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Abstract: This paper concerns the dynamical modeling of the microbiological processes that occur
in the biofilms that are formed on fine inert particles. Such biofilm forms e.g. in fluidized-bed
bio-reactors, expanded bed biofilm reactors and biofilm air-lift suspension reactors. An approximate
model that is based on the Laplace-Carson transform and a family of approximate models that are
based on the concept of the pseudo-stationary substrate concentration profile in the biofilm were
proposed. The applicability of the models to the microbiological processes was evaluated following
Monod or Haldane kinetics in the conditions of dynamical biofilm growth. The use of approximate
models significantly simplifies the computations compared to the exact one. Moreover, the stiffness
that was present in the exact model, which was solved numerically by the method of lines, was
eliminated. Good accuracy was obtained even for large internal mass transfer resistances in the
biofilm. It was shown that significantly higher accuracy was obtained using one of the proposed
models than that which was obtained using the previously published approximate model that was
derived using the homotopy analysis method.

Keywords: mathematical modeling; biofilm dynamics; biodegradation

1. Introduction

Numerous problems in the field of chemical and process engineering, for example
those concerning heat transfer or simultaneous diffusion and reaction, are described by
nonlinear differential equations [1-3]. Typically, such differential problems are solved using
numerical algorithms, which may cause problems with convergence and require time-
consuming computations [4-6]. For that reason, there is an interest in using ap-proximation
methods for solving nonlinear differential equations. The application of these methods
in dynamic simulations of two-scale objects is particularly significant [7]. Fluidized-bed
catalytic reactors, reactors with a stationary catalytic bed and all microbiological reactors
with an immobilized biofilm belong to this group [8]. In such devices, the microbiological
process occurs in the liquid phase where the diffusional resistances are negligible and in
the biofilm where the internal mass transfer resistances cannot be neglected. As a result,
the mathematical description of the process is based on the application of different types
of equations for both of the phases. According to Nicolella et al. [9], the significance of
particle-based biofilm reactors is large as they provide the potential to develop compact
and high-rate processes.

Studies concerning approximation models of catalytic processes in porous catalysts
can be found in the literature. An example is the study by Szukiewicz [10], who proposed
a method based on the Laplace—Carson transform for the determination of the dynamic
changes of the average reactant concentration in a catalytic pellet. Another example is the
study by Sun et al. [11], who used the Adomian decomposition method (ADM) for the
determination of the stationary profiles of the reactant concentration in a catalytic pellet
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and its effectiveness factor. Abbasbandy [12] used the homotopy analysis method (HAM)
for the modelling of a catalytic pellet at stationary conditions. In our previous study [13],
the homotopy analysis method was applied for the simulation of a biofilm at a steady state.

Several studies can be found in which a simplified approach was used in the mod-
eling of bioreactors with a biofilm. For example, Russo et al. [14] applied the concept
of a so-called zero-dimensional biofilm model for a dynamic simulation of a continuous
biofilm bioreactor. The quoted authors introduced a lumped-state variable expressing the
overall attached biomass concentration in the bioreactor. This is a far-reaching approach,
because the external and internal mass transfer resistances of the growth-limiting substrate
are neglected. A similar approach was applied in the study by Dokianakis et al. [15]
and in other recent studies [16-19] concerning the modeling of biofilm bioreactors. It
was repeatedly proven that mass transfer resistances cause the distribution of a substrate
concentrations inside the biofilm [20,21]. Neglecting this phenomenon in the mathematical
model leads to obtaining results that are inconsistent with experimental observations [22].
Despite numerous papers concerning the applica-tion of approximation methods in the
modeling of catalytic pellets and several studies concerning the modeling of biofilms at
stationary conditions [13,23], there are no studies which demonstrate the applicability of
such an approach in the modeling of dynamical biofilm growth.

This study presents an approximate model for biofilm dynamics, which is based
on the Laplace—Carson transform and a family of approximate models that are based
on the concept of pseudo-stationary substrate concentration profiles in the biofilm. The
com-putational efficiency and accuracy of the proposed models were evaluated. The
solution of the exact model that was obtained by using the method of lines was chosen
as a reference. Moreover, the accuracy of the approach presented was compared with a
previously published model, which was derived using the homotopy analysis method.

2. Exact Mathematical Model

A microbiological process limited by a single substrate is considered. Mass balance of
substrate A in a spherical biofilm is the following:

A DTG+ D25 ek &

= — 48 4 —
ot A o2 Ay ox

Equation (1) is subject to the following boundary and initial conditions:

achA(rO/ t) _

e 0, t=0 (2)

cf&(ro + Ly, t) = chs(t) (3)
ch(x,0) = cfa(x) x € [ro, 7o + L] (4)

where cg A denotes the initial substrate A concentration in the biofilm, while cf’AS de-notes
the concentration at the biofilm’s surface.
The uptake rate of the carbonaceous substrate A in the biofilm can be formulated as

follows:
1

(k) = = F(R)pp ©)

In this study, two kinetic models of microbiological processes were taken into account,
i.e.,, Monod and Haldane. The former describes the utilization of many non-toxic sub-
strates [24], whereas the latter is commonly used in modelling the biodegradation of toxic
compounds [25]. Function f (ci) for Monod kinetics is defined as

k-t
Flh) = —A ©)

KA—FChA
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For Haldane kinetics, one obtains

k- ch
fle) = ——2—= o7 @)
Ka + CbA + %

The following dimensionless space coordinate in the biofilm was introduced to the

mathematical model (1)—(2):

X =719
z=me[0,1] 8)

where Lj(t) denotes the biofilm thickness variable over time.

After that, the substrate concentration was described by a new function which depends
on the dimensionless space coordinate and time:

A (x, 1) — A (z(x, 1), 1) )

In accordance with differential calculus, the derivatives of the substrate concentration
with respect to x and t were transformed according to the following relationships:

o _ e 1ah w“
ox 0z ox Ly 0z
Gy L o S SO el Y L L O Y s O
ot oz ot ot L2 0z ot L, o0z ot

The dynamic changes of a substrate concentration in the biofilm can be, therefore,
described by the following partial differential equation (see Appendix A for the derivation):

@b 2 b b 2
OC)  Dea | 0°Cy  0Cp 2Ly 1 / Ly 4
= == Ly)Ly,, | — =- 12
ot Li 072 0z (7‘0 + ZLb> + D,a (Z b) bt DEAVA(CA) (12)
The equation of the biofilm thickness dynamics was based on the biomass balance
from the paper [26]:
17— kgt Ly 73 — 13
%=*b20r§av* de?ibeO (13)
t 30p ry r
where:
5 f 3L, |
thae = s [ (e = 0 [ (0 + Loz Prbch)dz 19
"~ 7o "~
0 0
with the initial condition:
Ly(0) = Lyo (15)

3. Approximate Mathematical Model Based on Laplace-Carson Transform

Numerical simulations were performed with the use of the exact model of biofilm
growth (Equation (12) with conditions (2)—(4) and Equation (13) with the condition (15)).
The computations were realized using Matlab 2016a. The results proved that the term

2L
Got20y)
term can be therefore neglected. Then, Equation (12) simplifies to:

D%A (zLp)Ly, ; is lower than by more than three orders of magnitude. The former

ok D, | 0% 2L, och L2,
A= A~ B rh(ER) (16)

ot L% 0z2  (ro+zLy) 0z Dea
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In order to reduce the number of parameters in the above equation, the variable T was
introduced, which is related to time ¢ according to the relationship:
D,

dt = dt (17)
Ly

After introducing variable 7, Equation (16) will transform to:

ok o?ek 2L, och L2
A _ oA b _CA bl (18)
ot 0z2  (ro+Lpz) 0z  D,a

The following boundary and initial conditions are associated with Equation (18):

e (0,7)
= 1
e 0 (19)
AL T) = s (20)
& (z,0) =4, (1)
Equation (18) can be written as:
oeh,  o%éh 2L, oL,

A=—4 LA~ PRAGL) (22)

ot 022 (ro+ Lyz) 0z

L2k
where: ® = I~

eA
The forms of the kinetic expressions in Equation (22) were as follows:

e  Monod model:

b b 1 &
Fa(Ca) = TMK+ Egpb (23)
e Haldane model:
b 1 &b
PA(Eh) = 2 b (24)

3 a2 F
WBA K + &b + (%) /Kin
In order to derive the approximate model, the kinetic expression was linearized using
Taylor series expansion:

arh (&4

fbA(glA) = 7?‘;(5%5) + 65” (El/)% - EZS) (25)
A

After introducing Expression (25) into Equation (22), one obtains:

afg _ 825& ZLb afg ~b (5bA ) + q)af?%(gbAs) (Eb ~b) (26)
s

TA_ZCA A op .y,
ot 0z2 1o+ Lyz 0z A 552 As T TA

The Laplace-Carson transform was used for the derivation of the approximate model.
It is an integral transform defined by the following formula:

Qp,x) = p- fe**”(r, x)dt 27)
0

It has, historically, been applied in solving various mathematical and physical prob-
lems. For example, Kumar and Qureshi [27] used it to obtain an analytical solution for
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the non-integer order initial value problems with the Caputo operator. Makarov [28]
applied it in order to reduce a model of nonstationary flow of a viscoplastic medium.
Aggarwal et al. [29] proved that the Laplace-Carson transform can be used for solving
system of convolution-type Volterra integro-differential equations of the first kind. In turn,
Szukiewicz published several papers describing the application of this transform to the
problems of diffusion and reaction in a catalytic pellet [10,30,31]. His studies were the
motivation for developing an approximate model of the process occurring in a biofilm.
Equation (26) is converted by the Laplace-Carson transform into:

2C 2L, ocC TAChS)
C- = = o L8827 —C 28
p PCAS azz + 70 +LhZ oz ( )+ aé.g (CAS ) ( )
with boundary conditions:
dc(0)
= 29
5 =0 (29)
C(1) = &, (30)
where:
o0
C:pfék_ﬂdr (31)
0

The solution of Equation (28) with boundary conditions (29) was the following:

1 { A - o8 (8 .) 4
C:H—3 hop — @74 (Eh,) + @ AAAS &)+

(Ly-+70) (ChsP—Chop+ @74 (Eh)) (" EFV (Ly+rop) —e HE~ D (Ly—rop) ) (32)
12 (ro+Lyz) (rop—Ly+eH (Ly+rop) )
where:
oF A (€
p=7/p+® A(bAS) (33)
0CA
The average concentration EhA, . Was calculated as an integral average for a spherical
bioparticle:
1
3Ly
s = [ @0+ Lza: 3
0

(ro+ Lp)° — r

It can be written in the domain of complex numbers as:

1
3L
CW=4———JT—§JC@JXm+Lﬂfﬂ (35)
(ro + Lyp) ~ 7oy

Equation (32) was substituted to Equation (35). Afterwards, using Matlab’s symbolic
toolbox, it was integrated and transformed into the following form:

oFb (&b
PCas — piho = () Tk~ Co) - 97 () + @AM ) )
CA

where:

3u*(Ly + ro) (L2p cosh(p) — L2sinh() + rgu®sinh(u) + Lyrou®sinh(p))
3L3sinh(p) + 3L3rosinh(p) — 3L3p cosh(y) + L3p?sinh(p) — 3r3u>sinh(u)+
378y3 cosh(p) — 3L127r0y cosh(p) + 3Lbr%;43 cosh(y) + L%r();ﬁ cosh(p) — 3Lbr%yzsinh(y)

(37)

Y(p) =
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The left-hand side of Equation (36) is a transform of the derivative of the average sub-
strate concentration with respect to time, while the right-hand side includes the transform
of the driving force (c} , — Cyo). Therefore, Equation (21) is a Laplace-Carson transform of
the linear driving force (LDF) equation [10].

In order to verify the obtained expression, 7y = 0 was substituted. It was expected that
Equation (37) would then simplify to the equation that was obtained by Szukiewicz [10] for
a spherical catalytic pellet. As expected, the following result was obtained:

__ 3p(pcosh(p) —sinh(p))
(p) = 3sinh(p) + p2sinh(p) — 3p cosh(u) (38)

érA(cAs)

where: y = 4 [p + P—L2~

For the determmation of the inverse transform of Equation (36), the value p = 0 was
substituted, which is equivalent to time 7 tending to infinity The form of the coefficient

7a(eh)

&b
aA:;

Y in the domain of real numbers depends on the derivative at the biofilm surface,

which can accept positive or negative values, or zero:

for TACA) - ¢
o CAs
B 3¢?(Ly + 10) (Lj ¢ cosh (@) — Lisinh(¢) + rgu?sinh(¢) + Lyrop?sinh(g)) 39)
~( 3Ljsinh(¢) + 3LZrgsinh(¢) — 3L} ¢ cosh(g) + L3u?sinh(¢) — 3rgp?sinh(¢)+
3r3¢> cosh(g) — 3L2rop cosh(¢) + 3Lyr3u3 cosh(g) + Lirou® cosh(g) — 3Lyr3u?sinh(¢)
where:
¢ = 6rA(c~ZS)
oeh,
.« for 75’%21%) ~0
~15(Ly + 10) (Lj + 3Lyro + 313) @0)
L} +6L%rg + 15Lyr + 151
for arA(CAb) <0
6
—3¢2(Ly +19) (9L? cos(¢) — L2sin(¢) + ¢*r3sin(g) + ¢*Lyrosin(e)) @)

- -3L3 sin(go) —3L7rgsin(¢) + 3¢L3 cos(¢) — ¢?L3 sin(g) + 3¢*r3 sin(¢)+
39313 cos(¢) + 3pLarg cos(¢) + 3¢ Lyrs cos(@) + 3Lirg cos(¢) + 3¢? Lyt sin(g)
where:
ﬁrA(cAs)

?= FER

Applying the inverse Laplace-Carson transform to Equation (36) results in the LDF
equation, in the domain of real numbers, as follows:

dc o (ch)
A, 7 ()] —
3 0 _ ‘}‘(cb5 s— Clljx,av) CDT’A(CZ,M) + TS(C?AS Cl;%,uv) (42)

Or, by substituting time ¢:

dCIbA D A - afb (Cs )
= = 62 1II(CbAs - CbA,uv) - q)rA(C?%,av) +@ 2 bA (CZS - C?\,ﬂv) (43)
dt L; ocy
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with the initial condition:
b b
CAa(0) = cap (44)
Based on Equation (25), it can be written as follows:
o (ch.)

=b (.b ~ b (b A\TA: b b

rA(CA,aU) = rA(CAs) - * (CAs - CA,uv) (45)

b
ac

After using Equation (45), the LDF Equation (43) transformed into the following
form [10]:
b
dCA,uv DeA

b b =b (b
dt = 12 [‘Y(CAS - CA,av) - rA(CA,m;)] (46)
b

with the initial condition (44).
The model given by Equation (43) with initial condition (44) is linear, whereas the
model given by Equation (46) with initial condition (44) is nonlinear.
It is convenient to use approximate models in a dimensionless form. To this end, a
dimensionless substrate concentration was used:
~b
2 47)

n=-
Ca

The linear approximate model in a dimensionless form can be presented as follows:

dmw 1 dCCA Dea Dea = . Dea = (}?A(US)
i dt n+ 2 Y (175 — o) — i D7 A (1av) + 2 @ a1 (s — 1av) ~ (48)
ey szPb . ey g
where: ® = TR b with the initial condition:
eAWBACA

1av(0) = 710 (49)
While the nonlinear one is expressed as:

dﬂgv _ 1 dCCA D@A

DeA— ~
T aﬁ’?av + TiT(ns — av) — ?CD “Fa(Mav) (50)

b

with the initial condition (49).
The form of kinetic expressions in a dimensionless form is as follows:

e  Monod model:

Fa(n) = IZLM (51)
e Haldane model:
FAG) = = (52)
K+ +52/Kiy

CT .
It is assumed that the average biomass growth rate can be approximated by using the
following expression:

where: K = IETA, K = Kiy
A

B0 = 1B (ch 1) (53)

In order to evaluate the accuracy of this approximation, dynamical simulations of the
biofilm growth were carried out using the exact model and the average biomass growth
rate was calculated using the exact equation—i.e., (53). Matlab 2016a was used for this
purpose. The results of the comparison are illustrated in Figure 1 for two values of the
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Average substrate uptake

[kg B/(meh)]

b
B,av

rate, r

bulk liquid substrate concentration for Monod kinetics (Figure 1a) and Haldane kinetics
(Figure 1b). It can be seen that the accuracy decreases with the increase in the value of
parameter ® and with the increase in c§. In each case, a very good approximation was
obtained for ® < 2.

70 [ 60 .
a) o b)
60 | =
85 50 - .
S5E
[OR
‘ ) 2=0.04 kg/m?
50  ¢3=0.04 kg/m? £ X o g
e S 3
40 L
[©) I,
..... S g .
-------------- o® 30 - 7
30 | c2=0.02 kg/m? < ¢ =0.02 kg/m?
20 20—
0 4 8 12 0 4 8 12

Modified Thiele modulus, ®,

Modified Thiele modulus, ®,

Figure 1. Illustration of the accuracy of the approximate formula for average biomass growth
rate (53); solid lines—exact expression; dashed lines—approximate expression; (a) Monod kinetics;
(b) Haldane kinetics.

Applying the relationship described in Equation (53) to Equation (13) resulted in:

dly _ 17575y b 3 kals Ty~ 15
at  3p, 2 PUAM® 3 7

(54)

with the initial condition:
Ly(0) = Ly (55)

The approximate model is a system of ordinary differential equations. The linear
version consists of Equation (48) with boundary condition (49) and Equation (54) with
boundary condition (55). The nonlinear version consists of Equation (50) with boundary
condition (49) and Equation (54) with boundary condition (55). The model that was derived
using the Laplace—Carson transform was used in the comparisons that are presented in the
further parts of the study and will be abbreviated to AM1.

4. Approximate Model Based on Pseudo-Steady State Approximation

The processes of diffusion and reaction are significantly faster than the growth and
detachment of a biofilm, thus the distribution of the limiting substrate concentration in the
biofilm is close to a steady-state profile, even when the biofilm thickness is changing [3,8,32].

A stationary profile of the substrate concentration was obtained by solving its mass
balance, i.e., Equation (26), after equating the time derivative to zero. It was proposed,
in this study, to treat the biofilm as though it were flat. As a result of this, a simpler
analytical expression was obtained that was related to the lower number of parameters. In
order to evaluate the accuracy of such an approach, the exact biofilm model was solved
assuming flat and spherical geometry. The average biomass growth rate, (Equation (14))
was calculated and compared for a range of inert particle radius and biofilm thickness,
what is presented in Figure 2. It can be seen that the relative difference between obtained
values does not exceed 1.5%.
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600 —
1122
550
£
= K
< 500
[72]
3 08
O
[
= 450
© 0.6
@
o 400
= 0.4
[}
A=
350 8

300

20 40 60 80 100

Biofilm thickness, L, [um]

Figure 2. Relative difference between average biomass growth rate calculated for spherical and flat
biofilm.

The dimensionless form of the linearized substrate mass balance in the flat biofilm
was expressed as:

6217 -
with boundary conditions:
on(0
WO _o, 4w = (57)

0z
The analytical solution of the linearized form of Equation (56) was:

Falys) pals)) (7 o e 67?5 -
) Af;i ) Pa(77s) . cosh(z\/@) (rA(iys) — _Aa% + AE;] )775) (58)

U(Z) - oF 7 — o7
_Aa% 9 ASYWS) COSh( q)a A](YWS))

Equation (59), describing the biofilm dynamics, was derived based on the relationship
that connects the overall substrate uptake rate in the biofilm and the substrate mass flux
into the biofilm:

dcl (L)

Vbrg,av = SbDEAT (59)

Equation (59) can be transformed to:
b 3 Deach diy(1)

Thm = (r2—rd) Ly, dz (60)
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The derivative at the biofilm surface (i.e., for z = 1) was obtained from Equation (58):

= 07 (11s) 5 07a(1s) (= _ 0fa(ns) | 0Fa(ns)
d’?(l):tanh(\/q) o )\/q) o (rA(”S) o+ o '75> 61)
dz ‘97/}(775)
7

The average biomass growth rate can be calculated by its relationship with the sub-
strate uptake rate, according to:

3r2  Deach dn(1)
(r2 — r3) Ly dz

b b
"Bav = WBA "TA 40 = WBA - (62)

This approximate model, including Equations (54), (55), (61) and (62), will be abbrevi-
ated, in the further parts of the present study, to AM2-1.

The derivative d'{d—(zl) can be determined in different ways, which will influence the
accuracy of the approximate model. In this study, it was proposed to find this derivative
analytically through the finite difference method for one internal node. For the Monod

kinetic model, the following algebraic equation was obtained:

Mo — 2105 +1s & "os
> _
(Az) K+ 105

=0 (63)

where 79 = # and Az =0.5.
Equation (63) had two solutions, one of which is positive. It can be expressed as:

8 — 8K —3® + /92 — 48D + 64 + 48DK + 128K + 64K2
o5 = 16 (64)

The application of the differential quotient of the second order resulted in:

dn(1) 8 B8—8K—30+ /(902 48D + 64) + 48c5, PK + 128K + 64K>

iz 3 6 (65)

The above derivative was used to obtain the average biomass growth rate according
to Equation (62). This approximate model, involving Equations (54), (55), (62) and (65), will
be abbreviated, in the further parts of the present study, to AM2-2.

Another way to determine the derivative d};—(zl), which is the original aim of this study,
is based on a two-step application of the finite difference method. Namely, in the first step,
the 779 5 is determined, as above. In the second step, the same method is used to determine
10.75, based on the previously found value of 7 5. Afterwards, the backward difference

quotient of the second order can be used to find the derivative, obtaining;:

dn(1)  32+32K—+/A; + K(48A1 + 640K) + Az +
dz 8

(66)

where:

Ap = VD2 — 48D + 64 + 48DK + 128K + 64K2
Aj = 640 — 240D + 252
Az = A1(48 — 8D) + K(1280 — 16®)

This approximate model, involving Equations (54), (55), (62) and (66), will be abbrevi-
ated, in the further parts of the present study, to AM2-3.
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A similar derivation can be performed for the Haldane kinetic model. If the procedure
that was previously abbreviated to AM2-2 is used, then the following expression is obtained:

dn(l) 8 8x

iz "33 ©7
where: " "
371/2 371/2
X—{q+[q2+(r—p2)] } +{q—[q2+(r—p2>] } +p (68)
B ;b 3 (bc—3ad) _c
P= 3 =P+ 62 ' T 3a
and:

a=1, b:Ki”—l, C:3/8(T)Kin+K~Km—Kin, d:—K-Kin.

The cubic root {/f in Equation (68) denotes the real cube root of £, if f is real. If f is not
real, it is then the cube root with the maximum real part.
If the procedure that has been previously referred to as AM2-3 is used, then one gets:

dn(1
% — 2105 — 8x + 6 (69)

where: x, p, g and r are defined by Equation (68) and:

a=1,b=—(5—2K+1)/2, c = (32KKy, — 16K;;, — 1610.5K;y, + PKyyy) /32,
d = —(1105KK;y)/2 — (KKjy)/2

The value 79 5 in the Equation (69) was determined in the first step of the procedure.
It was expressed as a real solution of a third-order polynomial, i.e.,

o5 = {q + [qz - p2)3]1/2}

where: p, g and r are defined by Equation (68) and:

1/3 1/3

+ {q |2+ - p2)3]1/2} +p (70)

a=1,b=K;,—1, C=g(i)Kin+K'Kin—Kin,d=—K~IZ,‘n.

5. Accuracy and Efficiency Evaluation of the Approximate Model Based on the
Laplace-Carson Transform

Calculations were performed for two of the microbiological processes that are of large
technological significance: the oxidation of nitrites by nitrifying bacteria and the phenol
degradation that is performed by Pseudomonas putida. The former follows Monod kinetics
(Equation (23)), whereas the latter follows Haldane kinetics (Equation (24)). The kinetic
parameters are presented in Tables 1 and 2, respectively. A stepwise change of the substrate
concentration at the biofilm surface ¢}, = ¢ = 0.1kg/ m® and a constant biofilm thickness
were used for the purpose of the evaluation. The method of lines was used for solving the
exact model (see Appendix B).

Table 1. Values of kinetic parameters for processes following Monod kinetic model [15].

Process k [1/h] K4 [kg/m?3] wpa [kg B/kg Al
Nitrite oxidation 7.917 x 10~3 24 x 1074 0.23
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Table 2. Values of kinetic parameters for biodegradation of phenol following Haldane kinetic
model [33].

k [1/h] Ky [kg/m®] K, [kg/m3] wga [kg B/kg Al
0.26 0.0254 0.173 0.616

Figure 3 presents the relationship, 7,,(7), that was obtained according to the exact
model and the approximate models known as AM1 (i.e., the linear one—Equations (48) and
(49)) and the nonlinear one—Equations (50) and (49). Figure 3a illustrates the results that
were obtained for the oxidation of nitrites, while Figure 3b shows those that were obtained
for the phenol degradation. The results that were obtained indicate that:

e The accuracy of the approximate models decreased with the increase in ®;

¢  The nonlinear approximate model was more accurate than the linear one;

e  The differences between the approximate models and the accurate model decreased
with time.

Average dimensionless
substrate concentration, n,,
Average dimensionless
substrate concentration, n,,

b)

0 04 0.8 1.2 1.6 2 0 04 0.8 1.2 1.6 2
Dimensionless time, 1 Dimensionless time, 1

Figure 3. Illustration of the accuracy of linear and nonlinear approximate models AM1 for Monod
kinetics (a) and Haldane kinetics (b); — Method of lines; =-= Linear approximate model; - - -
Nonlinear approximate model; (a) oxidation of nitrite; (b) glucose utilization.

The above observations are in agreement with those presented by Szukiewicz [10].

The proposed approximate mathematical models, known as AM1, were evaluated
with regard to their computational efficiency. Matlab 2016a was used for this purpose. The
execution times of the computer programs using the exact model and the approximate
models were compared. The exact model was solved, as previously explained, by the
method of lines (MOL). Two integration algorithms were used in all of the programs. The
first one was the Dormand-Prince (4/5) algorithm, which is an explicit method that is used
for solving non-stiff and moderately stiff differential equations [34]. The second one was
Gear’s algorithm, which is commonly used for stiff problems [26,35,36]. The results of
the comparison are shown in Table 3. The values of the execution times were normalized
through the process of dividing by the value that was obtained for the exact model and
the explicit integration algorithm. The application of the implicit algorithm, i.e., Gear’s
algorithm, significantly increased the performance of the exact model. This suggests that
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the system of equations that were obtained by the method of lines was stiff. In order to
verify this hypothesis, the stiffness ratio was calculated, according to the formula:

_ max|[Re|A;]]
R = n[Rel A 1)

Table 3. Execution times of computer programs solving the exact model and the approximate models.

Model Exact Model Linear Approximate Model Nonlinear Approximate Model
Integration algorithm Dormand-Prince (4/5) (MOL) Dormand-Prince (4/5)
Normalized time of execution 1 0.0468 0.0327
Integration algorithm Gear’s method (MOL) Gear’s method
Normalized time of execution 0.0816 0.0561 0.0535

In Equation (71), A; represents the eigenvalues of the Jacobi matrix of the right hand
sides of the system of the equations that was considered. If the stiffness ratio (SR) is less than
100, then the system of differential equations is not regarded to be stiff [37]. It can be seen,
in Figure 4, that the stiffness ratio was over 1000 for the whole range of dimensionless time.

3200 ——

2800

2400

2000

Stiffness ratio, SR

1600

1200 TR TR TR T N R R R TSR S E T R R
0 0.4 0.8 1.2 1.6 2
Dimensionless time, t

Figure 4. Stiffness ratio of the system of differential equations obtained from the application of
method of lines to the exact model.

It can be seen, from Table 3, that when the explicit algorithm was used for the integra-
tion, the computations that used the approximate models were about 20-30 times faster
than those that used the exact one. This makes it advantageous for engineering purposes.
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6. Application of Approximate Models to Conditions of the Dynamical Growth
of Biofilm

Figure 5 presents the results of the dynamical simulations of the biofilm growth that
were obtained with the use of the exact model and the approximate models AM1 for three
different values of the substrate concentration in bulk liquid. Figure 5a,b illustrate the
average substrate concentration in the biofilm and biofilm thickness that were obtained for
the process of nitrite oxidation that was performed by the nitrifying bacteria. It can be seen
that very low values of biofilm thicknesses were obtained, a result which arises from the
low value of the maximum specific growth rate of this process. Due to low internal mass
transfer resistances, excellent accuracy of the approximate model was obtained. Figure 5c,d
present the results that were obtained from the glucose utilization by Pseudomonas aeruginosa
bacteria (the kinetic parameters of which are shown in Table 4). This process follows Monod
kinetics, so too does the nitrite oxidation process; however, the maximum specific growth
rate was over 50 times greater. Significantly larger biofilm thicknesses were obtained for this
than for the nitrite oxidation. The values of parameter ® at a steady-state condition (i.e., for
a sufficiently long time) equal ® = 70.1 for ¢§, = 0.01 kg/ms, ® = 56.5 for ¢§ = 0.02 kg/m3
and ® = 43.7 for ¢§ = 0.04 kg/m®. Due to the very large internal mass transfer resistances,
the accuracy of the approximate model AM1 was significantly lower than that of the nitrite
oxidation. The values of ® considerably exceeded the ones for which the distributions of
the dimensionless substrate concentration in biofilm were obtained with good accuracy
(see Figure 3). Figure 5d,e show the results that were obtained for phenol degradation by
Pseudomonas putida. In this process, good accuracy was obtained for the smaller values of the
substrate concentration in the liquid. The values of parameter ® at a steady-state condition
were significantly lower than those of the glucose utilization process, equaling ® = 9.76
for ¢§ = 0.01 kg/m>, & = 9.58 for ¢§ = 0.02 kg/m> and ® = 8.40 for ¢§ = 0.04 kg/m°.
The lower values of this parameter were related to the biokinetic parameters. The phenol
degradation was characterized by a smaller value of the specific growth rate and a larger
value of the growth yield coefficient than glucose utilization.

Table 4. Values of kinetic parameters for glucose utilization following Monod kinetic model [38].

k [1/h] K4 [kg/m3] wga [kg B/kg Al
0.4 0.002 0.34

Figure 6 presents the results that were obtained with the use of the AM2 models and
the results that were obtained with the use of MOL, for comparison. The glucose utilization
(Figure 6a—c) and phenol degradation (Figure 6d—f), with different values of substrate
concentration in the liquid, were taken into consideration. It can be seen that the highest
accuracy for both processes was obtained with the AM2-3 model, which makes it suitable
for modeling microbiological processes following various kinetic models.

Abbas and Eberl [39] derived an analytical approximate model of a microbiological
process in a biofilm by using an original method that was based on the homotopy analysis
method. The obtained substrate profile in the biofilm can be expressed as:

ook L2(z2—1) 5§
wpaDea 2 K+ CCA

4 (z) = c§ +

(72)

The above model was used afterwards by the quoted authors in order to determine
the diffusive flux into a biofilm and to obtain the equation of the biofilm dynamics. It can
be presented in the following way:

dLy —k caLy

: — kg L2 7
dt K derm (73)
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Figure 5. Comparison of average dimensionless substrate concentration (left column), biofilm

thickness obtained in the dynamical simulation of biofilm growth with the use of the exact model

(solid lines) and approximate model AM1 (dashed lines); (a,b) nitrite oxidation by nitrifying bacteria;

(c,d) glucose utilization by Pseudomonas aeruginosa; (e,f) phenol degradation by Pseudomonas putida.



Processes 2022, 10, 48

16 of 21

Biofilm thickness, L [um]

Biofilm thickness, L [um]

400 T A
a) _,./"'
€ E
= 300 . e
- |
17 / &
8  AM2-1 MOL g
£ 200 / ' g
£ S
£ S
1= £
S 100 S
s] s
0 L L L L o, L - L L - L
0 10 20 30 40 50 0 20 40 60 80 100
Time, t [h] Time, t [h]
300 160

e) [

AM2-1 e _AM?:S_ ______

120 - s e _____]

200

-
[e)]
o

N
N
o

20

Biofilm thickness, L,[pm]

60

40
Time, t [h]

30 40

[}
o

N
o

20
Time, t [h]

Biofilm thickness, L [um]

40 60 100
Time, t [h]

30 40 50 80

Figure 6. Illustration of the accuracy of the approximate model family AM?2; left (a—c)—glucose
utilization; right (d—f)—phenol degradation; top—c} = 0.04 kg/m?; middle—c} = 0.02 kg/m°;
bottom—c9 = 0.01 kg/m?.
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The disadvantage of the above model is that it can only be used for Monod kinetics
and for flat biofilm geometry. The simulations of the biofilm growth in the present study
were performed using the method of lines, model of Abbas and Eber]l and AM2-3. The
dynamical changes of the biofilm thickness are presented in Figure 7. The low accuracy of
the model that was formulated by Abbas and Eberl was caused by the large internal mass
transfer resistances that are present in the biofilm. It was shown in a previous study [13]
that solutions that are obtained using the homotopy analysis method require a very large
number of terms in the approximate series in order to achieve acceptable accuracy. The
approximate series in the solution that was formulated by Abbas and Eberl takes into
account only two terms. It can be seen that a significantly higher level of accuracy can be
obtained by using the model AM2-3 that is proposed in this study.

800 . 800 .
a) b) "._‘_ ..............................
5 600 £ 600 |
iy _f
3 ) ;
0 0
£ 400 / Abbas and Eberl (2011) & 400 ; \Abbas and Eberl (2011)
= £ "
= . £ :
S 200 MOL. S 200 MOL

0 0
0 10 20 30 40 50 0 10 20 30 40 50
Time, t [h] Time, t [h]
800 L I
c) '
600

400

200

Biofilm thickness, L [um]

0 10 20 30 40 50
Time, t [h]

Figure 7. Comparison of AM2-3 model and model of Abbas and Eberl [39] accuracy (MOL—method
of lines); (a) c§, = 0.01 kg/m3; (b) ¢, = 0.02 kg/ms; (c) ¢§ =0.04 kg/m3.
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7. Conclusions

This paper presents original approximate models for the dynamics of the microbi-
ological processes that occur in a biofilm that is formed on fine spherical particles. The
model that was based on the Laplace—Carson transform can be used for the modeling of
processes following any single-substrate kinetics. Good accuracy of the model was obtained
when it was used for low and internal mass transfer resistances. However, it could not be
applied to thick biofilms that are characterized by large internal mass transfer resistances.
It was shown that, for such conditions, significantly higher accuracy was obtained with
the use of the proposed models, based on the concept of the pseudo-stationary substrate
concentration profile in the biofilm.

The advantage of the dynamical biofilm growth model that is based on the pseudo-
stationary concept is that it can be modified by using any approximate analytical solution
of stationary substrate concentration profile. The approach that has been presented in this
study was compared with a previously published dynamical biofilm model. It was shown
that significantly higher accuracy was obtained by using the proposed model.

The application of the approximate models simplifies the computations significantly
and eliminates the stiffness from the exact model, solved by the method of lines. These
models can be used for the modeling and analysis of microbiological processes and for the
design of automatic control systems.
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Abbreviations

C Laplace—Carson transform of limiting substrate concentration in the biofilm
CZ, CNZ‘ mass concentration of limiting substrate in the biofilm (kg-m~3)

% mass concentration of limiting substrate in the liquid phase (kg-m~3)
D,a effective diffusion coefficient in biofilm (m2-h—1)

k maximum specific growth rate (h 1)

Ka saturation constant in kinetic equation (kg-m~3)

kot detachment rate coefficient (m—1-h~1)

K dimensionless saturation constant in kinetic equation

Ky, inhibition constant (kg-m—3)

Kiy, dimensionless inhibition constant in kinetic equation

Ly thickness of the biofilm (m)

Li,t derivative of thickness of the biofilm with respect to time

14 complex variable

A, TA substrate uptake rate (kg A/ m3-h)

YA 10 average substrate uptake rate (kg A/ m3-h)

B biomass growth rate (kg B/ m3-h)

B av average biomass growth rate (kg B/ m3 -h)

p bioparticle radius (r, = rg + Lp)

70 inert particle radius

SR stiffness ratio
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space coordinate in the biofilm, m
dimensionless coordinate in the biofilm
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dimensionless substrate concentration

degree of nonlinearity of the model
parameter defined by Equation (33)

biomass concentration in the biofilm (kg~m_3)
dimensionless time

Thiele modulus

modified Thiele modulus

biofilm phase

liquid (continuous) phase
steady-state value
biofilm surface

value obtained using the approximate model

average value
exact value
biofilm surfac
initial value

(5]

Appendix A. Derivation of Equation (12)

A microbiological process that is limited by a single substrate has been described by
Equations (1)—(4), as referred to in Section 2:

The derivatives of the substrate concentration with respect to x and t were transformed
according to the relationships (10):

After introducing Equation (10) to Equation (1), the following formula was obtained:

/ ~ ~
B zLy, odh  ady

0z+0t

It was then transformed to:

2 b
R 0°Cp N
e.
L2022

o2 2 &
J— + D A _ b (b Al
eA Liazz eA (ro + zLy) Lyoz ra(@a) (A1)
2 och  zLy, ock y
e P O (A2)

“Alro+zLp) Lyoz L, oz

The term D,a/ L% was then put outside the brackets:

08} D | 224

2L, odhy | (zLe)ly, oy Lf

2 N2
Lh 0z

(ro +zLy) 0z

~b
DEA 0z DeA Ta (CA) (A3)

Finally, after a simple rearrangement, Equation (12) was obtained.

Appendix B. Solution of the Exact Model Using the Method of Lines

The dynamic changes of the substrate concentrations in the biofilm have been de-
scribed by Equation (12). After introducing the dimensionless substrate concentration
(Equation (47)), the following formula was obtained:

a _
ot

cq dt Li

1dcy | Deald*n  on 2L, zLy
0z 0z \ (

)-ehm| @

1o + ZLh) DeA bt
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According to the method of lines, the space coordinate z was divided into N + 1
sub-intervals. The partial space derivatives in the Equation (A4) were approximated by
different quotients of the form:

on(zi)  mi—1i

0z Az

% (z; i1 — 21 + i
77(21) _ Ni+1 7712 Mi—1 (A5)
0z Az
where #; denotes the dimensionless concentration in the i-th node.
In this way, the equation of the limiting substrate balance in a dimensionless form was

transformed to the system of ordinary differential equations:

i _
e = ar L2

1 dcfy Dea | 41 — 21 +1i—1 | i — i1 2Ly zLy "
A A7 Tz (ot aly) T Dea o) @ TAL) (A6)

The index i in the system of Equation (A6) corresponds to the inner points in the

z range, i.e., excluding i = 0 (z = 0) and i = N+1 (z = 1). The expression for z = 0 was

formulated using the boundary condition at the inert carrier surface. By approximation of

the first derivative with respect to z by the forward difference quotient of the second order,
one obtains:

dipo _ 2+ 4m =3 _

dz 2Az
From Equation (B4), it arises that:

0 (A7)

4nq —
o =~ (A8)

The relationship (A8) was introduced to the Equation (A6) for i = 1. The boundary
condition 41 = #s was introduced to the differential equation for i = N. The system of N
ordinary differential equations was completed by Equation (13) of the biofilm thickness

dynamics.
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