
Citation: Faria, R.d.R.; Capron,

B.D.O.; Secchi, A.R.; de Souza, M.B.,

Jr. Where Reinforcement Learning

Meets Process Control: Review and

Guidelines. Processes 2022, 10, 2311.

https://doi.org/10.3390/pr10112311

Academic Editors: Jean-Pierre

Corriou and Francisco Vázquez

Received: 12 September 2022

Accepted: 1 November 2022

Published: 6 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Review

Where Reinforcement Learning Meets Process Control: Review
and Guidelines
Ruan de Rezende Faria 1,* , Bruno Didier Olivier Capron 1 , Argimiro Resende Secchi 2

and Maurício B. de Souza, Jr. 1,2

1 Escola de Química, EPQB, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
2 Programa de Engenharia Química, PEQ/COPPE, Universidade Federal do Rio de Janeiro,

Rio de Janeiro 21941-972, Brazil
* Correspondence: rrfaria@eq.ufrj.br

Abstract: This paper presents a literature review of reinforcement learning (RL) and its applications
to process control and optimization. These applications were evaluated from a new perspective
on simulation-based offline training and process demonstrations, policy deployment with transfer
learning (TL) and the challenges of integrating it by proposing a feasible approach to online process
control. The study elucidates how learning from demonstrations can be accomplished through
imitation learning (IL) and reinforcement learning, and presents a hyperparameter-optimization
framework to obtain a feasible algorithm and deep neural network (DNN). The study details a batch
process control experiment using the deep-deterministic-policy-gradient (DDPG) algorithm modified
with adversarial imitation learning.

Keywords: Markov decision process; imitation learning; transfer learning; process optimization

1. Introduction

Reinforcement learning is a machine-learning (ML) technique characterized by an
agent capable of self-learning in an environment guided only by numerical rewards [1].
Historically, its evolution was mainly related to artificial intelligence (AI), but it cannot be
ignored that RL is directly derived from optimal control theory [2,3]. Nevertheless, it was
a long time before the process-control community realized the potential of this technique
to address control, as reported in Hoskins and Himmelblau [4]. There was a reduction in
research incentives and state-of-the-art development at that time, as the results showed
a technique with inferior performance to the proportional–integral–derivative controller
(PID) that was also algorithmically complex, data-driven, and a black-box model.

This situation began to change in 2012 due to the consolidation of deep-learning (DL)
theory, in which deep neural networks (DNN) began to be used as feature extractors [5,6].
This allowed RL in problems with high-dimensional state space (i.e., deep reinforcement
learning (DRL)) such as, for example, cyber-physical systems (e.g., robot control; see
Wulfmeier et al. [7], Peng et al. [8]), fixed, strict and complex environments (e.g., AlphaGO;
see Silver et al. [9]; and AI in gaming; see Mnih et al. [10]), and large-scale environments
(e.g., Vinyals et al. [11]).

For these reasons, as reported in [12,13], the number of publications on RL applied
to process control began to grow again. The majority of the reported works are related to
batch operation (e.g., [14–17]), although there are also applications for cases of continuous
operation (e.g., [18–20]).

This paper presents a literature review on RL and addresses the online implementation
and maintenance of RL techniques to control and optimize batch and continuous processes.
At this point, model-based predictive control (MPC) theory and real-time optimization
(RTO) are well-established technologies for application in chemical processes considering
a decision-making scale of minutes and hours, respectively [21]. However, they depend

Processes 2022, 10, 2311. https://doi.org/10.3390/pr10112311 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10112311
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-3545-6676
https://orcid.org/0000-0001-5497-9769
https://orcid.org/0000-0001-7297-3571
https://orcid.org/0000-0002-1090-8958
https://doi.org/10.3390/pr10112311
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10112311?type=check_update&version=3

Processes 2022, 10, 2311 2 of 31

on complex models with periodic recalibration. Decisions are based on open-control-loop
simulations, with the process and economic constraints encompassing an entire unit. Under
these conditions, such integration may be unfeasible when the approach does not consider
the model mismatch, presents a long waiting time to reach the steady state and demands
high computational costs associated with the computation of the control actions [22–24].

Likewise, developing an RL agent (control policy) for application and maintenance
in an online process faces challenges similar to those discussed above. However, RL can
result in adaptive and low-computational-cost control (i.e., after training). Theoretically, it
seems to be an ideal technology for application in process control. However, it depends on
the evolution of theory to incorporate process constraints and to ensure a level of control
stability. It also needs extensive offline learning and requires adjustment of the deep neural
network and algorithms’ hyperparameters [1,25].

To take into account process constraints, three state-of-the-art developments can be
mentioned: (1) modifying the Markov decision process (MDP) framework to incorpo-
rate process constraints implicitly (e.g., Pan et al. [26]); (2) combining imitation learn-
ing and reinforcement learning to learn from demonstrations (e.g., Mowbray et al. [27]
used inverse reinforcement learning); (3) combining MPC and RL to obtain a control pol-
icy with the mutual benefits of the synergistic integration of both methodologies (e.g.,
Shah and Gopal [28], Alhazmi et al. [29], Kim et al. [30]).

Some review papers have addressed RL techniques applied to process control.
Buşoniu et al. [13] established a detailed review of the methodology. Badgwell et al. [31]
reviewed recent progress and implications for process control. Nian et al. [12] covered
applications to the process industry. Görges [32] analyzed the relationships between
model-based nonlinear predictive control (NMPC) and RL through tutorials. The present
article reviews RL from a new perspective on simulation-based offline training and process
demonstrations, policy deployment with transfer learning and the challenges of integrat-
ing it, by proposing a feasible approach to online process control. A control experiment
elucidates how learning from demonstrations can be accomplished through IL and RL.
A hyperparameter-optimization framework is proposed to obtain a feasible algorithm
and DNN.

This review starts in Section 2 with RL theory, DRL and the state-of-the-art algorithms
for DRL. Section 3 details simulation-based offline training and process demonstrations, and
policy deployment with transfer learning. Section 4 presents the challenges of implementing
reinforcement learning for process control. Section 5 presents an approach based on IL and
RL for a batch-process-control experiment. The review is concluded in Section 6.

2. Reinforcement Learning

Four distinct but complementary phases mark the historical evolution of the RL
methodology; in chronological order, they are [1,33]:

1. Definition of the term from animal psychology;
2. Analysis for optimal control theory and machine learning;
3. Evolution of training procedures and pattern recognition;
4. Development of DNN, powerful hardware, data availability and more stable algorithms.

References that are important for the evolution of RL theory or have influenced the
current literature are listed in Table 1. Difficulties in defining the learning elements, as
well as creating and implementing algorithms, were the main challenges during Phase 2.
Howard [34] was the first to propose a viable RL algorithm based on dynamic programming
(DP). In Phase 3, there was a return of interest in the field of AI in general [1], where devel-
opments for RL remain current, specifically with Q-learning and REINFORCE algorithms
and stochastic RL theory. Phase 4 is when RL algorithms incorporated DNN, in addition
to methodologies to store information in memory (i.e., buffer replay), in order to stabilize
training and improve convergence.

Processes 2022, 10, 2311 3 of 31

Table 1. Several historical references and application contexts.

Author Main Topic Approach

(Phase 1)
[35] Animal psychology Definition of RL

(Phase 2)
[2,3] Optimal control MDP, DP and Bellman’s equation
[36] AI Discussed RL models
[34] AI DP algorithm (policy iteration)
[37] AI Pointed out directions for the evolution of RL

(Phase 3)
[38] AI Neuro-like network
[39] AI Temporal difference (TD)
[40] AI Q-learning algorithm
[41] AI Stochastic RL algorithm
[42] AI REINFORCE algorithm

(Phase 4)
[10] AI RL in games (Atari)
[9] AI AlphaGo

2.1. Basics of RL

ML technologies are divided into three core classes: supervised learning, unsupervised
learning and reinforcement learning [25,43]. In supervised learning, knowledge about the
case study results from labeling its input and output features. An example of this is
classification and regression tasks where only cause (X) and effect (Y) are known; their
relationship is approximated (Y = f (X)) using some data-driven technique (e.g., neural
networks) that has adequate generalization and accuracy when applied to the case study.
On the other hand, unsupervised learning obtains information about the case study only
through knowledge of the cause (X), and it is not necessary to include knowledge in the
form of a “teacher” to label its effect (Y). A typical application is clustering [44].

RL differs significantly from those technologies discussed above. According to Sutton
and Barto [1], this is because RL does not require external interference in the form of
a “teacher” to explore its environment, and is also not limited to learning how input
data is distributed (p(X)). Instead, it learns the best way to keep up with a given task
through repeated interactions with its environment. This makes the task complex, as more
elements have to be studied to characterize the problem. However, it can make machine
learning automated.

Defining an RL problem depends on understanding its essential elements: agent, envi-
ronment and reward. A widely studied example is the bandit problem. This is a problem
in which a fixed limited set of resources must be allocated between competing choices
(i.e., actions (at)) in a way that maximizes their expected gain. In other words, the agent’s
objective is to maximize the rewards sum along the trajectory h = (a0, a1, · · · , aT) [45].

Although the definition of the RL problem seems to be simple, selecting which actions
are the best without any a priori knowledge about the environment is a challenging task.
Sutton and Barto [1] detailed that it is necessary to estimate the value of the actions (At) so
that it is possible to predict the most valuable actions in the long term. However, through
repeated executions of the bandit problem (episode), just selecting the k actions with the
highest value (exploitation) will likely lead to a sub-optimal expected sum of rewards
(Equation (1)), since RL does not explore enough combinations of actions throughout
the episodes, and neither approaches the expectation of Equation (1). The exploration–
exploitation trade-off dilemma is a classic problem in the RL literature. An alternative
would be to select some actions randomly at a specific rate, thus preventing the selection of
greedy actions and furthering exploration of the environment.

q∗(a) = E[R(h)|At = at] (1)

Processes 2022, 10, 2311 4 of 31

2.2. Mathematical Background
2.2.1. Definition

Mathematically, the RL problem is formulated as an MDP (Figure 1): a stochastic
sequential decision-making problem through the interaction of an agent with the envi-
ronment [3]. That is, the agent, faced with the current representation of the state of the
environment st ∈ S, executes strategies (policies) and implements the best action available
at that moment at ∈ A, which will result in the transition of the environment to a new state
st+1 ∈ S′, evaluated employing a reinforcement sign (Equation (2)).

rt = r(st, at, st+1) ∈ Rt (2)

Agent

Environment

Reward
rt

rt+1

st+1

State
st

Action
at

Figure 1. Simplified outline of the RL process.

