
Citation: Berard, D.; Vega, S.J.; Avital,

G.; Snider, E.J. Dual Input Fuzzy

Logic Controllers for Closed Loop

Hemorrhagic Shock Resuscitation.

Processes 2022, 10, 2301. https://

doi.org/10.3390/pr10112301

Academic Editors: Jie Zhang and

Meihong Wang

Received: 23 September 2022

Accepted: 31 October 2022

Published: 5 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Dual Input Fuzzy Logic Controllers for Closed Loop
Hemorrhagic Shock Resuscitation
David Berard 1 , Saul J. Vega 1, Guy Avital 1,2,3 and Eric J. Snider 1,*

1 U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
2 Trauma & Combat Medicine Branch, Surgeon General’s Headquarters, Israel Defense Forces,

Ramat-Gan 52620, Israel
3 Division of Anesthesia, Intensive Care & Pain Management, Tel-Aviv Sourasky Medical Center,

Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
* Correspondence: eric.j.snider3.civ@health.mil; Tel.: +1-210-539-8721

Abstract: Hemorrhage remains a leading cause of preventable death in emergency situations, includ-
ing combat casualty care. This is partially due to the high cognitive burden that constantly adjusting
fluid resuscitation rates can require, especially in austere or mass casualty situations. Closed-loop
control systems have the potential to simplify hemorrhagic shock resuscitation if properly tuned for
the application. We have previously compared 4 different controller types using a hardware-in-loop
test platform that simulates hemorrhagic shock conditions, and we found that a dual input—(1) error
from target and (2) rate of error change—fuzzy logic (DFL) controller performed best. Here, we
highlight a range of DFL designs to showcase the tunability the controller can have for different
hemorrhage scenarios. Five different controller setups were configured with different membership
function logic to create more and less aggressive controller designs. Overall, the results for the
different controller designs ranged from reaching the setup rapidly but often overshooting the target
to more conservatively approaching the target, resulting in not reaching the target during high active
hemorrhage rates. In conclusion, DFL controllers are well-suited for hemorrhagic shock resuscitation
and can be tuned to meet the response rates set by clinical practice guidelines for this application.

Keywords: control systems; hemorrhagic shock; fluid resuscitation; fuzzy logic; closed-loop; fluid
resuscitation; hardware-in-loop

1. Introduction

Hemorrhage is the most common cause of preventable death in both civilian [1] and
military [2] trauma casualties. The main pillars of care for these patients are expeditious
hemorrhage control and volume resuscitation—the restoration of blood volume, prefer-
entially using whole blood or blood components, to restore oxygen delivery to the end
organs [3]. In cases where definite control of the hemorrhage is not immediately achiev-
able, most experts recommend the “damage control resuscitation” (DCR) approach, which
prompts goal-directed volume resuscitation balancing the need for restoring perfusion on
one hand, while avoiding exacerbation of the hemorrhage on the other [3]. However, this
can require constant monitoring of the patient’s condition and frequent adjusting of the
infusion rate.

As this task can be described as controlling a variable (e.g., blood pressure) towards a
setpoint (i.e., the resuscitation goal), it is not surprising that several attempts have been
made to automize this task in a closed-loop controlled fashion [4]. They vary in the
approaches taken, secondary to the intended use case. A variety of approaches, including
complex mathematical modeling [5,6] and adaptive controls [7,8] were described for the
purpose of hemodynamic control through fluid management. However, DCR in its most
basic form, which resembles current clinical (manual) practice, can be described as a
single input (e.g., blood pressure)—single output (infusion flow rate). Hence, simpler
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controllers, such as decision tables, proportional-integral-derivative (PID) and fuzzy logic
(FL) controllers [9] should at least be considered for this purpose.

We have previously developed a hardware-in-loop automated test platform for resusci-
tation controllers (HATRC) for comparing the performance between closed-loop controller
designs across a wide range of hemorrhage resuscitation scenarios [10]. With this, we
recently compared various controller logic types and determined that a dual-input fuzzy
logic controller design performed best [11]. This was determined across various subject
variability runs and four hemorrhage scenarios, using aggregate performance metrics tied
to the intensity of the resuscitation, stability of the subject, and resource efficiency. In this
work, we expand on this previous study to compare a range of dual-input fuzzy logic
controller types to highlight the controller capabilities based on tuning for hemorrhagic
shock resuscitation.

