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Abstract: Diabetes mellitus (DM) is a chronic metabolic disorder in which the pancreas does not
produce enough insulin or the body cannot effectively use it. The prevalence of diabetes is increasing
steadily, making it a global public health problem. Several serious complications are associated with
this disease. There are a number of different classes of antidiabetic medications. Interestingly, tradi-
tional medicine can also be used for the development of novel classes of hypoglycemic therapeutics.
This article summarizes an update of the potential of various important medicinal plants used in
the development of nutraceuticals for the management of diabetes mellitus, and a proposal of their
biological mechanisms.
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1. Introduction

Diabetes mellitus (DM) and its management constitute a large social, financial, and
health system burden across the world. The prevalence of diabetes in 2017 was estimated
to be ~451 million diabetic persons (age range 18–99 years) worldwide; this figure is
expected to increase to 693 million by 2045 [1]. The most common manifestation of DM
is hyperglycemia [2,3]. Vascular complications of diabetes constitute the main cause of
mortality in diabetic patients [4–6]. In 2017, approximately 5 million deaths worldwide were
attributable to diabetes (age range 20–99 years) [1]. Type I diabetes is a result of the defects
in insulin secretion caused by inherited and/or acquired deficiency in the production of
insulin by the pancreas (Figure 1). Type II diabetes is a result of the ineffectiveness of
insulin, caused by insulin resistance in the liver and peripheral tissues. As type II diabetes
progresses, reduced β-cell mass and dysfunction, impaired insulin signaling, altered lipid
metabolism, subclinical inflammation, and increased oxidative stress may take place [7,8]
(Figure 1).

Diabetes causes tissue damage that may be attributed to increased oxidative stress,
abnormal glucose levels, altered lipid metabolism, and subclinical inflammation [9,10].
These and other unknown mechanisms lead to additional micro- and macro-complications,
such as cardiovascular complications (including angiopathy and high blood pressure),
nephropathy, retinopathy, neuropathy, skin ulcers, and weight gain [5,6,9,11–13].
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Figure 1. Classification of diabetes mellitus.

With the exception of very specific situations, clinically effective antidiabetics do not
cure DM, but rather help with its management and/or prevention [14]. The available classes
of antidiabetics are mainly synthetic, and are associated with high costs and numerous side
effects [15]. Nevertheless, the therapeutic potential of natural remedies should be explored
in the development of novel classes of hypoglycemic drugs. Historically, plants have
often been considered as sources for drug development programs. Many pharmaceuticals
commonly used in traditional medicine today are structurally derived from medicinal
plant compounds.

According to Abbas et al. (2019) [16], medicinal plants can produce molecules that
constitute potential candidates for DM treatment. These molecules act as dipeptidyl
peptidase-4 enzyme, α-glucosidase enzyme, and SGLT2 inhibitors.

Jacob and Narendhirakannan (2019) [17] listed a total of 81 medicinal plants reputed for
their antidiabetic, anti-hyperglycemic, hypoglycemic, anti-lipidemic and insulin-mimetic
properties in their review. In another review, Gupta (2018) [18] cited active phytocon-
stituents isolated from 22 potent antidiabetic plants; he also mentioned the plant parts
containing the active molecules that might be useful for drug development.

Natural product libraries constitute a valuable and rich source of ligands for nuclear
receptors considered to be promising therapeutic agents. By uncovering the regulatory
mechanisms and transcriptional targets of the peroxisome proliferator-activated receptors
(PPARs) and other related receptors, it should be possible to provide a comprehensive
insight into the pathogenesis of DM as a tool for rational drug design [19].
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A natural screening strategy would be beneficial for antidiabetic research programs.
In fact, this review highlights several known plants and their secondary metabolites that
are effective in the management and control of diabetes (Table 1).

Table 1. Proposed biological mechanisms underlying the actions of medicinal plants on diabetes.
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Table 1 illustrates the biological mechanisms of medicinal plants on diabetes, as well
as a list of bioactive compounds involved in these mechanisms.