For the case of continuous variables, the stochastic elements of this process include the
initial condition of the state s, in the form of Equation (3). In this equation, the probability
density function returns probability values for all possible states belonging to the set S.

p(s) ≥ 0, ∀s ∈ St∫

s∈St
p(s)ds = 1

(3)

The probability transition from state s to state s′ when action a is taken (state transition)
defines the conditional probability density function p(s′|s, a) (Equation (4)).

p(s′|s, a) ≥ 0, ∀s, s′ ∈ St+1, ∀a ∈ At∫

s′∈St+1

p(s′|s, a)ds′ = 1, ∀s ∈ St, ∀a ∈ At
(4)

The decision made by the agent is determined by a policy (π), which aims to map
states to actions. In other words, it is a rule for deciding what to do given the current state
of the environment, and is robust enough to specify what to do in any situation and for the
entire state space. When using a deterministic policy, the action to be taken in each state is
unique, as shown in Equation (5).

π(s) ∈ At, ∀s ∈ St (5)

On the other hand, when the action to be taken in each state is stochastic, such a policy
is a function of the conditional probability density of taking action a in-state s, as shown in
Equation (6) [1,33,40].

π(a|s) ≥ 0, ∀s ∈ St, ∀a ∈ At∫

a∈At
π(a|s)da = 1, ∀s ∈ St

(6)

Processes 2022, 10, 2311 5 of 31

2.2.2. Optimization Objective

The sampling of the trajectory (h) of the MDP is illustrated in Figure 2. This sampling
is an extension of Markov chain processes, in which the current state of the system (st)
must contain all the information needed to decide which action (at) to take, resulting in the
subsequent transition to the new state st+1, making it unnecessary to know about actions,
states and rewards selected in the past. Hence, the agent’s objective is to maximize the
reward sum along the trajectory h, known as return [40]. Generally, the choice is between
three alternatives known as total reward, average reward and discounted reward, the latter
being the most common choice according to Sutton and Barto [1]. The corresponding return
associated to a trajectory h is defined by Equation (7).

R(h) =
T

∑
t=1

γt−1r(st, at, st+1) (7)

Initial state

s1 ∼ p(s)

Agent

at ∼ π(at|st)

Transition

st+1 ∼ p(st+1|st, at)

t = t + 1

If t = T

Trajectory

h = [s1, a1, · · · , sT , aT , sT+1]

Figure 2. Trajectory sample generation.

In this equation, γ is a parameter known as the discount factor (ranging between 0
and 1), which determines the present value of future rewards. When γ = 0, the agent acts
“greedily”, maximizing the reward obtained in the next step, whereas if γ = 1, the agent
will emphasize all future rewards equally, corresponding to the total reward alternative,
or to the average reward when this return value is divided by T. Additionally, values of γ
much less than 1 can make future reward values eventually negligible [31,40].

According to the logical sequence of Figure 2, the objective of RL-based methodologies
is to learn an optimal policy that, regardless of the chosen initial state s1, will produce as
much of the return value as possible starting from that state (Equation (8)).

π∗ = argmax
π

Epπ(h)[R(h)] (8)

Processes 2022, 10, 2311 6 of 31

In this equation, Epπ(h) denotes the expectation about the trajectory h extracted from
pπ(h), and pπ(h) denotes the probability density of observing the trajectory h under policy
π (Equation (9)).

pπ(h) = p(s1)
T

∏
t=1

p(st+1|st, at)π(at|st) (9)

The procedure for computing the optimal policy π∗ is not an obvious task due to the
problem of sequentially defining actions that can result in delayed rewards. Because of
this difficulty in determining which actions are right or wrong, it can be challenging to
decide which changes have to be made to improve the suboptimal policy. Therefore, it is
necessary to have efficient ways of discovering changes to the employed policy so that it is
improved [40,42,46].

2.2.3. Algorithms

Approaches employing value function are a traditional way to learn optimal policy.
The overall objective of value functions is to approximate the return value for all possible
trajectories (h) to improve the employed policy (π). When only the state value is taken for
the computation of the value function, it results in Equation (10), while if the action value
is also included, Equation (11) is obtained.

Vπ(s) = Epπ(h)[R(h)|s1 = s] (10)

Qπ(s, a) = Epπ(h)[R(h)|s1 = s, a1 = a] (11)

Howard [34] proposed the first viable algorithm to approximate the RL problem. How-
ever, it considered Epπ(h)[R(h)] as known and was specific to low-dimensional and com-
pletely specified problems. First, it calculates the optimal value function (policy evaluation)
and then improves the optimal policy (policy improvement). When the “value” of the state (s)
is used for this purpose, the steps of the algorithm are in the form of Equations (12) and (13),
respectively, with δ representing the Dirac delta function.

Vπ(s) = Epπ(h)[r(s, a, s′) + γVπ(s′)] (12)

π∗(a|s) = δ(a− aπ(s))

aπ(s) =argmax
a∈At

Epπ(h)[r(s, a, s′) + γVπ(s′)] (13)

The other option is to use the value function of the state–action pair, such that the
optimal policy depends on Equations (14) and (15), respectively.

Qπ(s, a) = r(s, a) + γEπ(a′ |s′)p(s′ |a,s)[Q
π(s′, a′)] (14)

π∗(a|s) = δ(a− argmax
a′∈At

Qπ(s, a′)) (15)

Considering a model-free RL approach (i.e., when a model of Epπ(h)[R(h)] is not
available), it is not easy to learn from sampled data, especially when the state and action
space is continuous [1]. One alternative is to approximate the value function of the state–
action pair in the form of Equation (16) (i.e., approximate RL) to improve generalization
and deal with the dimensionality problem. In this equation, φ(s, a) is the base function
vector and θ is the parameter to be adjusted.

Qπ(s, a, θ) =
T

∑
t=1

φi(s, a)θi = φT(s, a)θ (16)

Processes 2022, 10, 2311 7 of 31

The problem now is to estimate θ to minimize Equation (17), using Monte Carlo (MC)
or temporal difference estimates for Qπ(s, a) [31].

θ∗ = argmin
θ

[Qπ(s, a, θ)−Qπ(s, a)] (17)

Approximating Qπ(s, a) by temporal difference is a good choice because it is a combi-
nation of Monte Carlo ideas and dynamic programming (Equation (18)). As in Monte Carlo
methods, temporal difference methods can learn directly from current experiences without
an environment model. As in dynamic programming, temporal difference methods update
estimates based in part on other learned estimates without waiting to complete their search
for the entire state and action space (i.e., using bootstrapping) [1].

Qπ(s, a) = r(s, a) + γQπ(s′, a′, θ) (18)

A policy gradient is an alternative to deal with some limitations of value-based
methods, mainly when it is crucial to consider the physical system’s stability criteria.
An example of this is control tasks in which the agent must compute continuous actions [1].
Unlike what is seen in value-based approaches, the optimal auto-parameterized policy
(θ∗) should maximize the expected return J(θ) (Equations (19)–(21)). However, directly
maximizing J(θ) can be difficult due to the high nonlinearities for θ; thus, it is necessary to
improve and adapt solutions based on methods of the gradient, so that at least a feasible
local optimum is found.

θ∗ = argmax
θ

J(θ) (19)

J(θ) = Epπ(h|θ)[R(h)] =
∫

p(h|θ)R(h)dh (20)

p(h|θ) = p(s1)
T

∏
t=1

p(st+1|st, at)π(at|st, θ) (21)

2.3. Deep Reinforcement Learning

Two achievements were essential for DL and RL theory development. First,
Hinton et al. [6] demonstrated that it is possible to learn a model capable of classify-
ing image classes without any pre-processing, mainly in the form of feature extractors
to deal with the invariance dilemma [44]. Afterwards, Mnih et al. [10] developed a DRL
algorithm for the Atari 2600 game platform, which in some cases surpassed the scores of
human players and could address new situations distinct from those previously used for
training. Specifically speaking, some general advances are listed below:

• Using elements of the mathematical theory of communication in terms of encoding
information based on entropy [47];

• Updating DNNs to operate on different dynamic forms of the data distribution in
space and time [25];

• Updating gradient descent (GD) and backpropagation algorithms;
• Since 2012, the DRL methodology has moved towards more stable, adaptable and

robust optimization algorithms, thus avoiding obtaining time-correlated samples
with a high variance which, in effect, could result in sub-optimal and divergent
policies [1,48];

• Advances in parallel and distributed computing;
• Open-source software (e.g., Python code).

2.3.1. Deep Q-Learning

Approximating Epπ(h)[R(h)] with Q-learning depends on the number of combinations
of valid actions and states required for MDP sampling. The use of tabular methods is

Processes 2022, 10, 2311 8 of 31

indicated by the limit on the number of updates of all states and actions that can be
efficiently performed individually. On the other hand, with parametric approximators,
the update of the value function for each state–action pair individually also influences the
estimate of the value function for the other state–action pairs, thus giving it a capacity
for generalization that makes the learning process more powerful, but potentially more
challenging to manage and understand [1,25,46].

Within this perspective, in DNNs, updating the value function of each state–action
pair is conducted following Equations (22) and (23). The TD technique is used for the value
function evaluation (i.e., TD(0)) and defines the loss function (Lt), with backpropagation
and stochastic descending-gradient algorithms to update the neural-network parameters
(θ). As a result, Sutton and Barto [1] did not expect to find a value function with zero error
for all states. But an approximation that balances the errors in different states.

Lt =

{
[rt + γ maxa′Q(st+1, a′, θt)]−Q(st, at, θt)

}2

(22)

θt+1 = θt + α

{
[rt + γ maxa′Q(st+1, a′, θt)]−Q(st, at, θt)

}
δQ(st, at, θt)

δθt
(23)

Figure 3 presents a simplified scheme describing the procedure for training the critic
network (i.e., until each episode of size T ends). It is an iterative procedure in which the
sampled initial state is restarted after the completion of each episode of size T, depending
on how the environment was constructed and the rewards were formulated (e.g., setting
a threshold a priori for accumulated rewards, or declaring state transitions considered

impossible or unfeasible) [25]. In addition, in the terminal state, the target value
∧
yt = rt.

Initial state
Agent Transition

Step ForwardStep backward

until

Softmax

-greedy

Equations (22) and (23)

Figure 3. Simplified diagram describing the training procedure of a critic (Q-learning) parameterized
by a DNN.

In its original form, the procedure described above may result in inadequate learning

because the target
∧
yt is never exactly approximated in the forward step. It can result

in a critic with divergent policy for overestimating
∧
yt, leaving some amount of residual

TD-error (δt =
∧
yt − yt). In Equation (24), the dispersion of the critic estimates depends on

its complexity, variance of future rewards and the TD-error, accentuated by the value of
γ ∼ 1 [48–50].

