

(0)
4 .

Step 3.
Set L1 = `

(k−1)
1 , L2 = `

(k−1)
2 , L3 = `

(k−1)
3 and L4 = `

(k−1)
4 for the observer gain matrix.

Step 4.
Substitute x1(t), x2(t), x3(t), x4(t) obtained in Step 1 and the observer gain obtained

in Step 3 into the T-S fuzzy observer (36) for the kth estimating simulation. After the
simulation, x̂(k)1 (t), x̂(k)2 (t), x̂(k)3 (t), x̂(k)4 (t) are obtained to track the AIS data function x1(t),
x2(t), x3(t), x4(t).
Step 5.

Subtracting the AIS data function x1(t), x2(t), x3(t), x4(t) from the estimated function
x̂(k)1 (t), x̂(k)2 (t), x̂(k)3 (t), x̂(k)4 (t) the error function of each state can be obtained as follows.

e(k)1 (t) = x1(t)− x̂(k)1 (t)
e(k)2 (t) = x2(t)− x̂(k)2 (t)
e(k)3 (t) = x3(t)− x̂(k)3 (t)
e(k)4 (t) = x4(t)− x̂(k)4 (t)

(37)

Step 6.
Compute the average value of each error function e(k)1 (t), e(k)2 (t), e(k)3 (t), e(k)4 (t) as

avg
(

e(k)1 (t)
)

, avg
(

e(k)2 (t)
)

, avg
(

e(k)3 (t)
)

, avg
(

e(k)4 (t)
)

, where avg( f (t)) denotes the mean

of the continuous function f (t), i.e., avg( f (t)) = 1
tM−tm

∫ tM
tm

f (t)dt, tM denotes the terminal
time and tm denotes the initial time of the simulation for function f (t).
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Step 7.
Based on the average of error functions obtained in Step 6, the following condition is

applied to determine whether the observer gain L needs to be further adjusted or not.
Condition I:

If avg
(

e(k)v (t)
)
≤ ηc

v for all states v = 1, 2, 3, 4, then go to Step 10; else go to the next step

where v = 1, 2, 3, 4 denotes the index number of states.
Step 8.

The following process is given to adjust the observer gain L.
Condition II:

If ηb
v > avg

(
e(k)v (t)

)
> ηc

v, then `
(k)
v = τc

v × `
(k−1)
v ;

else if ηa
v > avg

(
e(k)v (t)

)
> ηb

v, then `
(k)
v = τb

v × `
(k−1)
v ;

else avg
(

e(k)v (t)
)
> ηa

v, then `
(k)
v = τa

v × `
(k−1)
v .

Step 9.
Set k = k + 1 and return to Step 3.

Step 10.
The algorithm is finished, and the observer gain matrix L is constructed by L1 = `

(k−1)
1 ,

L2 = `
(k−1)
2 , L3 = `

(k−1)
3 and L4 = `

(k−1)
4 .

To make the process of observer design algorithm clearer, a flow chart of the algorithm
is presented in Figure 2.Processes 2022, 10, x FOR PEER REVIEW 11 of 22 
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The advantage of the proposed T-S observer gain design algorithm is that the con-
sidered range for the average error, ηa

v, ηb
v and ηc

v can be selected by the designer flexibly.
Moreover, the values by which the subsequent observer gain needs to be multiplied, τa

v ,
τb

v and τc
v can also be designed by the user. Because of these advantages, the proposed

algorithm can be applied to track various AIS data by appropriately selecting these param-
eters. Then, the designers can adjust the observer gain L systematically and obtain better
tracking responses according to the proposed algorithm. Some simulations and discussions
are presented in the next section to verify the proposed T-S fuzzy observer design method
and the observer gain design algorithm.

4. Simulation Results

The T-S fuzzy observer design method was presented in the previous section to
estimate ship motion. Based on a group of AIS data, the simulation results are presented
in this section to verify the efficiency of the proposed T-S fuzzy observer design method.
The observer gain can be appropriately adjusted to estimate the AIS data by applying the
proposed algorithm. Before the simulation begins, the estimating processes of the nonlinear
observer and the T-S fuzzy observer are introduced as follows, respectively. Considering
the nonlinear observer (9)–(12) developed in [26], the process of the design method is given
in Figure 3.
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An algorithm is developed for the proposed fuzzy observer design method to system-
atically adjust the observer gain. Therefore, the estimating framework with the proposed
T-S fuzzy observer design method is given in Figure 4.