2. Materials and Methods
2.1. Overview of HATRC Platform

We previously developed the Hardware-in-loop Automated Testbed for Resuscitation
Controllers (HATRC) for the purpose of high throughput testing of physiological closed-
loop controllers designed to control fluid infusion, particularly for hemorrhagic shock
resuscitation [10,12]. Water was circulated in a closed-loop by a peristaltic pump (Masterflex
L/S, Masterflex Bioprocessing, Vernon Hills, IL, USA) while pressure was monitored and
recorded using LabChart (PowerLab, ADinstruments, Sydney, Australia) via pressure
transducer (ICU Medical, San Clemente, CA, USA). A key component of the system
was the PhysioVessel (PV) model, a customizable fluidic reservoir that provides a volume-
responsive hydrostatic pressure [13]. Analysis of a large animal hemorrhage model revealed
a linear pressure–volume response for the administration of whole blood in swine who
underwent a spleen injury following a controlled hemorrhage. Though alternative pressure–
volume curves were found to characterize other fluids, like crystalloids, only whole blood
was used as the simulated infusate during the hemorrhage scenarios in this study. The
whole blood-tuned PV (PVWB) was connected to two additional peristaltic pumps. One
pump provided outflow comprised of a basal urine rate and a hemorrhage rate determined
by the current hemorrhage scenario (see Section 2.2). The other pump provided an infusion
whose rate was controlled by the resuscitation controller being evaluated. MATLAB
(MathWorks, Natick, MA, USA) was used to run the hemorrhage scenario, determine
inflow rates based on resuscitation controller algorithms, and control the corresponding
pumps through an RS232 USB-to-serial adapter (CoolGear, Clearwater, FL, USA) configured
as indicated by the pumps’ manufacturer.

2.2. Hemorrhage Scenarios for Controller Performance

For a previous study, we designed 11 simulated hemorrhage scenarios to evaluate
the performance of fluid resuscitation controllers by challenging them to operate against
a variety of bleeding rates and initial arterial pressures [12]. Given the similarities found
in controllers’ performances in several scenarios during that study, here we focus on four
distinct whole-blood scenarios to assess the new set of fuzzy logic controllers. Throughout,
a target pressure of 65 mmHg mean arterial pressure (MAP) was the goal controllers were
seeking during resuscitation.

Scenario 1 was the only scenario to last 62 min, and it simulated a compressible bleed
that was already under control by the time resuscitation started. During the first half of
this scenario, the fluid controller attempted to resuscitate the simulated subject from an
initial MAP of 45 mmHg up to a target MAP of 65 mmHg without an active hemorrhage.
At the 30-min mark, however, a high-rate bleed lasting 2 min was triggered, simulating a
loosening and re-tightening of a tourniquet. Afterwards, hemorrhage was stopped, and
controllers were given an additional 30 min to restabilize at target MAP.

The remaining three scenarios all lasted 30 min and simulated non-compressible hem-
orrhages. Both Scenarios 2 and 3 allowed natural coagulation to affect the simulation—the
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only difference was in the initial MAP: Scenario 2 started in a state of simulated com-
pensated shock at 65 mmHg, while Scenario 3 started in a state of decompensation at
45 mmHg. Finally, Scenario 4 mimicked a subject with an initial MAP of 45 mmHg, who
starts to experience a gradual degradation of their internal hemostatic mechanisms 5 min
into the resuscitation.

2.3. Fuzzy-Logic Controller Design

Fuzzy logic controllers are widely used in industries such as manufacturing [14,15],
automobile operation [16–18], and even space exploration [19,20], and their utility in vari-
ous areas of medical care has been a subject of ongoing research and development [21–24].
Fuzzy logic takes a discrete input value and classifies it into a non-discrete linguistic, or
descriptive, term using a set of membership functions. These functions map the input to
a value of 0–1 which is its degree of membership for each class within the linguistic set.
A set of logical rules then evaluate the fuzzified input(s) to determine the corresponding
output. This approach is particularly advantageous when precise classifications are not
easily determined, making Boolean-based logic suboptimal. The nonlinear, time-varying
nature of the cardiovascular system makes it a prime candidate for fuzzy logic control.

We previously tested multiple types of hemorrhagic shock resuscitation controllers
on HATRC that included two different versions of decision table, PID, single-input fuzzy
logic (SFL), and dual-input fuzzy logic (DFL) controllers. Based on a comparative analysis
using select controller performance metrics and a set of three aggregate metrics, described
in further detail in Section 2.4, we determined that the DFL controllers demonstrated the
best balance of Intensity, Stability, and Resource Efficiency [12]. We kept the two original
DFL controller configurations and included an additional three DFL controllers with a
wider range of tuning variations for a total of 5 in a comparative study using HATRC. The
MATLAB Fuzzy Logic Designer toolbox was used to develop all the controllers evaluated
here, and the infusion flow rate was the single output to the system. The first input to
the controllers was the error expressed as a percentage of the measured system pressure
divided by the setpoint, with a value of 1 representing the target being reached and was
titled PerformanceError (Figure 1). The second input was the rate of change in the error over
time taken as the slope of a linear regression across the last three samples and was titled
(d/dt)PerformanceError (Figure 1).
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Figure 1. Diagram of the dual input fuzzy logic controller for hemorrhagic shock resuscitation. Two
inputs to the fuzzy logic controller are derived from input pressure readings and the distance from
set point mean arterial pressure−performance error and rate of performance error change. These two
inputs are used to determine an infusion rate output for providing fluid to resuscitate and stabilize
pressure. Each controller was set with the same types of membership functions, but with varying
constants. DFL 1−4 classified PerformanceError into three fuzzy sets: VeryLow, Low, and Set. DFL 5
used these same three with an additional set called Over. All controllers used z-shaped membership
functions for mapping PerformanceError into VeryLow and s-shaped membership functions for Set.
DFL 1-3 used simple Gaussian curves while 4 and 5 used generalized bell-shaped membership
functions for mapping PerformanceError into Low. DFL 5 also used an s-shaped membership function
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to map Over. Smooth and Gaussian curves were selected as the membership functions for input 1
due to their lower computational cost and guaranteed continuity when compared to trapezoidal
functions [25,26]. They have also been shown to be easier to optimize using evolutionary computa-
tional algorithms in type-2 fuzzy controllers which will be important for future iterations. Parameters
for the functions used here were informed by expert feedback and current DCR guidelines. The
membership functions for both inputs of all controllers are shown in Figure 2.
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All controllers used the same fuzzy sets and membership function types for
(d/dt)PerformanceError. Five fuzzy sets were defined: dropFast, dropSlow, noChange,
riseSlow, and riseFast. Linear z-shaped membership functions were used to map
(d/dt)PerformanceError into dropFast, triangular membership functions were used for
dropSlow, noChange, and riseSlow, and linear s-shaped membership functions were used
to map riseFast. Parameters of the membership functions for both inputs were tuned for
each controller to produce a range of performance (e.g., prioritizing reaching the set point
quickly vs. prioritizing minimum overshoot of the set point). Distinct rules were created
for each controller using a similar ethic, and plots of the resulting rule surfaces are pre-
sented in Figure 3. The output, titled InfusionRate, was broken into the fuzzy sets Off, Med,
and Max which utilized linear functions mapping to the output values of 0, 250 mL/min,
and 500 mL/min, respectively. All controllers were type-1 Sugeno systems and used the
following implication methods: a product AND, probabilistic OR, minimum Implication,
maximum Aggregation, and a weighted average defuzzification method.
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2.4. Controller Performance Metrics

A total of 12 individual metrics were used to evaluate the performance of each fluid
resuscitation controller during the simulated hemorrhage scenarios. Additionally, with
the goal of making all these measurements more useful for reaching conclusions about the
controllers, 3 aggregate combinations of the individual metrics were also calculated. All of
these measurements have been described previously [5,11,27,28].

A number of the individual metrics used are derived from measurements of perfor-
mance error (PE)—that is, the difference between the measured pressure at a given time
and the target pressure, as a percentage of the target. In summary, these metrics were:
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• Median performance error (MDPE): median value of all the PEs;
• Median absolute performance error (MDAPE): median of the absolute values of all

the PEs;
• MDAPE at steady state (MDAPESS): MDAPE after system has reached steady state;
• Target overshoot: maximum positive PE value, relative to the target pressure;
• Effectiveness: percent of time that the pressure remained within 5 mmHg of the

target value
• Wobble: median of the absolute values of the differences between each PE and MDPE;
• End-state divergence: expressed as a percentage, this is the slope of the linear regres-

sion of PE vs. time during the final 10% of the test scenario, multiplied by the total
duration of the scenario;

• Percent rise time: amount of time required for the measured MAP to reach 90% of the
target, relative to the total duration of the scenario;

• Volume efficiency: ratio of total volume of fluid infused over the output volume;
• Areas above and below target: expressed as a percentage, these are the total areas

delimited by the target pressure line and the measured MAP-vs-time curve, both
above and below said line, respectively, relative to the target pressure and further
normalized by scenario time duration;

• Mean infusion rate: mean rate of infusion as a percentage of the maximum infusion
rate allowed by the controller (500 mL/min);

• Infusion rate variability: the averaged standard deviations of the infusion rates as a
percentage of the mean infusion rate.

The aggregate metrics derived from the aforementioned individual ones were used to
aide in evaluating the controllers’ overall performances in three areas, as follows:

• Intensity: the controller’s ability to effectively treat hypotension; it is the product of
Percent rise time and Area below target, divided by the Effectiveness.

• Stability: the controller’s propensity for stable performance and reduced overshooting;
it is the product of Wobble, the absolute value of End-state divergence, the squared
value of MDAPESS, and the sum of Area above target and Target overshoot.

• Resource efficiency: the controller’s capacity for reduced fluid consumption and
hardware wearing; it is the product of Mean infusion rate, Infusion rate variability
and Volume efficiency.

It should be noted that whenever any of the measurements listed above are evaluated,
except for “Effectiveness”, lower values are generally considered better.

2.5. Statistical Analysis

For each controller, three subject variability experiments were conducted for all the test
scenarios. Each metric was made unitless as described in Section 2.4. Metrics were averaged
across all test scenarios for each subject variability and normalized to the median value for
each metric to make the weights for each metric similar. Aggregate metrics for Intensity,
Stability, Resource Efficiency, and an average of each were calculated. Results throughout
are reported as mean ± standard deviation. For evaluating statistical significance between
aggregate scores, one-way analysis of variance (ANOVA) was used, post hoc Tukey’s
test, for each metric to evaluate differences between the five controllers. Significance was
defined as p < 0.05.

3. Results
3.1. Scenario 1: Low Initial MAP with Momentary Severe Hemorrhage Results

The first scenario tested began with a low MAP of 45 mmHg with no active hemor-
rhage. An intense hemorrhage was then introduced after 30 min, simulating a complication
such as an extremity tourniquet failure, and lasted for 2 min. This was followed by an addi-
tional 30-min period with no active hemorrhage. This scenario evaluated the controllers’
ability to resuscitate a patient without complications and test how quickly the controllers
responded to an acute but brief hemorrhage. Plots of the MAP vs. Time and Flow Rate
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vs. Time for a single run of each controller are presented in Figure 4A with positive flow
rate values representing the infusion rate outputs of the controllers and negative flow rate
values being a representative plot of the outflow (a combination of basal urine rate and
hemorrhage). Percent Area Above Target and Absolute End-State Divergence are shown
in Figure 4B,C, respectively, and results for all performance metrics can be found in Ta-
ble A1. While all controllers achieved less than 5% Area Above Target relative to the target
pressure and total scenario time, DFL 4 demonstrated the best overshoot performance in
this scenario with a near 0% result. DFL 1 and 2 technically performed the worst, both
overshooting around 3%. None of the controllers exceeded the overshoot limit of 5% of
the target to cause a re-bleed event. DFL 1 and 2 had the lowest End-State Divergence
relative to total scenario time with values of 0.10% and 0.15%, respectively. These both
were significantly lower than the other three controllers which all were above 0.5% with
DFL 5 having the highest value of 1.04%.
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Figure 4. Dual-input fuzzy logic results for Scenario 1. Scenario 1 began with a MAP of 45 mmHg with
no active hemorrhage for 30 min, followed by a fast hemorrhage for 2 min and then no hemorrhage for
the remaining 30 min. (A) Five controller designs’ MAP and infusion rate vs. time are shown for one
replicate run. A single representative outflow vs. time result is shown. (B) Area above target pressure
and (C) Absolute end state divergence performance metrics for each controller design are shown as
mean values from three subject variability runs, with error bars denoting standard deviation.

3.2. Scenario 2: Target Initial MAP with Coagulating Hemorrhage Results

Scenario 2 presented the patient with a MAP starting at the targeted 65 mmHg but
with an active hemorrhage that gradually reduced over time simulating an internal re-bleed
accompanied by coagulation. This tested the controllers’ responsiveness to perturbations to
the system after reaching the set point. Plots of the MAP vs. Time and Flow Rate vs. Time
for a single run of each controller are presented in Figure 5A. Percent Area Below Target
and Percent Infusion Rate Variability are shown in Figure 5B,C, respectively, and results for
all performance metrics can be found in Table A2. DFL 1 and 2 were the most responsive
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to a drop in MAP while near the target pressure with % areas below target of 0.25% and
0.27%, respectively. DFL 3–5 all had significantly higher areas below the target with DFL 4
having the highest value (8.5%). It should be noted that DFL 1 and 2, as well as 5, ended up
overshooting the target, though not enough to trigger a re-bleed penalty (Table A2). DFL 5
had the lowest % Infusion Rate Variability (7.24%) while DFL 1 had the highest (27.9%).
This can be visually observed when looking at the varying magnitudes of the peaks in the
Flow Rate vs. Time plot for DFL 1 and DFL 2 which had the second highest % Infusion
Rate Variability (21.9%).
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Figure 5. Dual-input fuzzy logic results for Scenario 2. Scenario 2 began with a MAP of 65 mmHg
with an active hemorrhage that slows with time to mimic coagulation for 30 min, with a resuscitation
target of 65 mmHg. (A) Five controller designs’ MAP and infusion rate vs. time are shown for one
replicate run. A single representative outflow vs. time result is shown. (B) Area below target pressure
and (C) infusion rate variability performance metrics for each controller design are shown as mean
values from three subject variability runs, with error bars denoting standard deviation.

3.3. Scenario 3: Low Initial MAP with Coagulating Hemorrhage Results

Scenario 3 began with a low MAP of 45 mmHg like Scenario 1 but included an
ongoing hemorrhage with accompanying coagulation effects like Scenario 2. This scenario
evaluated how effectively the controllers resuscitated a patient against complications like
an internal, non-compressible hemorrhage. Plots of the MAP vs. Time and Flow Rate vs.
Time for a single run of each controller are presented in Figure 6A. Percent Rise Time and
% Effectiveness are shown in Figure 6B,C, respectively, and results for all performance
metrics can be found in Table A3. DFL 4 and 5 had extremely high % Rise times compared
to the other three controllers (44.7% and 41.3%, respectively) with DFL 1 and 2 performing
almost identically with the lowest rise times (6.30% and 6.20%, respectively). This inversely
correlates with the % Effectiveness with all 5 controllers maintaining the same relative
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rankings with respect to each other (DFL 1 = 93.1%, DFL 2 = 92.9%, DFL 3 = 81.4%,
DFL 5 = 24.5%, and DFL 4 = 34.0%).
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Figure 6. Dual-input fuzzy logic results for Scenario 3. Scenario 3 began with a MAP of 45 mmHg
with an active hemorrhage slowing with time to mimic coagulation for 30 min, with a resuscitation
target of 65 mmHg. (A) Five controller designs’ MAP and infusion rate vs. time are shown for one
replicate run. A single representative outflow vs. time result is shown. (B) Percent rise time and
(C) effectiveness performance metrics for each controller design are shown as mean values from three
subject variability runs, with error bars denoting standard deviation.

3.4. Scenario 4: Low Initial MAP with Coagulopathic Hemorrhage

Lastly, Scenario 4 provided the most complications of the scenarios tested. The patient
began with a low MAP of 45 mmHg and presented with an ongoing non-compressible
hemorrhage. This hemorrhage gradually slowed over time as the result of coagulation, but
after 5 min, simulated coagulopathy was introduced gradually accelerating the hemorrhage
until reaching a maximum rate of ~125 mL/min. This scenario was designed to tease out
weaknesses of the controllers resulting in equilibrating infusion and outflow at a steady
state that significantly deviates from the target. Plots of the MAP vs. Time and Flow Rate
vs. Time for a single run of each controller are presented in Figure 7A. Percent Area Below
Target and % MDAPE at Steady-State are shown in Figure 7B,C, respectively, and results
for all performance metrics can be found in Table A4. These two metrics correlate closely in
this scenario with the controller ranking and metric values nearly equal between the two.
DFL 2 performed the best (3.56% area below target, 2.69% MDAPE at Steady State) and
DFL 1 was nearly identical (3.56% area below target, 2.70% MDAPE at Steady State). DFL
3 (10.9% area below target, 10.8% MDAPE at Steady State) and DFL 4 (14.6% area below
target,14.4% MDAPE at Steady State) were next, and DFL 5 performed the worst in these
two metrics (16.6% area below target, 16.8% MDAPE at Steady State).
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Figure 7. Dual-input fuzzy logic results for Scenario 4. Scenario 4 began with a MAP of 45 mmHg with
an active hemorrhage slowing for the first 5 min and then accelerating to a maximum hemorrhage
rate to mimic coagulopathy, with a resuscitation goal of 65 mmHg MAP. (A) Five controller designs
MAP and infusion rate vs. time are shown for one replicate run. A single representative outflow
vs. time result is shown. (B) The area below target pressure and (C) median absolute performance
error at steady state performance metrics for each controller design are shown as mean values from
three subject variability runs, with error bars denoting standard deviation.

3.5. Controller Performance in Aggregate Performance Metrics

We compiled the average score across all four scenarios of each aggregate performance
metric for the 5 DFL controllers and then took the average of the three aggregate perfor-
mance metrics (Figure 8). DFL 1 and 2 had the lowest two scores for the Intensity (both at
0.121) and Stability (0.314 and 0.299, respectively) metrics while holding the highest two
scores in Resource Efficiency (2.02 and 1.88, respectively). DFL 4 had the highest score in
the Intensity aggregate metric (10.18) with the second lowest score in Resource Efficiency
(0.836). DFL 5 had the second highest score for Intensity (8.84) and held the lowest score for
Resource Efficiency (0.604), though it had the highest score in the Stability aggregate (5.08).
DFL 2 had the lowest average aggregate score (0.765) followed closely by DFL 1 (0.817)
while DFL 4 had the second highest (3.88) and DFL 5 had the highest average aggregate
(4.84). DFL 3 did not have the highest nor lowest of any aggregate score and had the
median average aggregate score of the 5 controllers (1.49). A summary of one-way ANOVA
statistical analyses comparisons for each aggregate metrics are shown in Table A5.
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Figure 8. Aggregate metric results for dual-input fuzzy logic controller configurations. Aggregate
(A) Intensity, (B) Stability, (C) Resource Efficiency, and (D) Average across the three metric results are
shown as mean values from three subject variability runs, with error bars denoting standard deviation.

4. Discussion

Hemorrhagic shock resuscitation remains a challenging aspect of emergency medicine
and trauma care. This is especially true in the context of resource and care provider-limited
environments or mass casualty incidents where the attention needed to properly monitor
their status and adjust therapy accordingly can quickly exceed current capabilities. The
implementation of automated systems to provide DCR in these environments can lighten
this load on care providers and potentially improve patient outcomes. Previously, multiple
physiological closed-loop controllers were evaluated, and DFL controllers were shown to
have the best performance in an assortment of performance and aggregated metrics [11].

This work compared an expanded set of five DFL controllers to identify which one
performed favorably using the HATRC system. Three aggregate metrics were used to
evaluate the controllers along the criteria of Intensity, Stability, and Resource Efficiency.
Four hemorrhage scenarios were used in the comparison to assess how the controllers
performed against an array of patient conditions including low MAP, with and without
ongoing hemorrhage, the introduction of sudden, acute hemorrhage, and the introduction
of ongoing hemorrhage. We also tested a scenario particularly designed to challenge the
controllers’ ability to overcome steady state error.

DFL 1 and 2 had the best performance in Intensity and Stability, indicating they were
best suited to quickly reach the set point with the lowest degree of long-term oscillations in
MAP. Although they tended to overshoot the target, especially when there was no ongoing
hemorrhage, they did not exceed the overshoot threshold allowed, and the amount of
overshoot was minimal with respect to the other metrics considered when calculating
Stability. They performed worst in Resource Efficiency indicating they placed a high
demand on equipment and consumed the most amount of fluid. This is understandable
when observing the larger peak-to-trough magnitudes in infusion rate and the fact that a
contributor to hemorrhage rate in HATRC was the MAP—i.e., sustaining a higher MAP
for a larger proportion of the scenario time resulted in a larger accumulative hemorrhage,
requiring more infused volume to compensate. DFL 4 and 5 showed the worst performance
in Intensity but had the best scores in Resource Efficiency. This illustrates the compromise
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taking place between fast, aggressive resuscitation aimed at rapid restoration of oxygen
delivery to the tissues, and a more gradual approach. It also emphasizes the gap in current
clinical knowledge regarding which method is optimal for patients’ outcomes. There may
be conditions that would be better treated by one versus the other, but there has not been
a robust enough study to draw conclusions based on established patient outcomes. All
that said, in this study DFL 2 had the best average score in our tests, seemingly offering
the most comprehensive balance of the metrics evaluated. This controller will be further
investigated for potential optimizations and considered for testing in other models.

The current study does possess certain limitations that should be considered. The
HATRC platform was designed based on empirical data and does not contain the degree of
complexity and unpredictability of an in vivo model. There are alternative models, such as
in silico simulations that may be useful for further evaluating the capabilities of automated
controllers [29,30]. The intent here was to provide real-world performance data when
physical hardware was used, and we believe the results show promise within the limita-
tions of the empirical data-guided platform. The controllers investigated used MAP as the
sole input, but real-time values provided by invasive measurements may not always be
available. The reduced feedback frequency of current non-invasive arterial blood pressure
measurement techniques may greatly hinder the performance of these controllers. Improve-
ment opportunities exist in using other physiological variables for inputs as an alternative,
such as cardiac output [31], a photoplethysmography waveform [32], or tissue oxygen
saturation. Although the membership functions and their corresponding parameters were
selected based on feedback from subject matter experts in anesthesiology, surgery, and
military medicine, the lack of universal agreement within the medical community on the
best resuscitation profile and the unpredictable nature of the physiologic response makes
this tuning difficult and requires further refinement. This could be offered by more complex
models that cover a wider range of physiologic states, such as septic shock, which would
also make it possible to expand into type-2 fuzzy logic systems and iteratively optimize
using simulation techniques [33–35]. As previously mentioned, the aggregate performance
metrics used do not account for the full scope of physiological responses present when
systemic trauma is experienced and may require weighting of some metrics over others.
There are also unknowns regarding multiple simultaneous injuries, incapacitation of certain
physiological systems, and the impact of chemical therapies that may be present. These
interactions and their potential effect on arterial blood pressure, such as distributive or
cardiogenic shock, were outside the scope of the current study but will be addressed in
future in vivo ones.

5. Conclusions

Hemorrhagic shock goal-directed resuscitation can be facilitated in both emergency
and military medicine by automating the constant fluid rate changes required to adequately
stabilize a patient. Dual input fuzzy logic controllers have a wide range of tunability for
managing various hemorrhagic shock resuscitation scenarios. As advancements in hemor-
rhagic shock resuscitation standard of care develop, DFL controllers have demonstrated the
flexibility to be adapted to meet physiological demands that can promote the most desired
patient outcomes. Through aggregate performance metric scores, a single DFL controller
was identified as performing best which will be further evaluated in large animal hemor-
rhagic shock studies. This will bring closed loop control for acute hemorrhage resuscitation
closer to reality to help improve the patient’s recovery and stabilization while lessening the
cognitive burden for the medical provider.
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Appendix A

Table A1. Summary of performance metrics for Scenario 1. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) 3.25% 3.41% 2.18% −4.04% −1.15%

MDAPE (%) 3.32% 3.46% 3.16% 4.04% 3.12%

MDAPE_SS (%) 3.29% 3.43% 3.03% 3.17% 2.42%

Target Overshoot (%) 4.25% 4.59% 5.00% 0.46% 3.79%

Effectiveness (%) 97.14% 97.23% 94.01% 83.29% 86.06%

Wobble (%) 0.43% 0.42% 0.94% 1.20% 1.18%

End-State Divergence (%) 0.10% 0.15% 0.59% 0.67% 1.04%

Percent Rise Time (%) 2.64% 2.64% 4.12% 6.02% 8.47%

Volume Efficiency 310.93% 311.83% 321.43% 297.47% 312.70%

Area Above Target Pressure (%) 3.06% 3.19% 2.14% 0.04% 0.84%

Area Below Target Pressure (%) 0.73% 0.72% 1.73% 5.21% 3.80%

Mean Infusion (%) 3.72% 3.75% 3.77% 3.26% 3.58%

Variable Infusion (%) 40.34% 41.03% 22.27% 24.58% 16.72%

Table A2. Summary of performance metrics for Scenario 2. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) 0.55% 0.56% −4.61% −9.03% −8.07%

MDAPE (%) 0.94% 0.93% 4.61% 9.03% 8.07%

MDAPE_SS (%) 0.94% 0.93% 3.60% 8.27% 6.78%

Target Overshoot (%) 3.54% 3.52% 1.70% 0.51% 1.30%

Effectiveness (%) 100.28% 100.28% 98.61% 32.04% 46.67%

Wobble (%) 0.90% 0.92% 1.39% 1.14% 1.20%

End-State Divergence (%) 0.54% 0.51% 1.06% 1.15% 1.72%

Percent Rise Time (%) NA NA NA NA NA

Volume Efficiency 105.00% 102.70% 97.67% 82.87% 87.50%

Area Above Target Pressure (%) 0.88% 0.92% 0.09% 0.00% 0.01%

Area Below Target Pressure (%) 0.25% 0.27% 4.10% 8.50% 7.44%

Mean Infusion (%) 6.69% 6.55% 5.72% 4.52% 4.86%

Variable Infusion (%) 27.87% 21.88% 10.25% 10.91% 7.24%
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Table A3. Summary of performance metrics for Scenario 3. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) 0.45% 0.55% −4.88% −9.96% −9.50%

MDAPE (%) 1.06% 1.07% 4.88% 9.96% 9.50%

MDAPE_SS (%) 0.92% 0.92% 1.89% 7.44% 5.36%

Target Overshoot (%) 3.49% 3.54% 1.48% 0.00% 0.00%

Effectiveness (%) 93.06% 92.87% 81.39% 24.54% 33.98%

Wobble (%) 0.92% 0.89% 1.25% 1.11% 1.16%

End-State Divergence (%) 0.49% 0.54% 1.16% 1.41% 1.36%

Percent Rise Time (%) 6.30% 6.20% 11.39% 44.72% 41.30%

Volume Efficiency 186.47% 188.07% 191.40% 179.70% 192.83%

Area Above Target Pressure (%) 0.88% 0.92% 0.09% 0.00% 0.00%

Area Below Target Pressure (%) 1.67% 1.65% 5.91% 10.39% 10.47%

Mean Infusion (%) 10.83% 10.96% 9.88% 8.63% 8.96%

Variable Infusion (%) 23.39% 21.76% 13.36% 15.42% 11.34%

Table A4. Summary of performance metrics for Scenario 4. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) −2.76% −2.75% −10.86% −14.43% −16.85%

MDAPE (%) 2.76% 2.75% 10.86% 14.43% 16.85%

MDAPE_SS (%) 2.70% 2.69% 10.81% 14.38% 16.79%

Target Overshoot (%) 1.18% 0.94% 0.00% 0.00% 0.00%

Effectiveness (%) 93.54% 93.63% 15.51% 0.00% 0.00%

Wobble (%) 0.47% 0.48% 0.58% 0.55% 0.68%

End-State Divergence (%) 0.18% 0.09% 0.16% 0.11% 0.20%

Percent Rise Time (%) 5.83% 5.93% 9.54% 15.42% 19.44%

Volume Efficiency 120.67% 121.13% 117.40% 117.43% 113.60%

Area Above Target Pressure (%) 0.06% 0.05% 0.00% 0.00% 0.00%

Area Below Target Pressure (%) 3.56% 3.56% 10.94% 14.61% 16.56%

Mean Infusion (%) 22.87% 22.92% 18.92% 17.35% 15.91%

Variable Infusion (%) 14.32% 14.99% 9.32% 11.51% 8.05%
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Table A5. Summary of statistical analysis for aggregate metrics averaged across all tested scenarios.
p < 0.05 indicated statistical significance. Values are italicized when this threshold was reached for
the particular comparison pairing.

Statical Analysis for Intensity Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5
DFL 1
DFL 2 > 0.99
DFL 3 0.7297 0.7323
DFL 4 <0.0001 <0.0001 <0.0001
DFL 5 <0.0001 <0.0001 <0.0001 0.3829

Statical Analysis for Stability Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5
DFL 1
DFL 2 >0.9999
DFL 3 0.3469 0.3405
DFL 4 0.9986 0.9983 0.4788
DFL 5 0.0128 0.0125 0.2509 0.0194

Statical Analysis for Resource Efficiency Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5
DFL 1
DFL 2 0.8266
DFL 3 <0.0001 0.0002
DFL 4 <0.0001 0.0001 0.9841
DFL 5 <0.0001 <0.0001 0.2548 0.4824

Statical Analysis for Average Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5
DFL 1
DFL 2 0.6678
DFL 3 0.2177 0.1343
DFL 4 0.043 0.0384 0.0426
DFL 5 0.0726 0.0705 0.0941 0.2818
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