2. Flavonoids

Flavonoids are a large family of compounds sharing a common 15-carbon skeleton,
which consists of two phenyl rings and a heterocyclic ring [20,21]; they are secondary
metabolites synthesized by plants and fungi [20,21]. Flavonoids may be divided into
subclasses, such as anthocyanidins (e.g., cyanidin), flavan-3-ols (e.g., catechin, epicate-
chin, epicatechin gallate, epigallocatechin gallate, thearubigins, proanthocyanidins, and
theaflavins), flavanones (e.g., naringenin and eriodictyol), flavonols (e.g., quercetin and
myricetin), and isoflavones [22] (Table 2).

Table 2. Subclasses, chemical structures, and examples of flavonoids present in plants.

Flavonoids Subclasses Chemical Structure Examples
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Table 2. Cont.
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Flavonoids are constituents of fruits, vegetables, and herbs, particularly found in
chocolate, grapes, berries, apples, soybeans, soy foods, onions, kale, broccoli, citrus
fruits, juices, and teas (especially green and white) [22]. Many beneficial effects have
been attributed to flavonoids, including the improvement of vascular function and blood
pressure reduction (e.g., epicatechins), improvement of insulin sensitivity (e.g., epicate-
chins, polyphenols) and secretion (e.g., quercetin), and platelet activity reduction (e.g.,
epicatechins) [23–25] (Figure 2). The antidiabetic effect of flavonoids is due to their regu-
lation of several pathways’ molecular targets, including reducing apoptosis, improving
the proliferation of pancreatic β-cells, promoting insulin secretion, regulating glucose
metabolism and hyperglycemia, enhancing glucose uptake in the skeletal muscle and
adipose tissues, and decreasing insulin resistance [25]. Moreover, flavonoids have been
shown to be beneficial for glucose homeostasis [26]. The administration of this flavonoid
was also shown to attenuate fasting and postprandial blood glucose levels in diabetic mice
and rats [27].

Quercetin inhibits aldolase reductase (AR) in diabetic patients; it exists in cabbage, red
wine, buckwheat tea, green tea, apples, berries, onions, beans and nuts, Ginkgo biloba, St.
John’s wort, and American elder [28]. Quercetin has been reported as a natural immunity
booster with α-glucosidase-inhibitory activity in vitro [29,30]. Furthermore, quercetin re-
duces intestinal glucose absorption by inhibiting GLUT2, and decreases lipid peroxidation;
in addition, according to [24], it improves catalase (CAT), superoxide dismutase (SOD), and
glutathione peroxidase (GPx) levels, and stimulates GLUT4 expression in skeletal muscle.

Furthermore, the beneficial effects of hesperidin and naringin have been reported
in the treatment of diabetes through the regulation of the hepatic glucose metabolic en-
zymes involved in glycolysis and gluconeogenesis [31]. Another flavonoid, berberine,
lowers blood insulin levels by enhancing insulin sensitivity and by enhancing GLUT1
expression and promoting its activity [32,33]. Berberine also improves insulin secretion
in patients with impaired β-cell function [34,35]. Apigenin-6-C-β-fucopyranoside was
shown to reduce blood glucose levels and to improve insulin secretion in hyperglycemic
rats [36–38]. Another flavonoid, kaempferitrin, stimulates GLUT4 translocation and syn-
thesis in adipocytes [39–41].
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Figure 2. Mechanism of action of flavonoids on diabetes.

Naringin and hesperidin have been shown to attenuate hyperglycemia-mediated oxida-
tive stress and the production of pro-inflammatory cytokines in high-fat diet/streptozotocin
(HFD/STZ)-induced diabetic rats [42,43]. However, the anthocyanin cyanidin-3-O-β-
glucoside has been reported to increase hepatic glutamate–cysteine ligase catalytic (Gclc)
expression by increasing cAMP levels in order to activate protein kinase A (PKA). PKA
upregulates cAMP response element-binding protein (CREB) phosphorylation to promote
CREB–DNA binding and increase Gclc transcription; this results in a decrease in hepatic
ROS levels and pro-apoptotic signaling [44].

Fisetin is a dietary flavonoid characterizing strawberry, apple, persimmon, grape,
onion, and cucumber [45]. This molecule induced improvement in plasma insulin and
antioxidant levels in diabetic rats; furthermore, Prasath et al. (2013) [46] reported that it
decreased the levels of blood glucose and glycated hemoglobin (HbA1c).

Procyanidins and cyanidins found in berries improved insulin resistance and upregu-
lated GLUT4 in obese and diabetic mice [47]. Pelargonidin decreased the levels of glucose
and thiobarbituric-acid-reactive substances (TBARSs), as well as increasing SOD levels, in
STZ-induced diabetic rats [48]. Citrus species contain diosmin (flavonoglycoside), which
exerts proven anti-hyperglycemic activity in streptozotocin–nicotinamide-induced dia-
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betic rats; in fact, it enhances the activity of some glycolytic enzymes—mainly hexokinase
and glucose-6-phosphate dehydrogenase—while it inhibits the gluconeogenic enzymes
glucose-6-phosphatase and fructose 1,6-bisphosphatase [49].

Moreover, preventive effects against hyperglycemia and dyslipidemia induce nephropathy,
neuropathy, liver damage, and cardiovascular disorders, which have been attributed
to rutin; this flavonoid is also able to inhibit the accumulation of sorbitol, ROS, and
advanced glycation end-products (AGEs) [50]. In fact, the elevated levels of glucose
form covalent adducts with plasma proteins through a non-enzymatic process known as
glycation [51]; this glycation leads to the production of AGEs, which are associated with
DM complications [52].

Rutin is believed to decrease carbohydrate absorption from the small intestine by
pancreatic β-cells, to stimulate insulin secretion, and also to increase tissue glucose up-
take [53]. Hesperidin reverses hyperglycemia and hyperlipidemia by downregulating
free radical generation [54]. Naringenin not only inhibits intestinal α-glucosidase activity,
but also restores the lipid profile changes and improves antioxidant status and hepatic
function markers, as reported by Priscilla et al. (2015) [55]. Specifically, the risk of diabetes
is inversely correlated with the intake of flavan-3-ols (monomers and dimmers only) and
flavonol [56]. Daily supplementation of flavan-3-ols and isoflavones (dark chocolate) to
type 2 diabetics significantly improved insulin sensitivity and reduced the risk of coronary
heart disease in postmenopausal women [57]. Myricetin significantly ameliorates insulin
resistance, in addition to exerting antioxidant, anti-inflammatory, and aldose-reductase-
inhibitory actions [58]. Administration of kaempferol—an abundant flavonoid in berries,
Gingko biloba, vegetables, and grapes—to diabetic rats reverted the levels of blood glucose,
insulin, and enzymatic and non-enzymatic antioxidants [59].

2.1. Isoflavones

Flavonoids in the ethanolic extract of Sophora flavescens roots (Sf -EtOAcà) improved
glucose tolerance and reduced hyperglycemia. The insulin levels were also restored in
diabetic mice after treatment, further activating GLUT4 translocation, which should be
modulated by the AMPK pathway [60]. Dietary intake of genistein significantly improved
the lipid profile, plasma insulin, and hyperglycemia in obese diabetic mice [61].

2.2. Flavones

Apigenin was efficient in overcoming hyperglycemia, and reduced the levels of antiox-
idants such as SOD, CAT, and GSH in alloxan-induced diabetic rats [62]; it also enhanced
GLUT4 translocation, suggesting efficacy in glucose reduction and β-cell preservation.
Chrysin, which is commonly found in honey, pollen, fruits, and other medicinal herbs,
was demonstrated to be able to reduce the risk of secondary complications of diabetes—
such as neuropathy and nephropathy—in high-fat diet/streptozotocin-induced diabetic
rats, in addition to improving insulin secretion and reducing glucose levels and lipid
peroxidation [63]. Baicalein isolated from the roots of Scutellaria baicalensis Georgi and
fruits of Oroxylum indicum (L.) Benth was found to significantly improve hyperglycemia,
insulin levels, and glucose tolerance, in addition to lowering HbA1c levels [64]. Moreover,
silybin—a constituent of milk thistle (Silybum marianum (L.) Gaertn)—has been demon-
strated to have beneficial effects against diabetic complications—such as neuropathy and
nephropathy—due to its antioxidant nature; it is also believed to have PPAR-γ agonist
effects [65].

3. Saponins

Saponins are naturally occurring glycosides typically obtained from a variety of
plants [66,67]. The complex structure of saponins is due to the variation in the structure of
the aglycone, the nature of the side chains, and the position of attachment of these moieties
on the aglycone [68] (Figure 3).
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Figure 3. The complex structure of saponin and its derivatives.

Saponins have been reported to exhibit many pharmacological properties (Figure 4),
including antidiabetic effects via the induction of hypoglycemia and the reduction in
plasma triglyceride levels [69,70]. According to Patel et al. (2012) [71], saponins from B.
laciniosa seeds decreased blood glucose levels in diabetic rats.

Furthermore, saponins have been shown to attenuate obesity by reducing weight
gain and increasing adiponectin levels in high-fat-diet-induced obese rats [72]. Choi et al.
(2017) [73] reported that saponins improve not only glucose tolerance and hypolipidemia,
but also pancreatic damage; according to these authors, ginseng extracts containing saponin
inhibited cytokine-induced apoptosis in the pancreatic β-cell line MIN6N8. Similarly,
saponins from red ginseng (P. ginseng) inhibited apoptosis of pancreatic β-cells induced by
cytokines [74]. These findings are in accordance with those of Kim et al. (2009) [75], who
reported that another saponin from ginseng (ginsenoside Rg3) not only improved islet cell
function, but also debilitated apoptosis in murine islets. On the basis of these results, it
seems that the treatment of chronic diabetic rats with saponin may attenuate damage to the
pancreatic islet cells.

The ability of saponin to reduce elevated plasma blood glucose makes it an excellent
candidate for the treatment of diabetes mellitus. Saponins act as hypoglycemic molecules
through the restoration of insulin response [76,77], improvement in insulin signaling [78], in-
crease in plasma insulin levels, and induction of insulin release from the pancreas [79]; they
are also able to inhibit disaccharide activity [80–82], gluconeogenesis [83], glucosidase activ-
ity [84], and mRNA expression of glycogen phosphorylase and glucose-6-phosphatase [85].
Saponins also increase the expression of GLUT4 [86] and activate glycogen synthesis [33].
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Figure 4. Properties and effects of saponins in diabetes.

Elekofehinti et al. (2014) [87] reported specific lipoprotein lipase/peroxisome proliferator-
activated receptor (PPAR)-γ/phosphatidylinositide 3-kinase (PI-3-K)/protein kinase B
(Akt) activation, adiponectin gene upregulation, fatty-acid-binding protein 4 repression
(FABP4), and glucose transporter type 4 (GLUT4) membrane exocytosis in experimental
animals following saponin treatment.

Reactive oxygen species (ROS) are a direct consequence of hyperglycemia in dia-
betes mellitus [88,89]. ROS are correlated with oxidative stress, which plays an important
role in the initiation and progression of diabetic neuropathy [90,91]. It has been reported
that saponins possess antioxidant properties in both in vitro and in vivo models [77,92,93].
These properties are due to the presence of many -OH groups in the structure of saponin.
This structural particularity is responsible for the prevention of ROS formation in diabetes.
Moreover, saponins can induce antioxidant enzymes such as catalase and superoxide
dismutase (SOD), which are generally lowered in diabetic animal models [92,94–96]. The in-
duction of antioxidant enzymes reduces the production of ROS in diabetes. The increase in
blood glucose induces an increase in the levels of serum lipids; such an elevation represents
a risk factor for coronary heart disease [97]. Saponin modulates the expression of many
genes associated with lipid metabolism [98] and, consequently, regulates hyperlipidemia
(through the modulation of leptin, adiponectin, etc.) and inhibits insulin resistance [98].
Saponins also act by enhancing the expression of PPAR—a key transcriptional factor in adi-
pogenesis regulation [78,99,100]—thus reducing triglyceride levels and serum cholesterol
levels [101,102].

Obesity is induced by a variety of environmental and genetic factors, and is correlated
with the prevalence of diabetes and cardiovascular disease. In this context, it has been
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reported that saponins from Camellia sinensis are able to suppress the appetite signals in the
hypothalamus through the stimulation of the capsaicin-sensitive sensory nerves—probably
the vagal afferent nerves—or enhancement of 5-HT release from the ilea, leading to reduced
food intake and body weight gain [103]. Furthermore, platycodin saponins reduced obesity
in rats by inhibiting pancreatic lipase [104]. Another study showed that glycyrrhizic acid—a
triterpenoid saponin from Glycyrrhiza glabra roots—induced lipoprotein lipase expression
in non-hepatic tissues, resulting in decreased tissue lipid deposition [105].

4. Examples of Plants with Antidiabetic Properties
4.1. Fenugrec (Trigonella Foenum-Graecum)

Diosgenin is a steroid of fenugreek that alleviates symptoms related to diabetes mel-
litus, and other diseases [106]. Several scholars have reported that diosgenin stabilizes
insulin and glucose in induced diabetic animals. A study by Kalailingam et al. (2014) [107]
showed that diosgenin decreased glycolytic enzyme glucokinase concentrations in STZ-
induced diabetic rats. Following 30 days of treatment with diosgenin, an increase in the
number of insulin granules and β-cells was marked in STZ-induced diabetic rats. Ad-
ditionally, antioxidant enzyme concentrations, glucose-6-phosphatase, pancreatic β-cell
numbers, serum HDL, alanine transaminase, glycated hemoglobin, serum LDL, and total
cholesterol were stabilized following 30 days of controlled dosage of diosgenin. According
to Vijayakumar et al. (2005) [108], fenugreek seed extract was commensurable with insulin
in alloxan-induced diabetic mice. The fenugreek seed extract positively impacted the
intraperitoneal glucose absorption in normal mice.

Fenugreek seeds contain the amino acid 4-hydroxy isoleucine, which has insulinotropic
and antidiabetic properties [109,110]; this amino acid has been reported to directly stimulate
pancreatic cells. The fenugreek seed owes its hypoglycemic effect to delaying gastric
emptying, slowing carbohydrate absorption, inhibiting the transport of glucose, increasing
the number of erythrocyte insulin receptors, and modulating the utilization of peripheral
glucose [111,112].

4.2. Date Palm (Phoenix dactylifera L.)

Date palm pits and fruit extracts inhibit the activity of α–amylase—a digestive enzyme
secreted from the pancreas and salivary gland [113]. α–Amylase is involved in the hydroly-
sis of starch/polysaccharides into disaccharides and oligosaccharides which, in turn, are
broken down into glucose [113]. Inhibition of α-amylase would diminish the breakdown of
starch in the gastrointestinal tract. The α-amylase inhibitors are the molecular target for oral
hypoglycemic agents such as acarbose prescribed for the treatment of type II diabetes. Date
palm varieties—especially the Kentichi variety—inhibit key enzymes related to diabetes
and obesity. The methanol extracts of all organs had the highest activity; this result is
consistent with the high phenolic and flavonoid contents. In this context, Shobana et al.
(2009) [114] reported that the phenol-rich plant extracts are characterized by an important
potential to inhibit the α-amylase enzyme. In fact, phenolic compounds—and especially
flavonoids—are potential antidiabetics, inhibiting α-amylase activity [115].

4.3. Garlic

The hypoglycemic effects of Bulbus allii sativi have been demonstrated in vivo. The
oral administration of an aqueous, ethanol, petroleum ether, or chloroform extract, along
with garlic essential oil, lowered blood glucose levels in rabbits and rats [116–119]. Allicin
administered orally to alloxan-induced diabetic rats lowered blood glucose levels and
increased insulin activity in a dose-dependent manner [118]. Garlic extracts appear to
enhance insulin production, while allicin seems to protect insulin against inactivation [120].
The ability of Allium sativum to reduce blood glucose levels has been reported in alloxan-
and STZ-induced diabetic rats and mice [121]. S-allyl cysteine sulfoxide (alliin,)—a sulfur-
containing amino acid in garlic—is able to reduce diabetes in rats almost to the same
extent as glibenclamide and insulin [122]. The administration of garlic also reduces blood
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glucose levels in a dose-dependent manner. An active ingredient (allyl propyl disulfide) in
onions is reputed for its antidiabetic properties [123]. A compound called S-methyl cysteine
sulfoxide (SMCS), isolated from onions, showed effects similar to those of insulin in a
group of diabetic rats [124]. The hypoglycemic effect of garlic has been mainly attributed
to allicin-type compounds [120,125]; it is correlated with the sulfur compounds di (2-
propenyl) disulfide and 2-propenyl propyl disulfide. The mechanism of hypoglycemic
action probably involves direct or indirect stimulation of insulin secretion [126]. Moreover,
these disulfide compounds could have an effect of sparing insulin from -SH inactivation
by reacting with endogenous thiol-containing molecules such as cysteine, glutathione,
and serum albumins [127]. The garlic extract might enhance glucose utilization, since it
significantly decreased the blood glucose levels in glucose-loaded rats. This fact could be
justified by the potentiation of the effect of insulin due to an increase in pancreatic insulin
secretion from β-cells, or its release from bound insulin.

4.4. Cumin (Cuminum cyminum)

In a glucose tolerance test conducted in rabbits, cumin significantly increased the area
under the glucose tolerance curve and the hyperglycemic peak. A methanolic extract of
cumin seeds reduced the blood glucose, inhibited glycosylated hemoglobin, creatinine,
and blood urea nitrogen, and improved serum insulin and glycogen (liver and skeletal
muscle) content in alloxan- and streptozotocin (STZ)-induced diabetic rats. Some collateral
benefits—such as decreased creatinine and improved insulin production, thus preventing
some microvascular complications—are implicated in the pathogenesis of diabetes. It was
demonstrated that aqueous cumin extract prevented in vitro glycation Cf total soluble
protein and α-crystallin, and delayed the progression and maturation of STZ-induced
cataracts in rats. Protein glycation interferes with their functions by disrupting their
conformation, which alters their enzymatic activity. AGEs form intra- and extracellular
connections with proteins, but also with some other endogenous key molecules, such as
lipids and nucleic acids, contributing to the development of diabetic complications. Protein
glycation and the formation of advanced glycation end-products (AGEs) play a key role in
the pathogenesis of diabetic complications, such as retinopathy [51].

Furthermore, cumin prevented the loss of chaperone activity in diabetic rats, and also
attenuated the structural changes of α-crystallin in the lens [128,129]. Deepak (2013) [130]
reported that caraway oil showed anti-hyperglycemic activity in alloxan-induced diabetic
rats; however, no change was registered in basal plasma insulin concentration, indicating
that this pharmacological activity is not associated with insulin secretion.

4.5. Olive (Olea europea L.)

Olive leaves have been widely used in traditional medicine as remedies for several
diseases, especially in Mediterranean countries. Olive leaves are rich in bioactive com-
pounds reputed for their beneficial effects in metabolic syndrome, dyslipidemia, and
hypertension [131,132]. The most interesting are polyphenols, such as oleuropein (OLE),
hydroxytyrosol, and tyrosol; these compounds can prevent diseases characterized by
oxidative stress, such as DM [133].

Aqueous and ethanol extracts of olive leaves exert antioxidant effects in vivo, and have
hypocholesterolemic proprieties [134]. In a murine diabetic model, OLE administration at
concentrations of 20, 40, and 60mg/kg daily induced a significant blood glucose decrease.
Olive leaf extracts containing more than 35% OLE induced a significant improvement in
hyperglycemia and impairment of glucose tolerance in Tsumura Suzuki obese diabetes
(TSOD) mice, according to Annunziata et al. (2018) [135]. Furthermore, OLE administration
increased serum insulin levels [136].

Ranieri et al. (2019) [137] reported that OLE treatment attenuated Cd-induced actin
S-glutathionylation, thereby stabilizing actin filaments. OLE may serve as a potential
adjuvant against cadmium-induced nephrotoxicity, which is one of the most important
DM complications.
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Benlarbi et al. (2020) [138] reported that olive leaf extract and OLE could be used to
prevent complications from diabetes; according to the same authors, this compound was
able to protect retinal cells against the toxic effects of glucose by improving the viability
of photoreceptors. Thus, olive leaf extracts could be exploited as nutraceuticals that
provide health benefits mainly in the prevention and/or treatment of diabetes. Moreover,
Centrone et al. (2020) [139] highlighted the importance of valorizing olive byproducts and
wastewater, which can be considered as sources of bioactive compounds acting individually
or synergistically to exert beneficial effects on human health.

4.6. Polysaccharides

Polysaccharides constitute a major group of organic macromolecules formed by the
polymerization of simple sugar units; they are produced in plants as primary metabolites
with structural and energetic roles [140]. The characteristics and metabolic behavior of
polysaccharides through the mammalian digestive process explain their valuable nutritional
and health effects [141].

Patel et al. (2012) [142] cited many medicinal plants with hypoglycemic potential
and belonging to various families (Leguminosae, Lamiaceae, Liliaceae, Cucurbitaceae,
Asteraceae, Moraceae, Rosaceae, and Araliaceae); according to the same authors, Allium
sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum-graecum, Momordica cha-
rantia, and Ficus benghalensis were the most interesting plants; their review reported some
new bioactive compounds isolated from plants such as roseoside, epigallocatechin gallate,
beta-pyrazol-1-ylalanine, cinchonain-Ib, leucocyanidin 3-O-β-d-galactosyl cellobioside,
leucopelargonidin-3-O-α-L rhamnoside, glycyrrhetinic acid, and others that were more
efficient than conventional hypoglycemic agents.

A number of in vivo studies in model systems such as mice, rats, rabbits, and humans
have reported that complex polysaccharides have positive effects in decreasing the risk of
hypercholesterolemia, as well as in better management of this disorder [143,144]. Consum-
ing starches of legumes could have a positive effect on glycemia, because of the persistent
effect on post-prandial glycemia, with no sudden increases. Furthermore, this may prevent
both post-prandial hyperglycemia and late hypoglycemia [145]. Plant polysaccharides,
through several mechanisms, act to increase the levels of serum insulin, reducing the blood
glucose levels and improving glucose tolerance. It has been reported that many polysac-
charides have beneficial effects in the treatment of hypoglycemia [146]. Some examples of
plant polysaccharides’ antidiabetic effects are given in Table 3.

Table 3. Antidiabetic effects of some plant polysaccharides.

Plant Type of Polysaccharides Antidiabetic Effect Reference

Tea Polysaccharides
High α-glucosidase-inhibitory activity in vitro and also

in vivo (mice)
Beneficial for hyperglycemia treatment in diabetes.

[147]

Basil seed
(Ocimum basilicum) Gum

Improvements in body weight, serum electrolytes, and
hematological indices, along with increased

pancreatic islets.
[148]

Fenugreek seeds
(Trigonella foenum-graecum L.) Fibers

The addition of the fiber-rich subfraction of fenugreek
seeds to insulin treatment decreased hyperglycemia,

glycosuria, plasma glucagon, and somatostatin levels in
diabetic dogs.

[149]

Pumpkin Protein-bound polysaccharide
(PBPP)

PBPP increased serum insulin, reduced the blood glucose,
and improved glucose tolerance in diabetic rats in a

dose-dependent manner.
[150]

Wheat Arabinoxylan Postprandial glucose and insulin responses improved upon
ingestion of arabinoxylan-rich fiber in human subjects. [151]

Oatrim β-glucan oatrim fibers improve postprandial insulin release and
glucose levels in normal and overweight persons. [152]
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Several polyherbal formulations have been tested over the years for their antidiabetic
potential. In one representative study, the hypoglycemic effect of a polyherbal formula-
tion consisting of Tribulus terrestris, Piper nigrum, and Ricinus communis, was established
in alloxan-induced diabetic rats. Four weeks of treatment with this polyherbal formula-
tion (100, 200 and 300 mg/kg) and glibenclamide lowered elevated blood glucose levels,
which were reported to be high in diabetic controls [153]. The standard drug used was
glibenclamide 10 mg/kg, and the polyherbal suspension at a dose of 400 mg/kg exhibited
significant activity.

Since oxidative processes are the main cause of several metabolic diseases and age-
related degenerative disorders, herbs and spices as sources of antioxidants are of great
interest for the management of many diseases, such as DM [154].

Mahajan et al. (2018) [155] reported the antidiabetic effects of a polyherbal formulation
containing alcoholic extract of rhizomes of Curcuma caesia, Roxb whole plant of Evolvulus
alsinoides, seeds of Citrullus lanatus, leaves of Gymnema sylvestre, stems of Tinospora cordifolia,
fruits of Withania coagulans, and seeds of Caesalpinia bonduc on normal and alloxan-induced
diabetic rats, and which is mainly rich in flavonoids, triterpenoids, steroids, and alkaloids.
These molecules act through increasing the insulin level or inhibiting the intestinal absorp-
tion of glucose. The administration of this polyherbal formulation may induce chemical or
pharmacological interactions; according to the same authors, the weight gain and decrease
in blood glucose levels were less than that achieved by the standard drug (glibenclamide
10 mg/kg). Moreover, the prepared oral polyherbal suspension was safe.

Vuksan and Sievenpiper (2005) [156] claimed that, among herbs, ginseng (Panax spp.)
is the most widely used as a model to illustrate the challenges of reproducible clinical
efficacy. There is no sufficient evidence to claim herbal indications for DM. There is a need
for standardization in correlating herbs’ composition with their efficacy.

Furthermore, various vitamins and micronutrients play significant roles in the treat-
ment of diabetes. For example, vitamin C—or ascorbic acid—is a pre-fermented antioxidant
involved in several non-enzymatic reactions. Moreover, it is a donor of electrons that ef-
ficiently scavenges free radicals (ROS) and inhibits lipid peroxidation; it also promotes
regeneration of vitamin E and reduced glutathione [157]. In animals, vitamin C also reduces
diabetes-induced sorbitol accumulation and lipid peroxides in erythrocytes [158].

Vitamin C supplementation impacted formamidopyrimidine DNA glycosylase (FPG)
(↓20 mg/dL), and tended to reduce HbA1c levels [159]. Moreover, this supplementation
also reduced total cholesterol and LDL concentrations, and tended to improve triglyc-
erides [160].

A daily uptake of vitamin C at a dose of 1000 mg may help to prevent or reduce the
development of cataracts and nerve disorders, which are serious complications of diabetes;
moreover, it also inhibits protein glycosylation, associated with the development of the
long-term complications associated with diabetes [161]. Considering the implication of
oxidative stress in the physiopathology of DM—and especially in the pathogenesis of
β-cell dysfunction—antioxidant compounds extracted from plants could be helpful in the
management of diabetes and its complications [162].

Examples of plant compounds with specific effects will be mentioned as follows:

� Vanadium is found in all cells; it acts as an “insulin mimetic”; it is found in mushrooms,
shellfish, black pepper, parsley, dill seed, beer, wine, and grains. According to animal
and in vitro studies, vanadium has insulin-like effects in the liver, skeletal muscle,
and adipose tissue [163]; moreover, it stimulates glucose uptake—either directly, or by
inhibiting the phosphotyrosine phosphatase enzyme system—thus enhancing insulin
receptor phosphorylation and insulin receptor (IR)–tyrosine kinase interaction [164];

� ω-3 Fatty acids, which are abundant in some plants—such as sunflower and safflower—
have been reported to improve insulin resistance in animal models [165].

Despite an indirect implication in the mechanisms of diabetes, magnesium has been
reported to intervene in the protection against complications of diabetes; the recommended
daily intake is 1000 mg/day [166]. Complementary approaches such as the use of medicinal
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plants, herbs, and/or formulations and ω-3 polyunsaturated fatty acids (PUFAs) with
hypoglycemic and hypolipidemic activities can be used as alternatives to oral hypoglycemic
agents (OHAs), which are reputed for their side effects [167].

� Legumes are rich in fiber, protein, and nutrients, and are slowly digested; they
produce relatively small blood glucose increases. Identifying the factors determining
starch digestibility may be useful in the management of diabetes and disorders of
carbohydrate metabolism [168]. Centrone et al. (2020) [169] reported that mice fed
with a chickpea-supplemented diet displayed lower levels of glycemia.

5. Conclusions

This review attempted to highlight the most important preventive and curative anti-
hyperglycemic effects of plants and some of their constituents. All of the present data testify
to the therapeutic potential of plants with antidiabetic properties, and of their constituents,
which could be exploited as nutraceuticals to alleviate the symptoms of diabetes and
improve quality of life. However, this strategy depends on many parameters—such as
safety, long-term adverse effects, and toxicity—as well as supplementation studies and
clinical trials in humans in order to prove the required positive impacts on human health.
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