Processes 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

Nonlinear Observer
(9-12)

( )1x̂ t

( )3x̂ t
( )2x̂ t

( )4x̂ t

AIS Data

1Dχ

2Dχ

3Dχ

4Dχ
( First-Order Hold )

( )1x t

( )2x t

( )3x t

( )4x t

 
Figure 3. Estimating based on the nonlinear observer design [27]. 

An algorithm is developed for the proposed fuzzy observer design method to sys-
tematically adjust the observer gain. Therefore, the estimating framework with the pro-
posed T-S fuzzy observer design method is given in Figure 4. 

In Figure 4, the symbol “o” denotes the subtraction of two signals. Via the framework, 
the observer gain L  can be updated for the T-S fuzzy observer (36) based on the observed 
error until the objective is achieved. For both the nonlinear observer design method [26] and 
the proposed T-S fuzzy observer design method, the AIS data is realized by ( )1x t , ( )2x t , 

( )3x t , and ( )4x t  by using the first-order hold method [30]. 
To begin with the simulation, the AIS data is selected similarly to Figure 9 in [26], 

which is presented in Table 1. 

Table 1. Objective AIS data. 

System 
States AIS Data 

Received 
Time (T) 0 7 19 25 35 68 70 83 100 

( )1 TDχ  3.0217 2.9826 2.9261 2.8609 2.8348 2.8087 2.7957 2.7565 2.7130 

( )2 TDχ  −16.93 −16.77 −16.45 −16.05 −15.87 −15.67 −15.53 −15.29 −15 

( )3 TDχ  5.7 5.9 6.7 7.2 7.6 8 7.9 7.7 7.6 

( )4 TDχ  70.6 70.2 70.7 71 70.3 71.3 73.4 77.7 79.4 

T-S Fuzzy Observer
(36) ( )3x̂ t

( )2x̂ t

( )4x̂ t

AIS Data

1Dχ
2Dχ

3Dχ
4Dχ

( First-Order Hold )

( )2x t
( )3x t
( )4x t

( )1x̂ t( )1x t ( )1e t
( )2e t
( )3e t
( )4e t

Algorithm
L

 
Figure 4. Estimating based on the proposed fuzzy observer design. 

The simulation in this paper is divided into two parts. In the first part, the compari-
son of the results of applying the nonlinear observer [26] and the proposed T-S fuzzy ob-
server to the AIS data of Table 1 are presented in Case 1. In Case 2, extending the results 

Figure 4. Estimating based on the proposed fuzzy observer design.

In Figure 4, the symbol “o” denotes the subtraction of two signals. Via the framework,
the observer gain L can be updated for the T-S fuzzy observer (36) based on the observed
error until the objective is achieved. For both the nonlinear observer design method [26]
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and the proposed T-S fuzzy observer design method, the AIS data is realized by x1(t), x2(t),
x3(t), and x4(t) by using the first-order hold method [30].

To begin with the simulation, the AIS data is selected similarly to Figure 9 in [26],
which is presented in Table 1.

Table 1. Objective AIS data.

System States AIS Data

Received
Time (T) 0 7 19 25 35 68 70 83 100

χD1(T) 3.0217 2.9826 2.9261 2.8609 2.8348 2.8087 2.7957 2.7565 2.7130
χD2(T) −16.93 −16.77 −16.45 −16.05 −15.87 −15.67 −15.53 −15.29 −15
χD3(T) 5.7 5.9 6.7 7.2 7.6 8 7.9 7.7 7.6
χD4(T) 70.6 70.2 70.7 71 70.3 71.3 73.4 77.7 79.4

The simulation in this paper is divided into two parts. In the first part, the comparison
of the results of applying the nonlinear observer [26] and the proposed T-S fuzzy observer
to the AIS data of Table 1 are presented in Case 1. In Case 2, extending the results of Case 1,
the T-S fuzzy observer with the observer gains obtained in Case 1 is applied to various
trajectories to verify the practicality of the proposed design method.
<Case 1>

In this case, the nonlinear observer design method [26] is considered to compare with
the proposed T-S fuzzy observer design method. To carry on with the simulations, the
time constant T1 = 10, T2 = 50 are selected for the input (5) and (6) of both observer
design methods, and the initial condition of the observer state is considered as x̂(0) =[

1.5 −15.5 5 69
]T.