Q(st, at, θt) = rt + γE[Q(st+1, at+1, θt+1)]− δt

= rt + γE[[rt+1 + Q(st+2, at+2, θt+2)]− δt+1]− δt

= Epπ(h)

[T

∑
i=t

γi−t(ri − δi)

] (24)

The alternatives proposed in the literature to alleviate the mentioned problems are:

Processes 2022, 10, 2311 9 of 31

• Controlling the exploratory component of the critic model used by the agent (e.g.,
softmax or ε-greedy [46])) will contribute to adequately exploring enough transitions of
state, avoiding obtaining sub-optimal policies;

• Using experience replay to reduce the effect of temporal correlations between transi-
tions uniformly sampled at random from the buffer, which allows estimating θ with
important dynamic information [10];

• Updating from the target value
∧
yt with delayed (or filtered) copies of the original

DNN (i.e., θt+1 = κθt + (1− κ)θt+1) [48].

2.3.2. Deep Policy Gradient

During the development of RL theory, new complementary methodologies emerged
to overcome the main limitations of methods based on value function, which are a conse-
quence of using a deterministic model to select the actions. Thus, it was difficult to obtain
a stable model since small changes made in the estimation of the value function led to
significant changes in the action performed by the agent. Therefore, an under-optimized
and inadequate critic for exploiting states and actions was obtained [51–53].

Historically, policy-gradient methods were the first option developed to deal with
such disadvantages. They are stable compared to value-based methods, as they use an auto-
parameterized policy known as an actor and implement the actions without employing a
critic, allowing them to approach stochastic dynamics and learn in a more stable way from
the interaction between agent and environment.

Mathematically, they inherit concepts from Equations (17)–(19), in which the challenge
is to carry out the optimization of J(θ) simultaneously with the exploration of more reward-
ing actions and states for R(h). For that purpose, the most-used technique is the ascending-
gradient-optimization algorithm (Equation (25)), which depends on a new approximation
for Equation (19), aiming to compute the gradient with relation to the chosen parameterized
model (Equation (26)) [33]. According to Sutton and Barto [1] and Grondman et al. [54], the
solution of this last equation results from the policy-gradient theorem, which explains
that the unknown effect of changes in π(at|st, θ) over the state distribution p(h|θ) does
not involve its derivative (Equation (27)), so its expectation can be approximated by the
empirical average in the form of Equation (28), where hn = [s1,n, a1,n, · · · , sT,n, sT+1,n].

θt+1 = θt + α∇θ J(θt) (25)

∇θ J(θ) =
∫
∇θ p(h|θ)R(h)dh

=
∫

p(h|θ)∇θ log p(h|θ)R(h)dh

=
∫

p(h|θ)
T

∑
t=1
∇θ log π(at|st, θ)R(h)dh

(26)

∇θ J(θ) = Epπ(h|θ)

[T

∑
t=1
∇θ log π(at|st, θ)R(h)

]
(27)

∇θ J(θ) =
1
N

N

∑
n=1

T

∑
t=1
∇θ log π(at,n|st,n, θ)R(hn) (28)

The actor categorizes actions instead of their value π(at|st, θ), and there is no way to
compute ∇J directly using gradient-based optimization techniques. Because of this, the
Monte Carlo simulation approximates the value of Equation (28) (i.e., random sampling
N episodes of size T). As a result, the actor is updated by Equation (25), where R(hn) is
directly proportional to ∇θ J, and log π(at,n|st,n, θ) is inversely proportional to the policy
adopted (i.e., it follows from the identity ∇ ln x = ∇x

x), as actions sampled with frequency
are chosen even if they do not produce the highest expected return [1,13,25,33,54].

Processes 2022, 10, 2311 10 of 31

For example, training with the REINFORCE [42] algorithm requires the execution
of a very large number of cycles, as represented in the diagram shown in Figure 4
(i.e., when dim(T) ∼ inf), which is computationally unfeasible for some online appli-
cations [1,25]. Therefore, it uses a baseline to reduce variance, similar to the temporal-
difference-learning methodology. For example, Williams [42] used a constant to represent
it (e.g., mean reward). However, it is more appropriate to employ a state-specific option,
with the value taken immediately before the actor samples the action.

Initial state
Actor Transition

Monte Carlo
Step backward

until

Equation (25)
Equation (28)

Figure 4. Simplified diagram describing the REINFORCE algorithm.

2.3.3. Deep Actor–Critic

The actor–critic methodology evolved due to the individual limitations of the methods
based on the policy gradient and value function (Figure 5). Historically, it first addressed
adaptive elements consisting of an associative search element and an adaptive critic ele-
ment [38]. However, they were not yet structured in an actor combined with a critic. This only
happened after formulating the policy-gradient theorem [51], which guaranteed convergence
for both methodologies. Currently, its methodology stands out as a complete approach to RL
(e.g., see algorithms developed in the works of Silver et al. [48], Fujimoto et al. [50], Ramicic
and Bonarini [55] and Haarnoja et al. [56]), as they add the advantages of methods based
on the value function for accelerating training and reducing variance while maintain-
ing stability and convergence properties resulting from policy-gradient methods during
training [1,54].

Version October 29, 2022 submitted to Processes 11 of 31

maintaining stability and convergence properties during training resulting from policy 314

gradient methods [1,54]. 315

Policy Value

A
ctor-critic

Figure 5. Venn diagram of the methods that constitute the actor-critic methodology.

Mathematically, the main difference concerning policy gradient methodology is the 316

replacement of the complete return (e.g., obtained with Equation (28)) by the return in one 317

time step. According to Benhamou [57], the algorithms must remain unbiased concerning 318

the approximation of Equation (28) and follow the principle of control variant, where R(h) 319

is replaced by TD methods such as TD(0), Sarsa(0) and Q-learning; or by methods based on 320

advantage, according to Equation (29). 321

A(s, a) = Eπθ

[
rt+1 + γV(st+1|st = s, at = a)

]
− V(st) (29)

This paradigm for DNN is shown in Figure 6, with the actor selecting the action at. 322

After this step, the critic weighs the descending gradient in the algorithm for updating 323

θa(t + 1) (e.g., Q-AC, TD-AC, A-AC). In the backward step, Equation (30) characterizes 324

the updating of the actor’s parameters. Additionally, the critic updates the values of 325

such actions (Equation (31)). At the end, both parameterized models must achieve good 326

generalization so that the actor does not get stuck around sub-optimal solutions, and the 327

critic minimizes the residual TD-error, as seen in the form of Equation (24) [1,13,25]. 328

Initial state
Actor Transition

Step Forward
Step backward

until

Equations (30) and (31) Q-AC, TD-AC

Figure 6. Simplified diagram describing the training procedure of a critic and actor parameterized by
a DNN.

θa(t + 1) = θa(t) + αaQ(st, at, θc)∇θa log(π(at|st, θa)) (30)

δt = rt + γQ(st+1, at+1, θc)− Q(st, at, θc)

θc(t + 1) = θc(t) + αcδt∇θcQ(st, at, θc)
(31)

2.3.4. State-of-the-art algorithms 329

Dating from 2012, the created algorithms are mainly categorized as off-policy or on- 330

policy. The former defines a learning process in which the policy update and prediction are 331

disassociated. Such a paradigm is shown in Figure 7, where πk+1 is updated from samples 332

Figure 5. Venn diagram of the methods that constitute the actor–critic methodology.

Mathematically, the main difference concerning policy-gradient methodology is the
replacement of the complete return (e.g., obtained with Equation (28)) by the return in one
time step. According to Benhamou [57], the algorithms must remain unbiased concerning
the approximation of Equation (28) and follow the principle of the control variant, where
R(h) is replaced by TD methods such as TD(0), Sarsa(0) and Q-learning; or by methods
based on advantage, according to Equation (29).

A(s, a) = Eπθ

[
rt+1 + γV(st+1|st = s, at = a)

]
−V(st) (29)

Processes 2022, 10, 2311 11 of 31

This paradigm for DNN is shown in Figure 6, with the actor selecting the action at.
After this step, the critic weighs the descending gradient in the algorithm for updating
θa(t + 1) (e.g., Q-AC, TD-AC, A-AC). In the backward step, Equation (30) characterizes
the updating of the actor’s parameters. Additionally, the critic updates the values of
such actions (Equation (31)). At the end, both parameterized models must achieve good
generalization so that the actor does not becomes stuck around sub-optimal solutions and
the critic minimizes the residual TD-error, as seen in the form of Equation (24) [1,13,25].

θa(t + 1) = θa(t) + αaQ(st, at, θc)∇θa log(π(at|st, θa)) (30)

δt = rt + γQ(st+1, at+1, θc)−Q(st, at, θc)

θc(t + 1) = θc(t) + αcδt∇θcQ(st, at, θc)
(31)

Initial state
Actor Transition

Step Forward
Step backward

until

Equations (30) and (31) Q-AC, TD-AC

Figure 6. Simplified diagram describing the training procedure of a critic and actor parameterized by
a DNN.

2.3.4. State-of-the-Art Algorithms

Dating from 2012, the created algorithms are mainly categorized as off-policy or on-
policy. The former defines a learning process in which the policy update and prediction are
disassociated. Such a paradigm is shown in Figure 7, where πk+1 is updated from samples
of policy rollout data up to πk (i.e., π1, · · · , πk), which are contained in a large buffer. On
the other hand, the latter defines a process where prediction and update are associated
so that the rollout data to update the policy πk+1 is exclusively taken from the previous
policy (i.e., πk), meaning that it does not depend on a buffer [1,49]. Some key examples are
detailed below:

• Deterministic policy gradient (DPG) (i.e., actor–critic and off-policy). According to
Silver et al. [48], this is an adaptation to the policy-gradient and Q-learning algorithms,
since the stochastic component intrinsic to the policy-gradient algorithms (π(st, at))
has a parameterized function in the form of π(st, µθ(st)), while depending on the
computation of gradients to approximate the optimal values of a∗ and Q(s, a)∗, which
is guaranteed according to the deterministic-policy-gradient theorem, as shown in
Equation (32):

Processes 2022, 10, 2311 12 of 31

∇J(µθ) = Epπ(h|µθ)

[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
; (32)

• Deep deterministic policy gradient (DDPG) (i.e., actor–critic and off-policy) [58]. This
is an updated version of the DPG algorithm regarding the use of DNN, replay buffer,
target networks and batch normalization, in addition to the possibility of handling the
exploration problem independent of the learning algorithm used;

• Proximal policy optimization (PPO) [59]. Contrary to the algorithms above (i.e.,
off-policy), PPO is an algorithm that learns while interacting with the environment
over different episodes (i.e., on-policy). Methodologically, this property comes from
another similar algorithm considered more complex (trust region policy optimiza-
tion (TRPO)), addressing the Kullback–Leibler (KL) divergence effect and surrogate
objective functions;

• Soft actor–critic (SAC) (i.e., actor–critic and off-policy) [56]. This algorithm is com-
posed of an actor and a critic, and includes a smooth value function, which is responsi-
ble for stabilizing the training of the actor and the critic. In addition, it also has similar
properties to the DDPG algorithm; however, it adds an entropy value to compose
the buffer.

Simulation

buffer (D)

update

rollout data

Figure 7. Off-policy reinforcement learning.

3. Reinforcement Learning for Process Control

For the definition of the MDP, it is crucial to understand the dynamics of the process
rather than just focusing on the RL agent itself. This article uses batch and continuous
operating regimes as case studies. The main difference between them lies in consider-
ing a single operating point in continuous operation. From a process-control point of
view, for both operating regimes, it is difficult to establish a robust methodology to ac-
count for the effects of the process uncertainty, with model-based (MPC) or data-based
approaches [12,13,32]. At this point, the analyzed RL paradigm comprises methodologies
that rely on extensive offline training, both simulation-based and data-driven, and how
to implement the control policy with transfer learning. It is illustrated in Figure 8, where
Modules (1) and (2) characterize the offline training phase. In contrast, Module (3) char-
acterizes the deployment phase of the policy obtained in the preceding phase (πS + πE).
Explicitly speaking, Module (1) defines a type of training known as off-policy, demanding
a reliable model from the process. The obtained policy πs = πk+1 is updated through
samples stored in a large buffer, which is appended from samples (i.e., rollout data) taken
from other policies π0, π1, · · · , πk. On the other hand, Module (2) learning depends on a
fixed policy sample (πβ), which can be either known or unknown, to fill the buffer. Thus,
the final policy πE will equal the base policy πβ, characterizing a learning process similar
to supervised learning. However, information from the process can be helpful to delimit
the exploration and exploitation of agents trained from it.

Processes 2022, 10, 2311 13 of 31

Simulation

buffer (D)

update

rollout data

data-driven

buffer (E)

learn

training phase

data-driven

Deployment

Figure 8. Diagram describing the modules for offline agent training (Modules (1) e (2)) and process-
line deployment (Module (3)).

3.1. Defining Elements of RL

Whether the operating regime is continuous or batch, the RL elements compose a
non-stationary MDP with an agent acting under uncertainty. According to RL theory, the
state considered in the design of the MDP must be Markov, and implicitly contains all
the relevant information of the past, which may not be the case for a batch or continuous
process, as the prediction of the future will also depend on a few past states. For example,
Yoo et al. [16] used a phase-segmentation strategy for a polymerization process, in which
the MDP consists of RL elements for each phase of the process. Furthermore, they used
historical information by adopting the DDPG algorithm with an MC estimator instead of
TD(0). Nian et al. [12] defined the RL elements for an experiment to set-point tracking
control, and they considered it crucial to modify the reward function to avoid its saturation
due to the size of the time horizon (i.e., T = 2000). They also increased the dimension of
the state–action pair to contain historical information (i.e., with a delay of one or two steps
in time) and stabilized the training with the DDPG algorithm. Petsagkourakis et al. [14]
addressed a process with batch-to-batch dynamics. To that end, they included historical
information from the state–action pair to compose the input vector, which is fed to the
REINFORCE algorithm (i.e., sk, sk−1, ak, ak−1, t). It is parameterized by a vanilla recurrent
neural network (VRNN). It uses an MC estimator, storing historical information by the
recurrence of VRNN hidden states and approximating the return considering the entire
process trajectory.

The examples cited above assume that the current state of the system is observable,
which is desirable to approximate the MDP without relying on historical information
to predict the state transition. An extension of this is called partially observable MDP
(POMDP) [60]. It is still not a critical problem for process control with RL, as there is an
offline training step in which an attempt is made to reduce the interference of hidden states,
adding to the acquired data experience, to obtain the control policy to be implemented in
the actual process.

Under all the conditions mentioned above, there may still be incompatibilities between
offline and online MDP elements, especially given the stochastic nature of the online
process. An alternative is to combine RL techniques with IL and TL. The former can
augment the MDP with data-driven information, thereby implicitly including factual
process information about control objectives and constraints. The latter helps compose the

Processes 2022, 10, 2311 14 of 31

online MDP by transferring information from the offline MDP and then starting to learn
from a condition that is at least sub-optimal.

3.2. Batch Process

Batch processes are intrinsically dynamic, as the operation point constantly changes
between the start-up and the end of the batch. This operation regime is specific to units
in which the processed load volume is relatively small compared to units operating in a
continuous regime, in addition to being multi-objective regarding the processing steps
in order to reach the desired end product. Therefore, understanding this dynamic is not
simple, as there may be several challenges to adopting an adequate control structure in this
context, especially considering technical problems related to [61–63]:

• Modeling: processes in batches normally exhibit nonlinear dynamics;
• Measurements: these are typically only available at the end of the batch;
• Uncertainty: present in practically all batch processes, whether resulting from reactant

quality, modeling errors, process disturbances and measurement errors;
• Constraints: there is usually the added effect of terminal constraints and the existing

security and operational constraints.

Optimizing a control structure can be challenging, as it depends on managing all
the issues discussed above. In this context, Bonvin [61] and Arpornwichanop et al. [63]
commented that the most appropriate option for dynamic optimization of such processes
is based on uncertainty, measurement and model-free optimization.

Therefore, the RL methodology can be a viable option for the dynamic optimization of
these processes. Specifically speaking, the control of robots by RL agents is conceptually
similar to the control of batch processes. Hence, the number of applications aimed at
batch process control is increasing due to the structure of the optimization problem being
easily adaptable.

For example, Petsagkourakis et al. [14,15] analyzed the optimization of batch bio-
processes using the REINFORCE algorithm, adapting it to handle continuous domains
by using an agent with control outputs represented by a multivariate normal distribution.
At the end, the control structure only includes Modules (1) and (3), with a batch-to-batch
configuration, in which the policy initially obtained in (1) (i.e., in the simulated environment
πS), is updated in (3) according to each new batch made (π1

S, · · · , πN
S). For this, the policy-

transfer technique is used so that the actor approximated by DL in π1
S as the batch progresses

results in a new agent with updated weights π2
S until the batches are completed, πN

S .
Mowbray et al. [64] also analyzed batch bio-processes. They included process con-

straints to define the MDP (Module (1)) and proposed the entropy-regularized proximal-
policy-optimization algorithm instead of the REINFORCE algorithm to stabilize training in
the deployment phase (Module(3)).

Oh et al. [65] proposed an integrated algorithm of a double-deep Q-network and
model predictive control. The proposed method learns the action–value function in an
off-policy fashion (i.e., Module (1)) and solves the model-based optimal control problem
where the terminal cost is assigned by the action–value function (Module (3)).

Yoo et al. [16] analyzed the control problem of a batch process using an RL agent with
the DDPG algorithm and Monte Carlo sampling instead of TD (i.e., polymerization process).
Likewise, the controller design depends only on Modules 1 and 3. The policy is obtained
in the simulated environment given different process conditions, and is segmented into
phases to facilitate the definition of learning elements and interaction between agent and
environment. Then, the trained policy was applied online and proven efficient under new
process conditions.

Although applications for batch processes with RL can be used to replace standard
approaches (e.g., with MPC methodologies), the most significant difficulty for its imple-
mentation is in the proper design of the offline training phase, followed by the deployment
of the obtained policy. Additionally, it is currently common to have measurements of the
dynamics of the process and control actions, which enables the inclusion of Module (2)

Processes 2022, 10, 2311 15 of 31

applied in the offline training of the RL agent. This allows obtaining an RL agent with
information about the actual process, including process constraints and control objectives.

3.3. Continuous Process

On the other hand, for continuous process control, reaching a steady state is essential
to meet the plant optimum and evaluate the process trajectory rather than just considering
the final optimization objective. Contrary to the batch process, measurements and good
models are prerequisites for an effective approach to the problem, given that the operation
is practically uninterrupted. Currently, the problem may be that the benefits achieved
by following an optimal steady-state trajectory may not be economically the most viable
path, as can be evidenced in the chemical industry’s hierarchical structure for process
optimization and control at the descending decision-making scale level: RTO, supervisory
control, regulatory control and process. Namely, the RTO layer depends on a rigorous
process model with hour-scale control decisions. When the new optimal values for other
layers are not transmitted, they may operate in a sub-optimal stationary condition, causing
economic losses [12,13,21,66].

Based on this, Ellis et al. [66] pointed out the advantages and disadvantages of an
alternative methodology called economic model-based predictive control (EMPC), which
implicitly accounts for the effect of economic cost based on a less rigorous model of the
process, but with minute-by-minute control decisions, in such a way that it dispenses
with the optimization layer of higher-level processes (e.g., RTO). However, they found
that the path for its consolidation, similar to MPC, is still open, due to the difficulty of
meeting the economic objective of optimization while addressing restrictions, uncertainties,
measurement noise and process disturbances. These challenges are also problems for RL-
based methodologies, as it is intrinsically related to the field of AI, in which the objective is
to achieve the greatest possible return regardless of the trajectory followed.

Table 2 summarizes the main state-of-the-art developments regarding RL applied to
continuous process control, where the implementation and training details of the agent
(i.e., control algorithm, learning method, value function evaluation method) applied in the
process are shown for each reference cited.

Table 2. Several references related to the control of continuous processes.

Author Control Algorithm Learning Estimator Process

[18] Deep actor–critic Off-policy (1) TD(0) CSTR
[67] Deep Q-learning Off-policy (1) TD(0) Conical tank systems
[68] Deep Q-learning Off-policy (1) TD(0) Liquid–liquid separation
[30] MPC plus DRL Online MC Nonlinear control-affine system
[28] MPC plus DRL Online — Nonlinear process
[69] MADDPG Off-policy (1) TD(0) and TD(λ) Waste treatment
[70] A2C Off-policy (1) TD(0) Hydrocracking
[20] A3C Off-policy (1) TD(0) Hybrid tank system

In general, all control algorithms are parameterized by DNNs for the actor and critic,
as they have already proven to be efficient in handling large and complex data [10]. Further-
more, only Ramanathan et al. [67] and Hwangbo and Sin [68] have employed value-based
methods, while the other authors used algorithms derived from actor–critic methods.
The explanation for this is the benefit of integrating an actor to decide the control actions
weighted by a critic, accelerating the learning process while reducing the variance of actions
selected by the actor resulting from TD methods.

Processes 2022, 10, 2311 16 of 31

Except for Shah and Gopal [28] and Kim et al. [30], other authors cited employed
off-policy learning, with the index (1) referring to training carried out in a simulated envi-
ronment. The practicality of the offline training step depends on a simulated environment
that is trustworthy, allowing the testing of various process conditions. Furthermore, TD
methods are preferable to MC methods precisely because they combine MC and DP ideas
to obtain process estimates and can be improved with eligibility traces (λ), which is a way
of weighting between TD(0) “targets” and Monte-Carlo “returns”.

Another important consideration is the agents used by Dogru et al. [20], Chen et al. [69]
and Oh et al. [70], who developed control structures with agents learning asynchronously.
The A2C and A3C algorithms are variations of the actor–critic algorithm with agents
learning asynchronously, with two or three agents in parallel [71]. In multi-agent DDPG
(i.e., MADDPG with two agents), the training is decentralized regarding the control actions
taken by each actor, while it is centralized by only one critic to evaluate the actions taken by
each actor. Thus, such approaches allow agents with competitive and cooperative control
objectives to improve offline learning and facilitate deployment in the entire process, as
seen in Chen et al. [69].

Powell et al. [18] innovated by proposing the first algorithm for RTO. They employed
an agent with a deep actor–critic algorithm and replaced the standard descending gra-
dient optimization algorithm with the particle swarm method, justifying it as a global
optimization method.

3.4. Policy Deployment with Transfer Learning

The transfer-learning methodology is about the process of reusing and transmitting
information obtained by a specific agent (e.g., animals, robots or human beings), which is
trained in a particular environment (i.e., source task), in another unexplored environment
(target task). According to DL theory, TL (i.e., through a DNN) relaxes the assumption
that training data should be independent and identically distributed with test data, which
motivates using it against the problem of insufficient training data. As a result, what would
be the benefits of using this approach for RL (e.g., see Tan et al. [72] for more details)?
Briefly, in principle, it could result in an improvement in the sampling efficiency of RL
methodologies applied to an online problem, in which there are usually few samples
available to train the agent and obtain a suitable policy [72,73].

The definition of transfer-learning methodology depends on the similarity between the
analyzed tasks, in other words, the similarity between the offline MDP (i.e., source task, ΓS)
and the online MDP (i.e., target task, ΓT). In the literature, this is called inductive transfer
learning when the tasks and rewards are different (i.e., ΓS 6= ΓT and rS 6= rT), despite
having the same state and action space (DS = DT). It is called transductive transfer learning
when ΓS = ΓT , rS = rT and DS 6= DT [74]. For both scenarios, TL must improve initial
performance, learning performance, asymptotic performance and convergence [73–75].

TL methods aim to improve the learning and sampling rate in an online MDP, as it
is impractical to learn while exploring the real environment in process-control applica-
tions. In Table 3, several references on TL for RL are summarized, giving a view of the
techniques and leading control-oriented applications that may be promising for process
control. Zhu et al. [76] analyzed the different ways the TL process can take place in an RL
context. In general, they categorized the approaches by distinguishing them according to
what is learned, namely: through demonstrations (learning from demonstrations (LD));
assigning external knowledge to reconstruct target domain reward distributions to guide
agent learning (reward shaping (RS)); using external knowledge of pre-trained policies
from one or multiple source domains (policy transfer (PT)); using inter-member transfer
learning (inter-task mapping (IM)).

Processes 2022, 10, 2311 17 of 31

Table 3. Several references on TL for RL to robot control-oriented.

Author TL Methodology Environment

Wulfmeier et al. [7] RS and LD Robot control-oriented
Peng et al. [8] PT Robot control-oriented
Yan et al. [77] LD with IL Robot control-oriented

Christiano et al. [78] LD with IRL Robot control-oriented
Joshi and Chowdhary [75] RS and PT OpenAIGym

Kostrikov et al. [79] LD with AIL Robot control-oriented

The most employed TL methodology for the RL-based control of batch and contin-
uous processes is the policy-transfer technique, which is similar to the approach used in
Peng et al. [8] (e.g., see [16–18,80]). It depends on a reliable process approximation for
extensive offline learning before application to the real process.

For example, Petsagkourakis et al. [14] implemented this TL methodology to develop
an RL-based controller for a biochemical batch process. First, they obtained the optimal
policy for the simulated environment. Then, they applied it online by allowing the output
layer of the DNN to learn from consecutive batches while freezing the remaining layers.
Mowbray et al. [27] developed a TL framework employing an inverse RL technique, which
allowed them to analyze historical process data for synchronous identification of a reward
function and then obtain the control policy in a step before its application in the online
process. According to the work’s objective, this was proven necessary, as the proposed RL
agent started the learning process following the policy already obtained in the previous step.

The other forms of TL in RL (e.g., RS, LD, IM) have still not been significantly explored
because they combine all forms of learning and obtaining a stable policy therefore becomes
challenging. An example of these difficulties is the inclusion of the process constraints.
However, this is the way forward in chemical processes in the future, as it will result in a
more efficient and faster control agent to adapt to changes in the process dynamics [12,32].

3.5. Conclusions about RL for Process Control

In general, offline learning methods take advantage of both simulated and process
data. Pan et al. [26] and Mowbray et al. [27] developed methodologies enabling Modules
(1), (2) and (3) shown in Figure 8, which is the way forward for the design of RL agents
suitable for control in online processes. Although not contemplated in this review article,
there are many adaptations of these algorithms whose function is to improve the sampling
efficiency of the MDP. For example, the actor approximated by DL does not have saturated
neurons (i.e., inverting gradient [81]); rather, the actor selects samples with information
prioritized by the critic (i.e., prioritized buffer replay [82]).

4. Challenges for the Implementation of RL to Process Control

In this section, the challenges to implementing a general framework for optimal
process control are considered:

1. The MDP design based on the process dynamics;
2. The offline training step;
3. Policy transfer to the process line;
4. Keeping the policy stable against new process changes.

4.1. Overview

First, implementing a new methodology for optimal process control depends on
designing an MDP based on the process dynamics. Through the sections already described
in this review, the available knowledge about the process dynamics will define the stages of
offline training and TL. In other words, the objective is to extract useful information from
already established policies in the process and simulation data.

Processes 2022, 10, 2311 18 of 31

The focus has been on batch and continuous processes, in which the inclusion of the
transfer-learning process is complex. At this point, state-of-the-art development is still
being consolidated, as the inclusion of process constraints remains to be addressed. Some
exceptions are the works of Pan et al. [26] and Mowbray et al. [27,64].

As long as the process states can be observed, the configuration of the offline training
step is directly related to the training of the learning agent itself, namely:

1. The choice of the algorithm;
2. The exploration–exploitation trade-off dilemma;
3. Hyperparameter optimization.

The choice of algorithm depends on the complexity of the process. There is a preference
for off-policy algorithms for batch and continuous processes, as they allow the storage of
information from other policies. However, the exploration–exploitation trade-off dilemma
analysis indicates the most appropriate policy to approximate the MDP. Being stochastic,
it deals better with the uncertainties inherent in the process. Finally, hyperparameter
optimization is essential to obtain a feasible algorithm and DNN.

The transferring of knowledge obtained in the previous phases is also necessary to
implement the agent for optimal process control. In Section 3.4, common approaches to
robot control were detailed. However, for chemical processes, a conservative approach must
consider process constraints. Thus, learning from demonstrations, transferring actor and
critic policies, adapting rewards (i.e., reward shaping) and observing the correspondence
between offline and online environments are essential to fulfilling this purpose.

Lastly, process-line maintenance is another critical issue to consider. At this point, the
control dynamics and complexity of the process indicate how often measurements are avail-
able. This allows establishing when to retrain the obtained policy. Generally, the preference
is to directly apply an alternative in the online environment without performing a backup.
However, the current state of the art is still embryonic. For example, Wang and Ye [83]
proposed consciousness-driven reinforcement learning, which showed superior results to
standard algorithms (i.e., DDPG, PPO) for simplified examples only (i.e., OpenAIGym).
Hence, the current state of the art in chemical processes is exploring RL techniques that
include information from demonstration to discover unknown a priori information and
limit the search space of the chosen algorithm.

4.2. Proposed Learning Structure

The proposed learning structure is derived from the one shown in Figure 8. Figure 9
characterizes the modules to design the proposed learning structure. Again, Module
(1) characterizes off-policy training. The simulated environment must approximate the
actual process that allows for evaluating the conditions to which the control agent may
be subject. The policy is continually updated from samples stored in a large buffer in this
configuration. Thus, πk+1 is updated with transitions obtained through the implementation
of policies up to πk, which provides information about various dynamic conditions of the
process and facilitates the gradient approximation for policies based on a DNN. Feise and
Schaer [84] described the importance of simulation for chemical engineering, highlighting
its importance in the context of Industry 4.0 and big data. In addition, they comment that
it is crucial to introduce new methodologies that integrate AI with process control to add
value to new businesses in the chemical industry.

Processes 2022, 10, 2311 19 of 31

Simulation

buffer (D)

update

rollout data

operator
constraints
MPC, PID

buffer (E)

training phase

process

Deployment

learn

policy reuse

reward shaping

backup server

Figure 9. Diagram containing the modules for offline agent training (Modules (1) and (2)) and
process-line deployment (Module (3)) adapted for chemical processes.

In Module (2), all available knowledge from demonstrations, such as sub-optimal
policy information (e.g., MPC), from plant operators and from process constraints can also
be included to help off-policy training. It is essential to extract useful information from the
buffer E, containing implicit knowledge about control objectives and process constraints.
However, the policy πβ will at most be equal to that of the expert, πE.

Despite this, simply reusing policies previously obtained directly over the online
process can result in sub-optimal policies, as the process undergoes unknown changes
to its dynamics (e.g., resulting from the degradation of a catalyst). For this reason, an
alternative is to choose a function for the reward regularized by the knowledge about the
offline process (i.e., reward shaping) so that πP = [πE + πS]

k+1 does not result in erroneous
rewards, as well as taking advantage of the new samples of r′ from the actual process.

Furthermore, for training to be effective in the online process, an ideal loss function
L(πP, πE + πS) should minimize the discrepancy between πP and πE + πS while adding
new process information. This dilemma is a problem for RL in general. Therefore, new
works are investing in its solution (e.g., see [64]). Finally, a backup server could store
policies updated across episodes, which then, depending on the dynamics of the process
(i.e., batch or continuous), could reused again in an offline training phase, since the current
policy would continue to act in the process.

5. MDP Design and Agent Training through Imitation Learning

This section highlights two points of Section 4, elucidating how learning from demon-
strations can be accomplished through imitation learning and proposing a hyperparameter-
optimization framework to obtain a feasible algorithm and DNN. For that purpose, a
complete approach to imitation learning (IL) and reinforcement learning is detailed in a
batch-process-control experiment using the deep-deterministic-policy-gradient algorithm
modified with adversarial imitation learning.

Processes 2022, 10, 2311 20 of 31

5.1. Imitation Learning Techniques

Imitation learning for AI means learning from demonstrations [85]. The basic tech-
nique directly uses these demonstrations without adding experience to the learning process
(i.e., direct learning). The policy trained on these principles will be equal to that used to
generate demonstration samples, similar to supervised learning techniques (i.e., behav-
ior cloning). The problem with this is generalization to unseen scenarios, which is often
observed in robot control (e.g., see [8,54]). This results from an approach that does not
consider different learning scenarios, thus generating sub-optimal and divergent policies.

There is currently a preference for so-called indirect-imitation-learning techniques
(e.g., inverse-reinforcement learning and adversarial-imitation learning), intending to learn
from experience when refining the policy obtained a priori through RL techniques and
TL, among others. These techniques allows the combination of information available from
the actual process and simulation, dealing with the difficulties of establishing an efficient
offline training procedure, such as [86]:

• Exploration that is outside the scope of the algorithm (Module (2));
• Learning a policy that does something different from the pattern of behavior observed

in the dataset E (Module (2));
• Scaling up to complex high-dimensional function approximators, such as DNN, high-

dimensional state or observation spaces and temporally extended tasks.

DDPG Algorithm with Adversarial Imitation Learning

The IL approach is based on the algorithm proposed by Kostrikov et al. [79], which
uses an off-policy discriminator and an off-policy actor–critic reinforcement learning algo-
rithm. The discriminator is derived from the generative-adversary-network (GANs) theory,
whose objective is to train two architectures of “adversary” neural networks, known as the
generative and the discriminate [87]. Based on this, we propose here a DDPG algorithm
modified by a discriminator. In Figure 10, the generator represents the DDPG algorithm
learning in the simulated environment and the expert learns from the samples obtained
from demonstrations. Hence, the discriminator (Ds) learns from samples of D and E
until the moment it can no longer distinguish them. For this, a new reward weighs the
information of the expert and the generator (rs), as shown in Equation (33).

rt = βrs − (1− β) log(1− Ds(st, at)) (33)

The generator employs a zero-mean Ornstein–Uhlenbeck process to generate tempo-
rally correlated exploration samples (i.e., ηt). In Equation (34), this is used in the actor-
network µ considering time horizon T and N episodes. Subsequently, the new rollout
data is stored in the buffer D (st, at, st+1, rt). After filling the buffer of size D, random
samples of size K are selected for the actor. Then, the error-TD is approximated using
Equations (35) and (36) to update the critic network, with the loss function shown in
Equation (37). Equation (38) defines the actor update following the deterministic pol-
icy theorem. In addition, the target networks for the critic and actor have delayed (or
filtered) copies of the original network, i.e., θc(t + 1) = κθc(t) + (1 − κ)θc(t + 1) and
θa(t + 1) = κθa(t) + (1− κ)θa(t). At the same time, the discriminator learns to discrim-
inate between expert and generator samples by minimizing the loss function shown in
Equation (39), where the expert and generator samples (i.e., yd = Ds(E) and xd = Ds(D))
must be equal to one and zero (i.e., binary cross-entropy loss).

at = µ(at, θa) + ηt (34)

yt = rt + γQ(st, µ(st+1, θ′a), θc) (35)

δt = yt −Q(st, at, θc) (36)

Lc =
1
K ∑ δ2

t (37)

Processes 2022, 10, 2311 21 of 31

∇J(µθ) =
1
K ∑

[
∇θµ(st, µ(st+1, θ′a)∇aQ(st, at, θa)|a=µ(st ,θa)

]
(38)

Ld =
1

2K ∑ yd log(xd) + (1− yd) log(1− xd) (39)

Simulation

buffer (D)

update

rollout data

data-driven

buffer (E)

learn

Offline learning

Generator

Expert

Discriminator

D E

Figure 10. Diagram describing the modules for offline training of a generator and expert with a
discriminator.

5.2. Hyperparameter Optimization

In general, hyperparameter optimization is recommended for complex data-driven
algorithms. At the beginning, it was directed to problems with parameters characterized
exclusively numerically and of low dimension. This approach became unfeasible when
applied to algorithms depending on the adjustment of a large number of parameters, which
may be, in addition to numeric, ordinal, and categorical, possibly dependent on each
other (e.g., the CPLEX optimizer is based on a mixed-integer programming algorithm
and has 80 hyperparameters to be automatically configured) [88,89]. To overcome this,
Hutter et al. [88] proposed the creation of an automatic algorithm configuration structure,
known as ParamILS (Hutter [89] considers this algorithm the first viable alternative to
configure hyperparameters efficiently, automatically and robustly), applying it to adjust the
CPLEX algorithm and return the best set of hyperparameters to meet the objective sought
by the user. At that point, the value of the cost function must be efficient concerning the
computational time required to complete the task, and robust so that it does not deviate
significantly from the best possible solution.

Since then, this theory has been adapted for DL to optimize its complex structures
(e.g., DNN), which are deep and whose training also depends on other algorithms (i.e.,
backpropagation and descending stochastic gradient). At this point, Coates and Ng [90]
and Coates et al. [91] were the first to realize how important it can be to focus on the DL
structure itself rather than just improving the learning algorithms. They tested several
configurations of their main parameters, concluding that previously unfeasible alternatives
can also reach results comparable to other more tested methodologies.

Processes 2022, 10, 2311 22 of 31

5.2.1. Hyperparameter Optimization Software

A good hyperparameter-optimization software framework must improve the steps
seen in Figure 11. First, it is necessary to define the limit for the domain containing the
hyperparameters and the starting values to carry out the other steps. This is done by
categorizing all selected hyperparameters as integer, real (i.e., float), ordinal, or fixed value.
Then, the software in charge of this will run some trials, resulting in different optimization
scenarios, which are evaluated on different test samples (e.g., offline training) and returned
as a solution of the employed cost function. In the end, this makes it possible to update
the information about the values of the hyperparameters, directing them to produce better
future optimization scenarios. A promising example is Optuna [92] due to the following
features:

• Simplicity and practicality for writing the source code, an improvement over Never-
grad [92,93], Ray tune [94] and Hyperopt [95]);

• Open-source software (i.e., Python).

Optimization scenario

Target algorithm Solution
test samples

Cost function solution

Trials

Domain limit

software
(DRL)

(hyperparameters)

Figure 11. Simplified hyperparameter-optimization scheme.

Besides, Optuna has two optimization approaches:

• Sequential optimization relies on multiple runs of such a cycle (trials) to obtain cred-
ible information about how the parameters influence the value of the cost function.
The Bayesian-optimization algorithms use an approximate model for the unknown
cost function a priori, being Gaussian processes that maximize expectancy of the
cost function concerning the current best solution (e.g., the expected improvement
algorithms, such as the tree-structured Parzen estimator (TPE)) [95,96];

• Parallel optimization algorithms are complementary alternatives to sequential algo-
rithms, as they update the information of hyperparameter values based on distributed
executions, in contrast to the single-cycle approach used in sequential optimization.

The best of both approaches are being exploited to guarantee robust results (i.e.,
resulting from the plausibility of Bayes models to explore hyperparameters) and are com-
putationally efficient (i.e., a result of distributed optimization). Successful examples of
this are algorithms known as ASHA (asynchronous successive halving algorithm) [97],
HYPERBAND [98] and those in which training is based on populations [99].

5.3. An Offline RL Control Experiment

For the elaboration of the offline RL control experiment, the control of batch process
using DDPG algorithm with adversarial imitation learning will be investigated. The
characteristics of the algorithm are detailed below:

Processes 2022, 10, 2311 23 of 31

• The algorithm is specific to MDP where the sampled state–action pairs are continuous;
• The simplicity of the algorithm, which makes writing the source code easier, the

proposed updates to the algorithm (e.g., prioritized buffer replay, inverting gradient)
and distributed optimization;

• There are applications for optimal process control (e.g., for DDPG, see Ma et al. [17]
and Spielberg et al. [80]);

• The algorithm combines RL and adversarial imitation learning to learn from
demonstrations.

5.3.1. Case Study: Batch Process

The case study is a simplified version of a batch process (Petsagkourakis et al. [14]).
Following to Figure 10, the expert uses sub-optimal demonstrations from Equations (40) and (41)
to fill the buffer E, representing the actual process. At the same time, the generator depends
on a simulation based on a simplified version of the actual process to fill the buffer D
(Equations (42) and (43)).

ds1

dt
= −(a1 + 0.5a2

1)s1 + 0.5
a2s2

s1 + s2
(40)

ds2

dt
= a1s1 − 0.7a2s1 (41)

ds1

dt
= −(a1 + 0.5a2

1)s1 + a2 (42)

ds2

dt
= a1s1 − a2s1 (43)

The optimization objective is to maximize E[s2(T)] given the limits of the control
actions (i.e., a1 ∈ (0, 5) and a2 ∈ (0, 5)) for batches of ten time intervals, with the reward for
each time interval taken from the simulation and discriminated with the expert reward, as
shown in Equation (44). In this equation, a standard DDPG is derived from β = 1 and an
indirect-imitation-learning approach from β = 0. In addition, the initial condition is fixed
at the s1 = 1 and s2 = 0 (s0 = (1, 0)).

r = βs2(t)− (1− β) log(1− Ds(s, a)) (44)

5.3.2. Tree-Structured Parzen Estimator

As described in Section 5.2.1, the Optuna software was chosen to perform hyperpa-
rameter optimization applied to the control experiment. Thus, it remains to determine
the optimization algorithm. Specifically, the sequential optimization algorithm (TPE) is
suitable to serve this purpose [92,95,100]:

1. It is computationally efficient compared to standard approaches;
2. Hyperparameters can belong to any set: integer, ordinal, real (i.e., float) and categorical.
3. It optimizes the expected improvement with a Gaussian process and Parzen estimator;
4. The default algorithm implemented in Optuna offers an alternative to overcome its

main disadvantage, that is, it also models the interactions between hyperparameters,
which improves the efficiency and robustness of the algorithm.

5.3.3. Validation of the Control Experiment

For validation, the policies obtained through the different trials were tested on the
actual process, and the objective function defined by the amount of s2 obtained at the end
of the batch was used for comparison (Figure 12).

Processes 2022, 10, 2311 24 of 31

Optimization scenario

Modified DDPG Solution
Actual process

E[s2(T)] (Equation (41))

100 Trials

Domain limit

Optuna (TPE)
(DRL)

Figure 12. Optimization scheme with Optuna to validate the online control experiment with domain
limit according to Table 4.

Table 4 summarizes the essential hyperparameters for optimization with the TPE
algorithm and the search space for the domain containing the hyperparameters. β is the
main hyperparameter to validate the proposed algorithm against the standard DDPG
algorithm [58] and sub-optimal demonstrations from the actual process (E), which were
obtained with REINFORCE algorithm [14]. In addition, the hyperparameters N, D, the
activation function and the optimizer (i.e., Adam [101]) do not influence the optimization of
E[s2(T)]. Then, a limit value considered sufficient for the control experiment was defined.

Table 4. Hyperparameters for modified DDPG algorithm.

Hyperparameters Search Space

RL
γ (0.80, 0.99)
β (0, 1)

Batch size (K) (10, 150)
Buffer (D) 500

Expert buffer (E) 500
Episodes (N) 2000

κ (0.005, 0.01)

Actor Network
Activation function ReLU, Tanh

Layers (Laa) (1, 5)
Neurons (Nai) (4, 250)

Critic Network
Activation function ReLU, Tanh

Layers (Lac) (1, 5)
Neurons (Nci) (4, 250)

Discriminator
Activation function Linear, Sigmoid

Layers (Lads) (1, 5)
Neurons (Ndsi) (4, 250)

NN training algorithm
Optimizer Adam

Actor learning rate (αa) (1× e−5, 1× e−2)
Critic learning rate (αc) (1× e−5, 1× e−2)

Discriminator learning rate (αds) (1× e−5, 1× e−2)

When running the online control experiment according to the algorithmic implemen-
tation details described above, Figure 13 shows that the TPE algorithm took 18 trials to
obtain policies with an objective function value comparable to that obtained by
Petsagkourakis et al. [15] (i.e., 0.583) against 0.575 e 0.55 with the DDPG algorithm and

Processes 2022, 10, 2311 25 of 31

MPC, respectively. The TPE algorithm obtained some erroneous policies until trial 33,
where the best value was obtained (i.e., 0.595). At the end, the TPE algorithm showed dis-
persion of the objective function values precisely because it was not able to find a solution
that exceeded the best value, as detailed in Bergstra et al. [95].

Figure 13. Optimization history plot for modified DDPG considering 100 trials with the
TPE algorithm.

Figure 14 shows the hyperparameters that had more influence on the objective func-
tion. The highlight here is the hyperparameter β, which weighs the importance of the
discriminator for the objective value; according to [79] it is crucial to properly know the
dynamics of the environment to specify this hyperparameter correctly. This can be seen
in Figure 15, where values of β important to the objective function are dispersed around
its optimal value (i.e., β = 0.8), indicating that including demonstrations in the process of
offline learning results in appropriate online control policies.

Figure 14. Hyperparameter importance plot for modified DDPG considering 100 trials with the
TPE algorithm.

Processes 2022, 10, 2311 26 of 31

Figure 15. Hyperparameter importance plot considering 100 trials of the TPE algorithm for data
distribution and sampling.

Regarding the structures of the actor, critic and discriminator networks regarding
the number of layers and neurons and the learning rate, the critic network has the most
significant contribution to the objective function (e.g., see αc and Nc0). More details can be
found in Figure 16, where a shallow architecture (i.e., Lac = 2) is sufficient to approximate
the value function, which depends on a significant number of neurons only in the first
layer for local approximation of the input features (i.e., state–action pair), as explained in
Das et al. [102]. Furthermore, training with the gradient-descent algorithm is less complex
compared to the actor and discriminator. The former depends on a deeper architecture in
general (i.e., La = 4) and training with a conservative GD optimization algorithm due to its
greater complexity and nonlinearity to approximate the deterministic gradient (Figure 17).
The latter also depends on a deep architecture and a conservative GD optimization
(Figure 18), which is due to the complexity of the objective function resulting from genera-
tive and discriminative networks (i.e., by employing binary cross-entropy loss) [87].

Figure 16. Hyperparameter importance slice plot for modified DDPG considering 100 trials of the
TPE algorithm for the critic network.

Processes 2022, 10, 2311 27 of 31

Figure 17. Hyperparameter importance slice plot for modified DDPG considering 100 trials of the
TPE algorithm for the actor network.

Figure 18. Hyperparameter importance slice plot for modified DDPG considering 100 trials of the
TPE algorithm for the discriminative network.

Processes 2022, 10, 2311 28 of 31

6. Conclusions

These final considerations result from an in-depth state-of-the-art review of artificial
intelligence and optimal process control. The objective was to develop a complete guide for
hyperparameter optimization, imitation learning and transfer learning, since there are no
articles covering such subjects together. Thus, the conclusions made answer several claims
about the integration of reinforcement learning and process control:

• State-of-the-art technologies are still embryonic;
• Batch and continuous processes require different learning structures;
• Developing state-of-the-art offline training technologies is essential;
• Transfer learning has a broad meaning in RL, since it can encompass learning from

demonstration, reward shaping, policy transfer and inter-task mapping;
• The proposed modified DDPG algorithm with an off-policy discriminator confirmed

the hypothesis that information from process demonstrations improves the perfor-
mance of the standard DDPG algorithm, as detailed in Section 5.

Finally, the control experiment carried out in Section 5 provides some guidelines for
extending this approach to more complex systems (batch and continuous). These results
can support the study of hyperparameter optimization for other case studies. Furthermore,
the main challenge is developing new control structures appropriate to process constraints.
To achieve this, it remains necessary to improve Modules 1, 2 and 3, shown in Figure 9.

Author Contributions: R.d.R.F. participated in all steps of the research method: conceptualization,
methodology, writing—original draft preparation. For review and editing, all authors participated.
Conceptualization and supervision, B.D.O.C., A.R.S. and M.B.d.S.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001. Maurício B. de Souza Jr. is grateful for financial
support from CNPq (Grant No. 311153/2021-6) and Fundação Carlos Chagas Filho de Amparo à
Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant No. E-26/201.148/2022).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
2. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957; Volume 95.
3. Bellman, R. A Markovian decision process. J. Math. Mech. 1957, 6, 679–684. [CrossRef]
4. Hoskins, J.; Himmelblau, D. Process control via artificial neural networks and reinforcement learning. Comput. Chem. Eng. 1992,

16, 241–251. [CrossRef]
5. Hinton, G.; Srivastava, N.; Swersky, K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent.

Cited On 2012, 14, 2.
6. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.
7. Wulfmeier, M.; Posner, I.; Abbeel, P. Mutual alignment transfer learning. In Proceedings of the Conference on Robot Learning

(PMLR), Mountain View, CA, USA, 13–15 November 2017; pp. 281–290.
8. Peng, X.B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Sim-to-real transfer of robotic control with dynamics randomization. In

Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
pp. 3803–3810.

9. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

10. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; 38 Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

11. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;
et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]

12. Nian, R.; Liu, J.; Huang, B. A review on reinforcement learning: Introduction and applications in industrial process control.
Comput. Chem. Eng. 2020, 139, 106886. [CrossRef]

http://doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1016/0098-1354(92)80045-B
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1016/j.compchemeng.2020.106886

Processes 2022, 10, 2311 29 of 31

13. Buşoniu, L.; de Bruin, T.; Tolić, D.; Kober, J.; Palunko, I. Reinforcement learning for control: Performance, stability, and deep
approximators. Annu. Rev. Control 2018, 46, 8–28. [CrossRef]

14. Petsagkourakis, P.; Sandoval, I.O.; Bradford, E.; Zhang, D.; del Rio-Chanona, E.A. Reinforcement learning for batch bioprocess
optimization. Comput. Chem. Eng. 2020, 133, 106649. [CrossRef]

15. Petsagkourakis, P.; Sandoval, I.O.; Bradford, E.; Zhang, D.; del Rio-Chanona, E.A. Reinforcement learning for batch-to-batch
bioprocess optimisation. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46,
pp. 919–924.

16. Yoo, H.; Kim, B.; Kim, J.W.; Lee, J.H. Reinforcement learning based optimal control of batch processes using Monte-Carlo deep
deterministic policy gradient with phase segmentation. Comput. Chem. Eng. 2021, 144, 107133. [CrossRef]

17. Ma, Y.; Zhu, W.; Benton, M.G.; Romagnoli, J. Continuous control of a polymerization system with deep reinforcement learning. J.
Process Control 2019, 75, 40–47. [CrossRef]

18. Powell, K.M.; Machalek, D.; Quah, T. Real-time optimization using reinforcement learning. Comput. Chem. Eng. 2020, 143, 107077.
[CrossRef]

19. Nikita, S.; Tiwari, A.; Sonawat, D.; Kodamana, H.; Rathore, A.S. Reinforcement learning based optimization of process
chromatography for continuous processing of biopharmaceuticals. Chem. Eng. Sci. 2021, 230, 116171. [CrossRef]

20. Dogru, O.; Wieczorek, N.; Velswamy, K.; Ibrahim, F.; Huang, B. Online reinforcement learning for a continuous space system
with experimental validation. J. Process Control 2021, 104, 86–100. [CrossRef]

21. Ławryńczuk, M.; Marusak, P.M.; Tatjewski, P. Cooperation of model predictive control with steady-state economic optimisation.
Control Cybern. 2008, 37, 133–158.

22. Skogestad, S. Control structure design for complete chemical plants. Comput. Chem. Eng. 2004, 28, 219–234. [CrossRef]
23. Backx, T.; Bosgra, O.; Marquardt, W. Integration of model predictive control and optimization of processes: Enabling technology

for market driven process operation. IFAC Proc. Vol. 2000, 33, 249–260. [CrossRef]
24. Adetola, V.; Guay, M. Integration of real-time optimization and model predictive control. J. Process Control 2010, 20, 125–133.

[CrossRef]
25. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10, pp. 978–983.
26. Pan, E.; Petsagkourakis, P.; Mowbray, M.; Zhang, D.; del Rio-Chanona, E.A. Constrained model-free reinforcement learning for

process optimization. Comput. Chem. Eng. 2021, 154, 107462. [CrossRef]
27. Mowbray, M.; Smith, R.; Del Rio-Chanona, E.A.; Zhang, D. Using process data to generate an optimal control policy via

apprenticeship and reinforcement learning. AIChE J. 2021, 67, e17306. [CrossRef]
28. Shah, H.; Gopal, M. Model-free predictive control of nonlinear processes based on reinforcement learning. IFAC-PapersOnLine

2016, 49, 89–94. [CrossRef]
29. Alhazmi, K.; Albalawi, F.; Sarathy, S.M. A reinforcement learning-based economic model predictive control framework for

autonomous operation of chemical reactors. Chem. Eng. J. 2022, 428, 130993. [CrossRef]
30. Kim, J.W.; Park, B.J.; Yoo, H.; Oh, T.H.; Lee, J.H.; Lee, J.M. A model-based deep reinforcement learning method applied to

finite-horizon optimal control of nonlinear control-affine system. J. Process Control 2020, 87, 166–178. [CrossRef]
31. Badgwell, T.A.; Lee, J.H.; Liu, K.H. Reinforcement learning–overview of recent progress and implications for process control. In

Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 44, pp. 71–85.
32. Görges, D. Relations between model predictive control and reinforcement learning. IFAC-PapersOnLine 2017, 50, 4920–4928.

[CrossRef]
33. Sugiyama, M. Statistical Reinforcement Learning: Modern Machine Learning Approaches; CRC Press: Boca Raton, FL, USA, 2015.
34. Howard, R.A. Dynamic Programming and Markov Processes; MITPL: Cambridge, MA, USA, 1960.
35. Thorndike, E.L. Animal intelligence: An experimental study of the associative processes in animals. Psychol. Rev. Monogr. Suppl.

1898, 2, 1.
36. Minsky, M. Neural Nets and the Brain-Model Problem. Doctoral Dissertation, Princeton University, Princeton, NJ, USA, 1954;

Unpublished.
37. Minsky, M. Steps toward artificial intelligence. Proc. IRE 1961, 49, 8–30. [CrossRef]
38. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE

Trans. Syst. Man Cybern. 1983, SMC-13, 834–846. [CrossRef]
39. Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 1988, 3, 9–44. [CrossRef]
40. Watkins, C.J.C.H. Learning from Delayed Rewards; University of Cambridge: Cambridge, UK, 1989.
41. Gullapalli, V. A stochastic reinforcement learning algorithm for learning real-valued functions. Neural Netw. 1990, 3, 671–692.

[CrossRef]
42. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]
43. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
44. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
45. Berry, D.A.; Fristedt, B. Bandit Problems: Sequential Allocation of Experiments (Monographs on Statistics and Applied Probability);

Chapman and Hall: London, UK, 1985; Volume 5, pp. 71–87.
46. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press Cambridge: Cambridge, MA, USA, 1998; Volume 135.

http://dx.doi.org/10.1016/j.arcontrol.2018.09.005
http://dx.doi.org/10.1016/j.compchemeng.2019.106649
http://dx.doi.org/10.1016/j.compchemeng.2020.107133
http://dx.doi.org/10.1016/j.jprocont.2018.11.004
http://dx.doi.org/10.1016/j.compchemeng.2020.107077
http://dx.doi.org/10.1016/j.ces.2020.116171
http://dx.doi.org/10.1016/j.jprocont.2021.06.004
http://dx.doi.org/10.1016/j.compchemeng.2003.08.002
http://dx.doi.org/10.1016/S1474-6670(17)38550-6
http://dx.doi.org/10.1016/j.jprocont.2009.09.001
http://dx.doi.org/10.1016/j.compchemeng.2021.107462
http://dx.doi.org/10.1002/aic.17306
http://dx.doi.org/10.1016/j.ifacol.2016.03.034
http://dx.doi.org/10.1016/j.cej.2021.130993
http://dx.doi.org/10.1016/j.jprocont.2020.02.003
http://dx.doi.org/10.1016/j.ifacol.2017.08.747
http://dx.doi.org/10.1109/JRPROC.1961.287775
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1007/BF00115009
http://dx.doi.org/10.1016/0893-6080(90)90056-Q
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442

Processes 2022, 10, 2311 30 of 31

47. Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [CrossRef]
48. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of

the International Conference on Machine Learning (PMLR), Bejing, China, 22–24 June 2014.
49. Thrun, S.; Schwartz, A. Issues in using function approximation for reinforcement learning. In Proceedings of the 1993 Connectionist

Models Summer School; Lawrence Erlbaum: Hillsdale, NJ, USA, 1993.
50. Fujimoto, S.; Van Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. arXiv 2018,

arXiv:1802.09477.
51. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with function

approximation. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–4
December 2000; pp. 1057–1063.

52. Gordon, G.J. Stable function approximation in dynamic programming. In Machine Learning Proceedings 1995; Elsevier: Amsterdam,
The Netherlands, 1995; pp. 261–268.

53. Tsitsiklis, J.N.; Van Roy, B. Feature-based methods for large scale dynamic programming. Mach. Learn. 1996, 22, 59–94. [CrossRef]
54. Grondman, I.; Busoniu, L.; Lopes, G.A.; Babuska, R. A survey of actor-critic reinforcement learning: Standard and natural policy

gradients. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2012, 42, 1291–1307. [CrossRef]
55. Ramicic, M.; Bonarini, A. Augmented Replay Memory in Reinforcement Learning With Continuous Control. arXiv 2019,

arXiv:1912.12719.
56. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In Proceedings of the International Conference on Machine Learning (PMLR), Stockholm, Sweden, 10–15 July
2018; pp. 1861–1870.

57. Benhamou, E. Variance Reduction in Actor Critic Methods (ACM). arXiv 2019, arXiv:1907.09765.
58. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
59. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
60. Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998,

101, 99–134. [CrossRef]
61. Bonvin, D. Optimal operation of batch reactors—A personal view. J. Process Control 1998, 8, 355–368. [CrossRef]
62. Bonvin, D.; Srinivasan, B.; Ruppen, D. Dynamic Optimization in the Batch Chemical Industry; Technical Report; NTNU: Trondheim,

Norway, 2001.
63. Arpornwichanop, A.; Kittisupakorn, P.; Mujtaba, I. On-line dynamic optimization and control strategy for improving the

performance of batch reactors. Chem. Eng. Process. Process. Intensif. 2005, 44, 101–114. [CrossRef]
64. Mowbray, M.; Petsagkourakis, P.; Chanona, E.A.d.R.; Smith, R.; Zhang, D. Safe Chance Constrained Reinforcement Learning for

Batch Process Control. arXiv 2021, arXiv:2104.11706.
65. Oh, T.H.; Park, H.M.; Kim, J.W.; Lee, J.M. Integration of reinforcement learning and model predictive control to optimize

semi-batch bioreactor. AIChE J. 2022, 68, e17658. [CrossRef]
66. Ellis, M.; Durand, H.; Christofides, P.D. A tutorial review of economic model predictive control methods. J. Process Control 2014,

24, 1156–1178. [CrossRef]
67. Ramanathan, P.; Mangla, K.K.; Satpathy, S. Smart controller for conical tank system using reinforcement learning algorithm.

Measurement 2018, 116, 422–428. [CrossRef]
68. Hwangbo, S.; Sin, G. Design of control framework based on deep reinforcement learning and Monte-Carlo sampling in

downstream separation. Comput. Chem. Eng. 2020, 140, 106910. [CrossRef]
69. Chen, K.; Wang, H.; Valverde-Pérez, B.; Zhai, S.; Vezzaro, L.; Wang, A. Optimal control towards sustainable wastewater treatment

plants based on multi-agent reinforcement learning. Chemosphere 2021, 279, 130498. [CrossRef]
70. Oh, D.H.; Adams, D.; Vo, N.D.; Gbadago, D.Q.; Lee, C.H.; Oh, M. Actor-critic reinforcement learning to estimate the optimal

operating conditions of the hydrocracking process. Comput. Chem. Eng. 2021, 149, 107280. [CrossRef]
71. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep

reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June
2016; pp. 1928–1937.

72. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the International
Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 270–279.

73. Taylor, M.E.; Stone, P. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 2009, 10, 1633–1685.
74. Peirelinck, T.; Kazmi, H.; Mbuwir, B.V.; Hermans, C.; Spiessens, F.; Suykens, J.; Deconinck, G. Transfer learning in demand

response: A review of algorithms for data-efficient modelling and control. Energy AI 2022, 7, 100126. [CrossRef]
75. Joshi, G.; Chowdhary, G. Cross-domain transfer in reinforcement learning using target apprentice. In Proceedings of the 2018

IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7525–7532.
76. Zhu, Z.; Lin, K.; Dai, B.; Zhou, J. Learning sparse rewarded tasks from sub-optimal demonstrations. arXiv 2020, arXiv:2004.00530.

http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1007/BF00114724
http://dx.doi.org/10.1109/TSMCC.2012.2218595
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1016/S0959-1524(98)00010-9
http://dx.doi.org/10.1016/j.cep.2004.04.010
http://dx.doi.org/10.1002/aic.17658
http://dx.doi.org/10.1016/j.jprocont.2014.03.010
http://dx.doi.org/10.1016/j.measurement.2017.11.007
http://dx.doi.org/10.1016/j.compchemeng.2020.106910
http://dx.doi.org/10.1016/j.chemosphere.2021.130498
http://dx.doi.org/10.1016/j.compchemeng.2021.107280
http://dx.doi.org/10.1016/j.egyai.2021.100126

Processes 2022, 10, 2311 31 of 31

77. Yan, M.; Frosio, I.; Tyree, S.; Kautz, J. Sim-to-real transfer of accurate grasping with eye-in-hand observations and continuous
control. arXiv 2017, arXiv:1712.03303.

78. Christiano, P.; Shah, Z.; Mordatch, I.; Schneider, J.; Blackwell, T.; Tobin, J.; Abbeel, P.; Zaremba, W. Transfer from simulation to
real world through learning deep inverse dynamics model. arXiv 2016, arXiv:1610.03518.

79. Kostrikov, I.; Agrawal, K.K.; Dwibedi, D.; Levine, S.; Tompson, J. Discriminator-actor-critic: Addressing sample inefficiency and
reward bias in adversarial imitation learning. arXiv 2018, arXiv:1809.02925.

80. Spielberg, S.; Tulsyan, A.; Lawrence, N.P.; Loewen, P.D.; Bhushan Gopaluni, R. Toward self-driving processes: A deep
reinforcement learning approach to control. AIChE J. 2019, 65, e16689. [CrossRef]

81. Hausknecht, M.; Stone, P. Deep reinforcement learning in parameterized action space. arXiv 2015, arXiv:1511.04143.
82. Hou, Y.; Liu, L.; Wei, Q.; Xu, X.; Chen, C. A novel ddpg method with prioritized experience replay. In Proceedings of the 2017

IEEE international conference on systems, man, and cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 316–321.
83. Wang, X.; Ye, X. Consciousness-driven reinforcement learning: An online learning control framework. Int. J. Intell. Syst. 2022,

37, 770–798. [CrossRef]
84. Feise, H.J.; Schaer, E. Mastering digitized chemical engineering. Educ. Chem. Eng. 2021, 34, 78–86. [CrossRef]
85. Hua, J.; Zeng, L.; Li, G.; Ju, Z. Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning. Sensors

2021, 21, 1278. [CrossRef]
86. Hussein, A.; Gaber, M.M.; Elyan, E.; Jayne, C. Imitation learning: A survey of learning methods. ACM Comput. Surv. (CSUR)

2017, 50, 1–35. [CrossRef]
87. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. Adv. Neural Inf. Process. Syst. 2014, 27.
88. