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Abstract: The chemical co-precipitation method was used to prepare magnetically separable Fe–Mn
oxide composites, and the degradation of p-chloroaniline (PCA) using MnFe2O4 activated peroxy-
disulfate (PDS). The MnFe2O4 catalyst exhibited highly catalytic activity in the experiments. XRD,
FTIR, SEM and TEM were used to characterize the catalytic materials. MnFe2O4 calcined at 500 ◦C
was more suitable as a catalytic material for PCA degradation. The elevated reaction temperature
was beneficial to the degradation of PCA in neutral pH solution. The reaction mechanism of the
MnFe2O4 catalyzed oxidative degradation of PCA by PDS was investigated by free radical quenching
experiments and XPS analysis. The results showed that sulfate radicals (SO4

•−), hydroxyl radicals
(•OH) and singlet oxygen (1O2) may all be participated in the degradation of PCA. XPS spectra
showed that the electron gain and loss of Mn2+ and Fe3+ was the main cause of free radical generation.
The possible intermediates in the degradation of PCA were determined by HPLC-MS, and possible
degradation pathways for the degradation of PCA by the MnFe2O4/PDS system were proposed.

Keywords: Fe–Mn oxide composites; persulfate; p-chloroaniline degradation; reaction mechanism

1. Introduction

In the past decade, the emission of inorganic and organic contaminants from various
industries has led to the degradation of ecosystems [1]. Dyes [2], pesticides [3] and antibi-
otics [4] have received more attention. Among them, p-chloroaniline (PCA) is often used in
industry, mainly as an intermediate for the synthesis of azo dyes and chromophenols but
also as an intermediate in pharmaceuticals (e.g., chlordiazepoxide, fenadine) and pesticides
and as a colorant in the production of color cinema films [5].However, PCA is highly
irritating and can enter the human body through the skin, seriously harming the immune,
nervous and endocrine systems [6]. Therefore, the direct discharge of wastewater contain-
ing PCA can cause environmental pollution, and the study of an effective method for the
treatment of PCA-containing wastewater is essential. Ali et al. [3] found the adsorption
of fenuron pesticide adsorption on multi-walled carbon nanotubes and their removal in
water. Kenawy et al. [2] developed a nano-composite material and tested their adsorption
capacity for dyes in aqueous environments. However, adsorption does not realize the min-
eralization of organic substance [7]. The choice of advanced oxidation technology allows
for the simultaneous decomposition and mineralization of organic matter.

Advanced oxidation technology based on sulfate radical has received extensive atten-
tion [8,9]. Sulfate radicals (SO4

•−) are generated by advanced oxidation technology based
on persulfate (PS). Its standard oxidation potential is 2.5–3.1 V. Persulfates include permono-
sulphate (PMS) and peroxydisulfate (PDS). The standard redox potential is higher than that
of •OH. The •OH standard oxidation potential is 1.9–2.7 V [10]. The oxidation principle is
also similar to •OH, which is stable for a longer time. Advanced oxidation is performed
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with highly reactive electron-catalyzed PS, which allows for rapid decomposition of organic
matter until final mineralization [11].

Among the many activation methods, transition metal activation is of great interest
because it is less energy intensive, cheaper and more reusable than other activation methods
(e.g., photo-activation, thermal activation, etc.). Transition metal activated PS are generally
divided into two main categories, one is the activation of PS by transition metal ions, such
as Ce2+, Cu2+, Ag+, etc., called homogeneous activation. The other is the activation of PS
by solid metals, metal oxides (zero-valent iron, etc.), called non-homogeneous activation.
Non-homogeneous catalysts rely on their surface coordination of metal ions to activate PS
and provide more active sites [12,13]. Li et al. [14] found that CuO/PS system showed good
removal effect on ofloxacin and cefadroxil in water with 92% and 80% removal, respectively.
Superoxide radical (O2

•−) and SO4
•− are the main active substances to remove them.

In the last few years, spinel ferrites (e.g., CuFe2O4, CoFe2O4, MnFe2O4, etc.) have been
widely considered by researchers. Compared to other transition metals, iron is widely used
because it is cheap and easy to obtain, less polluting to the environment and effectively
activates PS [15,16]. In addition, because spinel ferrite is easily separated from the reaction
solution, it can be re-used in the catalytic process [17]. Therefore, it is significant to focus
on the PS catalyzed by spinel ferrites. [18]. Considering the market price of metals and
heavy metal leaching, which causes secondary pollution to the environment, MnFe2O4
was introduced into the catalytic PS system as a catalyst, and the results showed good
catalytic performance. Deng et al. [19] also found that MnFe2O4 activated PMS could
degrade Orange II in water.

Herein, the chemical co-precipitation method was used to prepare magnetically sepa-
rable Fe–Mn oxide composites. MnFe2O4 catalyst coupled with PDS can actively degrade
PCA over a wide pH and temperature range. Furthermore, the effect of free radical gener-
ation on PCA degradation in MnFe2O4/PDS system was investigated. Finally, based on
the identification of the intermediates, the pathway of degrading PCA was explored. The
mechanism of PCA degradation by MnFe2O4 activated PDS was explained.

2. Materials and Methods
2.1. Reagents and Materials

All chemicals in this work were analytical grade. P-chloroaniline (C6H6ClN), an-
hydrous methanol (MeOH), and tertiarybutyl alcohol (TBA) were supplied by Maclean
Biochemical Technology Co, Shanghai, China. Potassium persulfate (K2S2O8) was pur-
chased from CNW Technology, Germany. N-(1-naphthyl) ethylenediamine hydrochlo-
ride, manganese sulphate monohydrate (MnSO4•H2O) and ferric chloride hexahydrate
(FeCl3•6H2O) were supplied by Comio Chemical Reagent Co, Tianjin, China. Ethylenedi-
amine tetra-acetic acid (EDTA-2Na) was purchased from Solaibao Technology Co., Beijing,
China. Sodium azide (NaN3) was provided by Windship Chemical Reagent Technology
Co., Tianjin, China.

2.2. Preparation of MnFe2O4

The MnFe2O4 used in the experiment was prepared by chemical co-precipitation. The
preparation process and properties of the catalyst (MnFe2O4) were carried out based on the
previous experimental results [20]. Firstly, MnSO4•H2O and FeCl3•6H2O were dissolved
in deionized water (Mn2+:Fe3+ = 1:2, molar ratio). Then, NaOH solution was added to
make the pH value of the mixed solution reach 11. Finally, it was filtered, and calcined in a
muffle furnace.

2.3. Degradation Experiments

For catalyst (MnFe2O4) performance, 20 mg/L PCA was adjusted to the needed pH
value with 0.1 mol/L sulfuric acid or sodium hydroxide. After that, 50 mL of 20 mg/L PCA
and a certain amount of MnFe2O4 were added to each of the six conical flasks. A constant
temperature shaker (HNY-2102C, honor, Zhengzhou, China) will be used to hold these
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conical flasks. After being placed for 30 min to reach adsorption equilibrium, a certain
amount of PDS was added and shaken continuously. After 30, 60, 90, 120, 180 and 240 min
of reaction, the conical bottles were removed and the concentration of the filtered solution
was measured. For the determination of total organic carbon (TOC), the reaction solution
was taken at a fixed point in time, filtered and added 1 to 2 drops of sulphuric acid. Then,
the treated solution was put into the TOC analyzer (Trace Elemental Instruments, XPERT,
Netherlands) for measurement and quenching experiments in which a quantity of quencher
was added before a reaction. The experimental steps of HPLC-MS are as follows: at 0 h
and 4 h of the reaction, the filtered PCA solution was taken, and extracted three times with
methylene chloride. The organic phase was concentrated to near dryness by means of a
rotary evaporator and mixed with 5 mL of ultrapure water [19]. Finally, the organic phase
was filtered through the organic phase filter head for the determination of HPLC-MS.

2.4. Analysis Methods

The pH values were detected by pH meter (PHS-3C, Shanghai Electronic Scientific In-
struments Co., Shanghai, China). The concentration of PCA was analyzed by N-(1-naphthyl)
ethylenediamine azo spectrophotometric method using UV-VIS spectrometer (N5000, Shang-
hai Youke Co., Shanghai, China) at a wavelength of 545nm [21]. The HPLC-MS (W2489-QDa,
Waters, Milford, MA, USA) with a reversed-phase C-18 column (4.7 × 250 mm) was used
to measurement of intermediate products. The acetonitrile/ultrapure water (V/V = 55/45)
was used as mobile phase; the column temperature was 40 degrees Celsius; the flow rate
was 0.50 mL/min; the fragment ion scanning range was 50–1050 amu; and the mass spec-
trometer was subjected to electrospray ionization under the 600 V fragmentation voltage.
X-ray diffraction (XRD, Dmax 2500V, Bruker Co, Billerica, MA, USA) with Cu Kα radiation
(λ = 0.15406 nm) was used to analyze the crystallinity of the synthesized products between
10◦ and 80◦. The different functional groups of MnFe2O4 were detected by Fourier-transform
infrared (FTIR, Nicolet 380, Thermo Electric Corporation, Boston, MA, USA). X-ray pho-
toelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250XI, Shimadzu Corporation,
Kyoto, Japan) was used to analyze chemical composition, element content and valence state
of material surface. Scanning electron microscope (SEM, JSM-6700F, JEOL, Tokyo, Japan)
and transmission electron microscope (TEM, JEM-200CX, JEOL, Tokyo, Japan) were used to
observe the microscopic morphology and structure of catalytic materials.

3. Results and Discussion
3.1. Characterization of MnFe2O4

Relevant studies showed that the calcination temperature may affect the structure of
the material itself, thus affecting its catalytic activity [22]. As shown in Figure 1a, the X-ray
diffraction patterns of MnFe2O4 catalytic materials at various calcination temperatures.
The samples with same composition correspond well to the characteristic diffraction peaks
of cubic spinel-type MnFe2O4 (JCPDS 38–0430, a = b = 8.519 Å, c = 8.54 Å, α = β = γ = 90◦)
at 200–500 ◦C, indicating that they have a semicrystal structure. The characteristic peaks at
2θ = 18◦, 29.6◦, 34.8◦, 42.4◦, 52.6◦, 56.0◦and 61.5◦were corresponded to (111), (202), (311),
(400), (422), (333) and (440) crystal faces of MnFe2O4, respectively. The same XRD pattern of
MnFe2O4 was reported by Deng et al. [19]. Therefore, the chemical co-precipitation method
used in the experiments was effective in preparing pure MnFe2O4 material. However,
the XRD results of the sample at 600 ◦C showed that other material components may be
presented besides MnFe2O4, because its characteristic peaks can well correspond to Fe2O3
(JCPDS 33–0664, a = b = 5.0356 Å, c = 13.7489 Å, α = β = 90◦, γ = 120◦) and Mn2O3 (JCPDS
24–0508, a = 9.4161 = Å, b = 9.4237Å, c = 9.4051 Å, α = β = γ = 90◦). The diffraction peaks
near 2θ = 23.1◦, 38.2◦ and 55.1◦, which belonged to the characteristic peaks of (211), (400)
and (044) planes of Mn2O3, respectively. The characteristic peaks near 2θ = 24.1◦, 33.1◦,
35.6◦, 40.8◦, 49.4◦, 54.0◦, 57.5◦, 62.4◦and 63.9◦were corresponded to (012), (104), (110), (113),
(024), (116), (018), (214) and (300) planes of Fe2O3, respectively.
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In order to analyze and determine the changes of surface functional groups of MnFe2O4
before and after the reaction, FTIR spectroscopy was used to analyze MnFe2O4, and the
results were presented in Figure 1b. Due to the stretching vibration of hydroxyl and car-
boxyl groups on the catalyst surface, the larger absorption peak appeared at 3421 cm−1.
The characteristic peaks also appear at 2926 cm−1 and 2854 cm−1, which may be related to
the C-H extension vibration [23]. Through the bending vibration of water molecules on
the catalyst surface, the characteristic peak at 1635 cm−1 was generated [24]. In addition,
the characteristic peaks at 471 cm−1 and 576 cm−1, which were resulted in the vibration of
Mn-O and Fe-O chemical bonds in the MnFe2O4 catalyst. The low wave number 471 cm−1

was related with octahedral coordination of Mn2+. The high wave number 576 cm−1 was
assigned to the tetrahedral coordination of Fe3+ [25]. Finally, it was worth noticing that the
FTIR of the MnFe2O4 before and after the reaction were basically the same. The prepared
MnFe2O4 was a spherical structure with a diameter of 0.1 µm~0.5 µm as derived from TEM
images and SEM images (Figure S1).

3.2. Degradation Experiments in Different Systems

As exhibited in Figure 2a, it was observed that the effect of adsorption of PCA can
be ignored when only MnFe2O4 and PDS were present. In the MnFe2O4/PDS system, the
PCA removal rate reached 92% at 240 min. In addition, the degradation efficiency of PCA
in the PDS/Fe3+ and PDS/Mn2+ systems was 5.45% and 13.30% in 240 min, respectively.
The results showed that PDS can be activated by MnFe2O4. Similarly, Deng et al. [18] found
that when PMS was activated by Fe3+ or Mn2+ to degrade BPA, the removal rates were less
than 10%. It was much more than the 90% removal by heterogeneous activation systems
(MnFe2O4/PMS). Figure 2b shows Fe2O3, Mn2O3 and Fe3O4 have lower removal rates
than MnFe2O4 under the same conditions. The presence of Mn2O3 and Fe2O3 affect the
degradation of PCA. The substitution of spinel tetrahedral positions was confirmed by
comparing the MnFe2O4 and Fe3O4 activities.

In this study, the catalytic capability of MnFe2O4 was investigated at various tempera-
tures of calcination and the results were displayed in Figure 3. This calcination temperature
of 200 ◦C to 500 ◦C had little effect on the formation of its compositions. After 240 min
of reaction, the removal of PAC was 90.12%, 85.57%, 87.45%, 92.16% and 80.81% with
MnFe2O4 calcined at 200–600 ◦C, respectively. In addition, the data fitting indicated that
the responses followed the quasi-first-order dynamic constants (kobs) calculated at 0.012,
0.010, 0.010, 0.013 and 0.009 min−1, respectively (Figure S2). These findings showed that the
removal rate decreased when the calcination temperature reached 600 ◦C. The phenomenon
may be due to decomposition of the MnFe2O4 material to other oxidizing substances (e.g.,
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Fe2O3 and Mn2O3) at 600 ◦C [26,27]. As shown in Figure 2b, Fe2O3 and Mn2O3 did not
effectively remove PCA. Thus, the degradation rate of PCA was reduced.
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Experimental conditions: [PCA] = 20 mg/L, pH = 7.00 ± 0.02, [PDS] = 2.4 mM, [MnFe2O4] = 1.3 g/L,
and T = 25 ◦C.

3.3. Effect of Initial pH and Reaction Temperature

The pH of PCA solution has a very significant effect on the degradation rate. Formation
of free radicals and surface charge of catalysts were influenced by the pH value [28]. The
effect of different pH on the degradation of PCA was shown in Figure 4a. The maximum
yield of PCA decomposition was achieved at pH 7, Kobs was 0.013 min−1 at pH 7 (Figure S3).
There were no significant differences in the degradation efficiencies at pH 3, 5, 9. However,
when the pH value becomes 11, the efficiency of PCA was reduced by 43.88% compared
with that of pH 7.

There are three possible reasons for these results. First of all, as the initial pH of
PCA increased from 3 to 11, the leaching concentrations of Fe3+ were 0.12, 0.18, 0.14, 0.16
and 0.52 mg/L after 4 h. Meanwhile, the leaching concentrations of Mn2+ were 25.82,
19.73, 15.43, 12.25 and 1.71 mg/L. It was inferred that the leaching of Mn2+ facilitates the
decomposition of PCA, and it also showed that initial pH affects the reaction of MnFe2O4
and other substances [29]. Secondly, at pH 11, the SO4

•− and •OH were consumed
by reaction with OH− (Equations (1)–(4)), which strongly prevented the degradation of
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PCA [30]. For another cause, •OH and SO4
•− have a shorter lifetime in alkaline solutions

and therefore cannot adequately capture the bulk phase of PCA [31]. Finally, the charge of
PCA and the surface charge of MnFe2O4 are also a crucial factor influencing the degradation
of PCA in solutions. The acidity coefficient value (pKa) of PCA was reported to be 4.15.
It meant that PCA was primarily present in solution as a form of cationic at pH 3 and
existed as neutral or anion form at pH 5–11 [18]. The point of zer charge (pHpzc) of
MnFe2O4 was determined to be 4.71 (Figure S4). It indicated that the catalyst surface is
positively charged when pH < pHpzc. When pH > pHpzc, the catalyst surface is oppositely
charged as compared to pH < pHpzc [32].The pH changes of the solution during reaction
were monitored and displayed in Table S1. These findings suggest that the system pH
environment was maintained at 4 or below after 30 min of reaction for solutions with initial
pH values of 3 to 9. When the pHpzc of MnFe2O4 is higher than the pH of the solution,
it has a positive surface charge. This condition is favorable for the production of more
SO4

•−. When the pH value increases to 11, the electrostatic gravity effect between MnFe2O4
(pH > pHpzc, negative charges) and PDS (anion) disappears, and the yield of oxidizing
active substances decreased, which resulted in a decline in PCA removal yield.
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SO4
− + H2O→ HSO4

− + OH (1)

SO4
− + OH− → SO4

2− + OH (2)

OH + OH→ H2O2 (3)

S2O8
2− + H2O2 → 2H+ + 2SO4

2− + O2 (4)

This study also investigated the degradation of PCA by the MnFe2O4/PDS system
at different reaction temperatures (Figure 4b). As shown, the PCA removal rate gradu-
ally increased when the temperature increased. After 240 min of reaction, the removal
rate increased by 28.7% with a temperature increase of 20 ◦C. Therefore, temperature
has an important effect in the reaction of PCA removal by catalyst activated PDS. Kobs
were 0.0041 min−1 at 15 ◦C and 0.0091 min−1 at 35 ◦C, with significantly higher removal
efficiency (Figure S5). PCA can be effectively degraded at room temperature. In addition,
the Arrhenius equation was used to estimate the relationship between reaction rate and
temperature (Equation (5)).

lnKobs = lnA− Ea/RT (5)
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where Ea was the activation energy (kJ/mol), Kobs was measured quasi-first-order dy-
namic constant, R was the universal gas constant (8.314 J/mol·k), A was Arrhenius con-
stant and T was the temperature (K). In accordance with Equation (5), the Ea of PCA
removal by MnFe2O4 was calculated to be 29.70 kJ/mol [20]. Therefore, what occurs in the
MnFe2O4/PDS system is mainly a chemical reaction.

3.4. Quenching Experiments of PCA Degradation by MnFe2O4/PDS System

The reasons for PCA degradation in the MnFe2O4/PDS system were investigated
by quenching experiments, and the main active species were examined. In quenching
experiments, a probe scavenger was used to remove free radicals [33]. Several studies re-
ported that there are two main reactive species (e.g., •OH and SO4

•−)
(Equations (1), (2) and (6)) [28]. MeOH has a high heat of reaction for both SO4

•− and
•OH (k•OH = 9.7 × 108 M−1s−1, kSO4

•− = 3.2 × 106 M−1s−1). Moreover, the kinetic rate
of the reaction of TBA with •OH (k•OH = (3.8–7.6) × 108 M−1s−1) is faster, compared to
SO4

•− (kSO4
•− = (4.0–9.1) × 105 M−1s−1) [34,35].

Figure 5a,b shows the degradation of PCA in the MnFe2O4/PDS system when TBA,
MeOH and PDS were added into solution at the ratios of 200, 500 and 1000. It could
be observed that the PCA removal rate decreased significantly after the addition of
both TBA and MeOH. In this work, TBA (64.58%) and MeOH (62.18%) had similar ef-
fects on the degradation of PCA. Their Kobs also decreased from 1.255 × 10−2 min−1 to
0.506 × 10−2 min−1 and 0.459 × 10−2 min−1, respectively (Figures S6 and S7).These find-
ings indicated that both •OH and SO4

•− maybe involved in PCA degradation. In addition
to SO4

•− and •OH as the main free radicals, non-radical (1O2) can also be produced at
the same time (Equations (7) and (8)) [36]. As shown in Figure 5c, NaN3 was used to
quench 1O2 [37]. 1O2 played the significance role in the system. After adding NaN3, the
percentage of degradation decreased from 92.16% to 60.80%. The Kobs decreased from
1.255 × 10−2 min−1 to 0.421 × 10−2 min−1 (Figure S8).

S2O8
2− + MnFe2O4 → 2SO4

− (6)

S2O8
2− + 40H− → 2SO4

2− + 1O2 + 2H2O (7)

O2
− + 2H2O→ 1O2 + 2H2O2 + 2H+ (8)
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3.5. Total Organic Carbon (TOC) Removal Efficiencies in MnFe2O4/PDS System

A number of studies have shown that it is extremely difficult to obtain the full mineral-
ization of PCA by chemical treatment methods [38]. A high removal rate of organic matter
does not mean that the organic matter is broken down into CO2 and H2O, which may also
be present as other small molecules [39]. The TOC was measured under different PDS
dosages. As displayed in Figure 6, when 0.4 mM of PDS was added into PCA solution, the
removal rate of TOC was 23.50% in 240 min. However, the TOC removal rate was 35.07%,
when 2.4 mM of PDS was added into PCA solution. The removal and mineralization rates
of PCA were significantly increased. The results indicated that PCA could be effectively
mineralized in the MnFe2O4/PDS system. The PCA was not completely mineralized to
H2O and CO2 [40]. It is possible that inorganic or organic small molecule products of
oxidation were developed in solution.
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3.6. Mechanism of PCA Degradation by MnFe2O4/PDS Systems

To further investigate the degradation mechanism of PCA in the MnFe2O4/PDS
system, the products formed after the oxidative degradation of PCA were identified by
HPLC-MS. The HPLC-MS is a concatenated technique using liquid chromatography as the
separation system and mass spectrometry as the detection system. HPLC-MS combines
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chromatography and mass spectrometry to obtain more quantitative detection results. [41].
It is capable of providing relative molecular mass and structural information for the quanti-
tative analysis of different contaminants [2,42].

Several degradation intermediates of PCA in the MnFe2O4/PDS system were detected
using HPLC-MS measurements. The result obtained was similar with previous studies [43].
The peak area of PCA decreased significantly after 4 h, accompanied by the generation of
new peaks, indicating the generation of new intermediates. The mass spectrometry analysis
in Figure 7 showed that two major intermediate products may be formed during PCA
degradation. The corrected retention time for Peak1 (P1) was 12.77 min and m/z was 158.08.
The corrected retention time for Peak2 (P2) was 20.63 min and m/z was 267.08. Compared
with PCA, the peak areas of P1 and P2 were reduced by 87% and 28%, respectively. By
comparison of the mass to nucleus ratio and its molecular composition, it was assumed
that P1 and P2 may be chloronitrobenzene and 5-chloro-2-(4-chloro-phenyldiazene) phe-
nol, respectively.
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Combined with previous studies [43–45], two possible degradation paths of PCA
in the MnFe2O4/PDS system were obtained and are shown in Figure 8. In pathway I,
deaminization reaction had played an essential part in the process of PCA degradation. This
deaminization process would generate B, Then, P1 (chloronitrobenzene) was formed under
the attack of •OH. In pathway II, the benzene ring on PCA can form phenolic compounds
in the presence of SO4

•−, •OH and 1O2, such as 2-amino-5-chlorophenol, which reacts
with B to form substance P2 (5-chloro-2-(4-chlorophenyldiazene) phenol). PCA and its
intermediate oxidation products ring cleavage reaction occurred in the presence of reactive
species and were converted by the oxidation of SO4

•− and •OH to minor organic molecules.
It is well known that although the main structures of the compounds are the same,

different substituents have important effects on the properties of the substances. Structural
features of the compound determine the solubility, molecular arrangement, space structure,
intermolecular attraction and repulsion of organic compound. This affects the degree to
which organic matter is catalytically degraded. The compound in this study was PCA.
According to the functional group structure analysis of the PCA, when there is already
an amino substituent, the benzene ring contains a second substituent, and the second
substituent is a halogen group. The halogen group has a passivation on the benzene
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ring. Theoretically, this organic is more difficult to degrade than those substances with a
single substituent (e.g., phenol, nitrobenzene, chlorobenzene, etc.). Therefore, it is of great
significance to study the degradation of different substituent compounds.
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Figure 8. Possible degradation pathways of PCA in the MnFe2O4/PDS system.

This reaction process was a non-homogeneous process. The PCA was adsorbed onto
the catalyst surface. The oxidation reaction occurred on the surface of the catalyst. The
oxidation during the catalytic activity may lead to changes in the surface composition
and chemical state of MnFe2O4 [46]. Therefore, XPS was used to characterize the surface
chemical properties of MnFe2O4 before and after degradation experiment [47]. The results
showed that elements C, O, Fe and Mn exist in MnFe2O4 (Figure 9a).
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of Fe 2p (b), Mn 2p (c) and O 1s (d).

As seen from Figure 9b, fresh sample of Fe 2p, the binding energies (BE) of the Fe2+

peaks were 710.1 eV and 723.2 eV, which were accorded with Fe 2p3/2 and Fe 2p1/2,
respectively. Fe3+ peaks displayed two obvious peaks locating at BE of 712 eV and 725.3 eV,
which were assigned to the Fe 2p3/2 and Fe 2p1/2 level [46]. In addition, 718.2 eV and
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732.4 eV were ascribed to shake-up satellite peaks [26]. The above results demonstrated
the existence of Fe2+ and Fe3+ in the MnFe2O4. The content of Fe2+ was detected to be 32%
and the content of Fe3+ was 68%. For MnFe2O4 after use, the positions of the characteristic
peak did not change. However, the total peak area decreased slightly after degradation,
indicating that oxidation reaction occurred [28]. In accordance with the areas of two
characteristic binding energy peaks, the contents of Fe2+ was 34% and the content of Fe3+

was 66% in the MnFe2O4 sample after activating PDS.
Similarly, in Figure 9c, the MnFe2O4 possessed Mn 2p peaks located at 641.5 eV and

653.2 eV, which correspond the Mn 2p3/2 and Mn 2p1/2 [48]. Figure 9c also displayed two
distinct satellite peaks that were obtained from the Mn 2p spectrum, which was the signal
of the Mn2+ characteristic peak [18]. After degradation experiments, the Mn element in the
catalyst stayed in the Mn2+ state with no obvious changes.

In the end, peak fitting was performed for O 1s in MnFe2O4 samples before and after
the reaction. Figure 9d showed the three peaks of O 1s spectrum of fresh samples were
distributed at 529.7 eV, 531.8 eV and 533.4 eV, which were from surface lattice oxygen
(Olatt), surface adsorbed oxygen (Oads) and adsorbed water (Owat), respectively [49]. In
addition, three peaks were detected at 529.8 eV, 531.8 eV and 533.4 eV, respectively, after O
1s envelop decomposition of the used samples. The corresponding area ratio of adsorbed
H2O increased from 16.47% to 25.98%. Compared with Olatt and Oads, the Owat possessed
higher mobility.

In summary, this mechanism of the oxidative degradation of PCA by the MnFe2O4/PDS sys-
tem was postulated, and the possible reaction processes are shown in Figure 10. First, the iron
ions have higher catalytic activity to PDS in the octahedral sites of the MnFe2O4 spinel structure.
Second, the active site undergoes a valence change at the solid–liquid interface, with iron and
manganese ions as electron donors and S2O8

2− as electron acceptors to produce SO4
•−, partially

converting S2O8
2− to 1O2 and producing •OH. Finally, PCA reacts with various oxidation active

substances [50].
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4. Conclusions

In this work, MnFe2O4 was successfully synthesized by the chemical co-precipitation
method. The catalyst was characterized by XPS, XRD, FTIR, TEM and SEM techniques. The
efficiency of this catalyst in activating PDS for the degradation of PCA was investigated.
The experiments showed that the decomposition of PCA by the MnFe2O4/PDS system
depended on different reaction conditions (initial pH, reaction temperature, calcination
temperature of catalyst). According to the quenching experiments, SO4

•−, •OH and 1O2
issued from the MnFe2O4/PDS system were primary reactive oxygen species in the solution.
Furthermore, the addition of more oxidant facilitated the mineralization of PCA. The PCA
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degradation intermediates were identified with HPLC-MS, and based on the results, the
possible transformation pathways for PCA degradation was proposed. It is concluded
that PCA can be degraded by both free radicals and non-free radicals generated in the
MnFe2O4/PDS system.
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process of PCA degradation by PDS catalyzed with MnFe2O4; Figure S1: SEM image (a) and TEM
image (b) of MnFe2O4 material; Figure S2: The quasi-first-order dynamic model of PCA removal at
different calcination temperature in MnFe2O4/PDS systems; Figure S3: The quasi-first-order dynamic
model of PCA removal at different pH in the MnFe2O4/PDS systems; Figure S4: pHpzc of MnFe2O4,
500 ◦C; Figure S5: The quasi-first-order dynamic model of PCA removal at different temperature
in the MnFe2O4/PDS systems. Figure S6: The quasi-first-order dynamic model of PCA removal by
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