To develop the T-S fuzzy observer with the observer gain design algorithm, the
initial observer gains `

(0)
1 = 1, `(0)2 = 1, `(0)3 = 0.05 and `

(0)
4 = 0.05 are first selected for

the simulation. For simplification of the application, the constant values are chosen as
ηa

1 = ηa
2 = ηa

3 = ηa
4 , and ηb

v, ηc
v are also chosen in the same case for v = 1 ∼ 4. In these

simulations, let us choose ηa
v = 2, ηb

v = 0.1, ηc
v = 0.05, where v = 1 ∼ 4, for the decision

range of the average error. Note that the value of ηc
v = 0.05 can be seen as the maximum

tolerance of the average error which is considered for the observation of the AIS data in
Table 1. The constant values τa

1 = τa
2 = τa

3 = τa
4 are also set, and τb

v , τc
v are also appointed

in the same case for v = 1 ∼ 4. In the simulations, the values τa
1 = 5, τb

1 = 2 and τc
1 = 1.5

are selected for the proposed T-S fuzzy observer gain design algorithm. Applying the
algorithm with the AIS data in Table 1 and the T-S fuzzy observer (36), the final observer
gains `1 = 60, `2 = 180, `3 = 0.9 and `4 = 9 can be obtained to construct the observer gain
matrix L.

The nonlinear observer design method of [26] cannot determine what observer gain
is better or more suitable for the AIS data in Table 1. That is, how to choose the observer
gain for the nonlinear observer design method is also an open issue. For the observation of
AIS data, a certain accuracy must be satisfied for collision avoidance between ships. Via
combining the algorithm with the proposed T-S fuzzy observer, the condition is also set
for the observer design such that the objective of the observer can be achieved. In order to
preserve the authenticity of the design method proposed in [26], the AIS data is considered
with the same trajectory as Figure 9 in [26]. Moreover, the observer gains K1 = 10, K2 = 10,
K3 = 30 and K4 = 30 are also selected to be the same as in [26] for the nonlinear observer
(9)–(12). Then, the simulation results of the comparison between the nonlinear observer [26]
and the T-S fuzzy observer are presented.

From the simulation results of Figures 5 and 6, it can be seen that better-observed
results can be obtained by the proposed T-S fuzzy observer design method because the
objective of the minimum average error ηc

v = 0.05 is satisfied by the proposed algorithm.
Despite the bigger observer gain obtained for the T-S fuzzy observer, the expected perfor-
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mance of the observation of AIS data in Table 1 is guaranteed. Note that the state x1(t)
and x2(t) are related to the trajectory of the ship directly, so they must be observed more
accurately. In Figures 7 and 8, the observed results of the proposed T-S fuzzy observer also
approach the results of the nonlinear observer [26]. Moreover, the observer gains of the
proposed fuzzy observer are smaller than the nonlinear observer. For the safety problem of
a ship on the ocean, the trajectory must be observed such that precautions against the ship’s
collisions can be executed more precisely. The proposed T-S fuzzy observer design method
can monitor the state x1(t) and x2(t) correctly and also observe state x3(t) and x4(t) well.
Thus, the proposed T-S fuzzy observer can provide a more suitable tool for estimating ship
trajectories.
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In Case 1, the simulation results of the comparisons between the nonlinear ob-
server [26] and the proposed T-S fuzzy observer are presented. Applying the proposed
fuzzy observer design algorithm, the observer gains can be adjusted to more suitable values
for the AIS data. From the results of Figures 5 and 6, it is obvious that the observer gains are
adjusted to a bigger value to satisfy the better performance of the observation of states x1(t)
and x2(t), which is essential to a ship. Besides, from Figures 7 and 8, the values of observer
gains of the T-S fuzzy observer are much smaller; however, the observed results are also
close to the nonlinear observer. From the results it can be concluded that the observer
gains for x3(t) and x4(t) do not need to be too big to satisfy the expected observation
performance. Based on Case 1, the T-S fuzzy observer with the obtained observer gains,
is applied to the various trajectories of AIS data in Case 2.
<Case 2>

In this case, the T-S fuzzy observer (36) is applied to different kinds of ship trajectories
with the observer gains `1 = 60, `2 = 180, `3 = 0.9 and `4 = 9. Firstly, the trajectories are
considered as in Figures 9 and 10 for the simulations in Case 2. In Figure 8, the different
AIS data are considered with the same starting point and same destination. However, the
trajectories are more complex than the trajectory considered in Case 1, which is presented
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as the original AIS data in Figure 9. In Figure 10, two disparate AIS data are considered for
the same destination, but the starting points are far from the original data.
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From the results of Figures 11–15, one can find that the T-S fuzzy observer with the
gains `1 = 60, `2 = 180, `3 = 0.9 and `4 = 9 is able to estimate various AIS data reasonably.
Although the AIS data 5 and 6 are much more different from the original AIS data, the
observation results can also perform accurately. Thus, for estimating the ship’s trajectory
based on AIS data, the applicability of the proposed T-S fuzzy observer design method is
verified. Moreover, the feasibility and efficiency of the algorithm proposed in this paper are
also demonstrated. To present the observations of AIS data 2 to AIS data 6 more clearly, the
trajectories obtained from AIS data and the T-S fuzzy observer are shown in Figures 16–20,
respectively.



Processes 2022, 10, 33 17 of 20
Processes 2022, 10, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 16. Observed results of AIS data 2. 

 
Figure 17. Observed results of AIS data 3. 

 
Figure 18. Observed results of AIS data 4. 

Figure 16. Observed results of AIS data 2.

Processes 2022, 10, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 16. Observed results of AIS data 2. 

 
Figure 17. Observed results of AIS data 3. 

 
Figure 18. Observed results of AIS data 4. 

Figure 17. Observed results of AIS data 3.

Processes 2022, 10, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 16. Observed results of AIS data 2. 

 
Figure 17. Observed results of AIS data 3. 

 
Figure 18. Observed results of AIS data 4. Figure 18. Observed results of AIS data 4.



Processes 2022, 10, 33 18 of 20Processes 2022, 10, x FOR PEER REVIEW 20 of 22 
 

 

 
Figure 19. Observed results of AIS data 5. 

 
Figure 20. Observed results of AIS data 6. 

In Case 1, the simulation results of the comparisons between the nonlinear observer 
[26] and the proposed T-S fuzzy observer are presented. The proposed T-S fuzzy observer 
gain design algorithm provided a suitable process to adjust the observer gains for the T-S 
fuzzy observer (36) systematically. Extending the results of Case 1, the T-S fuzzy observer 
with the designed observer gains was applied to five different trajectories of AIS data, 
including the same and disparate starting points from the original data in Case 1. The 
simulation results also demonstrate the efficiency and applicability of the proposed T-S 
fuzzy observer design method. 

There are some advantages that can be pointed out for the design method of this 
paper. Firstly, the proposed observer gain design algorithm can combine with other ob-
server design methods. The application is not only limited to the T-S fuzzy observer. Be-
cause of the convenience and intuition of the proposed algorithm, it can easily be com-
bined with other observer design methods. Secondly, the proposed T-S fuzzy observer 
design method can also be applied to different kinds of AIS data, even from foreign ports. 
It is beneficial because the algorithm’s constant value can be modified based on the objec-
tive AIS data. Moreover, with the T-S fuzzy modeling method, many efficient linear ob-
server design methods can be applied to nonlinear systems of ship motion. Because of 

Figure 19. Observed results of AIS data 5.

Processes 2022, 10, x FOR PEER REVIEW 20 of 22 
 

 

 
Figure 19. Observed results of AIS data 5. 

 
Figure 20. Observed results of AIS data 6. 

In Case 1, the simulation results of the comparisons between the nonlinear observer 
[26] and the proposed T-S fuzzy observer are presented. The proposed T-S fuzzy observer 
gain design algorithm provided a suitable process to adjust the observer gains for the T-S 
fuzzy observer (36) systematically. Extending the results of Case 1, the T-S fuzzy observer 
with the designed observer gains was applied to five different trajectories of AIS data, 
including the same and disparate starting points from the original data in Case 1. The 
simulation results also demonstrate the efficiency and applicability of the proposed T-S 
fuzzy observer design method. 

There are some advantages that can be pointed out for the design method of this 
paper. Firstly, the proposed observer gain design algorithm can combine with other ob-
server design methods. The application is not only limited to the T-S fuzzy observer. Be-
cause of the convenience and intuition of the proposed algorithm, it can easily be com-
bined with other observer design methods. Secondly, the proposed T-S fuzzy observer 
design method can also be applied to different kinds of AIS data, even from foreign ports. 
It is beneficial because the algorithm’s constant value can be modified based on the objec-
tive AIS data. Moreover, with the T-S fuzzy modeling method, many efficient linear ob-
server design methods can be applied to nonlinear systems of ship motion. Because of 

Figure 20. Observed results of AIS data 6.

In Case 1, the simulation results of the comparisons between the nonlinear ob-
server [26] and the proposed T-S fuzzy observer are presented. The proposed T-S fuzzy
observer gain design algorithm provided a suitable process to adjust the observer gains for
the T-S fuzzy observer (36) systematically. Extending the results of Case 1, the T-S fuzzy
observer with the designed observer gains was applied to five different trajectories of AIS
data, including the same and disparate starting points from the original data in Case 1. The
simulation results also demonstrate the efficiency and applicability of the proposed T-S
fuzzy observer design method.

There are some advantages that can be pointed out for the design method of this paper.
Firstly, the proposed observer gain design algorithm can combine with other observer
design methods. The application is not only limited to the T-S fuzzy observer. Because of
the convenience and intuition of the proposed algorithm, it can easily be combined with
other observer design methods. Secondly, the proposed T-S fuzzy observer design method
can also be applied to different kinds of AIS data, even from foreign ports. It is beneficial
because the algorithm’s constant value can be modified based on the objective AIS data.
Moreover, with the T-S fuzzy modeling method, many efficient linear observer design
methods can be applied to nonlinear systems of ship motion. Because of these advantages,
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feasibility and practicality are demonstrated for the proposed T-S fuzzy observer design
method. With the simulation results, some conclusions and future works are given for the
proposed T-S fuzzy observer design method in the next section.

5. Conclusions and Future Works

The T-S fuzzy observer has been designed for estimating AIS data-based ship motion
in this paper. Firstly, a nonlinear ship dynamic system was introduced as the basis of
the observer design method. Then, the AIS data measurement and nonlinear observer
were also presented. Based on the nonlinear ship dynamic system, the T-S fuzzy model
and the T-S fuzzy observer could be constructed for estimating the state of ship motion.
The simulation results show that both the nonlinear observer and the T-S fuzzy observer
can achieve good results in estimating ship motion. Sometimes it may not be easy to
design a nonlinear observer directly because of the complexity of systems. Hence, this
paper effectively applied the proposed T-S fuzzy observer design method by using an
observer gain design algorithm for the above estimating problem. From the simulations, a
better estimating result was obtained by the proposed design method even considering
the conventional dynamical model for the ship’s dynamics. It can be demonstrated that
to solve the estimating problem based on AIS data, a mathematical model of nonlinear
ship systems is required for the proposed T-S fuzzy observer design method. However,
it was found that some errors still exist in estimating results of AIS data, although the
results were reasonable in general. In the future, to obtain the better estimating results, a
more complex and realistic nonlinear ship dynamic system could be considered based on
the proposed observer design method. Moreover, the proposed T-S observer gain design
algorithm provided the gain design process step-by-step for each system state. In the future,
a more efficient linear observer design method could be considered to extend the method
of this paper to design observer gains for all states simultaneously, and estimate the AIS
data-based ship motion by more suitable feedback gains. Extending the proposed T-S fuzzy
observer design method, a corresponding T-S fuzzy controller design problem could be
investigated to provide a better performance for ship trajectories in the future.
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4. Felski, A.; Jaskólski, K.; Banyś, P. Comprehensive assessment of automatic identification system (AIS) Data application to
anti-collision maneuvering. J. Navig. 2015, 68, 697–717. [CrossRef]

5. Goerlandt, F.; Kujala, P. Traffic simulation based ship collision probability modelling. Reliab. Eng. Syst. Saf. 2011, 96, 91–107.
[CrossRef]

6. Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B. Comparison study on AIS data of ship traffic behavior. Ocean Eng. 2015, 95, 84–93.
[CrossRef]

7. James, M.; Mendo, T.; Jones, E.L.; Orr, K.; McKnight, A.; Thompson, J. AIS data to inform small scale fisheries management and
marine spatial planning. Mar. Policy 2018, 91, 113–121. [CrossRef]

8. Fossen, T.I. Guidance and Control of Ocean Vehicles; Wiley: New York, NY, USA, 1994.
9. Wang, H.O.; Tanaka, K.; Griffin, M.F. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans.

Fuzzy Syst. 1996, 4, 14–23. [CrossRef]
10. Chang, W.J.; Qiao, H.Y.; Ku, C.C. Sliding mode fuzzy control for nonlinear stochastic systems subject to pole assignment and

variance constraint. Inf. Sci. 2018, 432, 133–145. [CrossRef]
11. Chang, W.J.; Lian, K.Y.; Su, C.L.; Tsai, M.H. Multi-constrained fuzzy control for perturbed T-S fuzzy singular systems by

proportional-plus-derivative state feedback method. Int. J. Fuzzy Syst. 2021, 23, 1972–1985. [CrossRef]
12. Jia, B.; Cao, H.; Ma, J. Design and stability analysis of fuzzy switched PID controller for ship track-keeping. J. Transp. Technol.

2012, 2, 334–338. [CrossRef]
13. Chang, W.J.; Hsu, F.L. Sliding mode fuzzy control for Takagi-Sugeno fuzzy systems with bilinear consequent part subject to

multiple constraints. Inf. Sci. 2016, 327, 258–271. [CrossRef]
14. Chang, W.J.; Lin, Y.H.; Du, J.; Chang, C.M. Fuzzy control with pole assignment and variance constraints for continuous-time

perturbed Takagi-Sugeno fuzzy models: Application to ship steering systems. Int. J. Control Autom. Syst. 2019, 17, 2677–2692.
[CrossRef]

15. Chang, W.J.; Chang, C.M.; Lin, Y.H.; Du, J. Discrete time robust fuzzy control synthesis for discretized and perturbed ship fin
stabilizing systems subject to variance and pole location constraints. J. Mar. Sci. Technol. 2021, 26, 201–215. [CrossRef]

16. Chang, W.J.; Lin, Y.W.; Lin, Y.H.; Pen, C.L.; Tsai, M.H. Actuator saturated fuzzy controller design for interval type-2 Takagi-Sugeno
fuzzy models with multiplicative noises. Processes 2021, 9, 823. [CrossRef]

17. Araki, M.; Sadat-Hosseini, H.; Sanada, Y.; Tanimoto, K.; Umeda, N.; Stern, F. Estimating maneuvering coefficients using system
identification methods with experimental, system-based, and CFD free-running trial data. Ocean Eng. 2012, 51, 63–84. [CrossRef]

18. Graziano, M.D.; Renga, A.; Moccia, A. Integration of Automatic Identification System (AIS) data and single-channel Synthetic
Aperture Radar (SAR) images by SAR-based ship velocity estimation for maritime situational awareness. Remote Sens. 2019, 11,
2196. [CrossRef]

19. Kim, S.K.; Roh, M.I.; Oh, M.J.; Park, S.W.; Kim, I.I. Estimation of ship operational efficiency from AIS data using big data
technology. Int. J. Nav. Archit. Ocean Eng. 2020, 12, 440–454. [CrossRef]

20. Zhou, F.; Pan, S.; Jiang, J. Verification of AIS data by using video images taken by a UAV. J. Navig. 2019, 72, 1345–1358. [CrossRef]
21. Xu, H.; Rong, H.; Soares, C.G. Use of AIS data for guidance and control of path-following autonomous vessels. Ocean Eng. 2019,

194, 106635. [CrossRef]
22. Friedland, B. A nonlinear observer for estimating parameters in dynamic systems. Automatica 1997, 33, 1525–1530. [CrossRef]
23. Xue, W.; Bai, W.; Yang, S.; Song, K.; Huang, Y.; Xie, H. ADRC with adaptive extended state observer and its application to air-fuel

ration control in gasoline engines. IEEE Trans. Ind. Electron. 2015, 62, 5847–5857. [CrossRef]
24. Cui, R.; Chen, L.; Yang, C.; Chen, M. Extended state observer-based integral sliding mode control for an underwater robot with

unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 2017, 64, 6785–6795. [CrossRef]
25. Li, Z.; Li, R.; Bu, R. Path following of under-actuated ships based on predictive control with state observer. J. Mar. Sci. Technol.

2021, 26, 408–418. [CrossRef]
26. Fossen, S.; Fossen, T.I. eXogenous Kalman filter (XKF) for visualization and motion prediction of ships using live Automatic

Identification System (AIS) Data. Modeling Identif. Control 2018, 39, 233–244. [CrossRef]
27. Ku, C.C.; Chang, W.J.; Tsai, M.H.; Lee, Y.C. Observer-based proportional derivative fuzzy control for singular Takagi-Sugeno

fuzzy systems. Inf. Sci. 2021, 570, 815–830. [CrossRef]
28. Shang, Y. Resilient interval consensus in robust networks. Int. J. Robust Nonlinear Control 2020, 30, 7783–7790. [CrossRef]
29. Zheng, F.; Wang, Q.G.; Lee, T.H.; Huang, X. Robust PI controller design for nonlinear systems via fuzzy modeling approach. IEEE

Trans. Syst. Man Cybern.—Part A Syst. Hum. 2001, 31, 666–675. [CrossRef]
30. Zhang, Y.; Kostyukova, O.; Chong, K.T. A new time-discretization for delay multiple-input nonlinear systems using the Tylor

method and first order hold. Discret. Appl. Math. 2011, 159, 924–938. [CrossRef]

http://doi.org/10.1017/S0373463314000897
http://doi.org/10.1016/j.ress.2010.09.003
http://doi.org/10.1016/j.oceaneng.2014.11.020
http://doi.org/10.1016/j.marpol.2018.02.012
http://doi.org/10.1109/91.481841
http://doi.org/10.1016/j.ins.2017.12.016
http://doi.org/10.1007/s40815-021-01096-9
http://doi.org/10.4236/jtts.2012.24036
http://doi.org/10.1016/j.ins.2015.08.026
http://doi.org/10.1007/s12555-018-0917-9
http://doi.org/10.1007/s00773-020-00731-8
http://doi.org/10.3390/pr9050823
http://doi.org/10.1016/j.oceaneng.2012.05.001
http://doi.org/10.3390/rs11192196
http://doi.org/10.1016/j.ijnaoe.2020.03.007
http://doi.org/10.1017/S0373463319000262
http://doi.org/10.1016/j.oceaneng.2019.106635
http://doi.org/10.1016/S0005-1098(97)00062-9
http://doi.org/10.1109/TIE.2015.2435004
http://doi.org/10.1109/TIE.2017.2694410
http://doi.org/10.1007/s00773-020-00746-1
http://doi.org/10.4173/mic.2018.4.1
http://doi.org/10.1016/j.ins.2021.01.023
http://doi.org/10.1002/rnc.5153
http://doi.org/10.1109/3468.983422
http://doi.org/10.1016/j.dam.2011.01.022

	Introduction 
	Applications of AIS Data and the Nonlinear Observer 
	Takagi-Sugeno Fuzzy Modeling and Observer Design for AIS Data-Based Ship Trajectories 
	Simulation Results 
	Conclusions and Future Works 
	References

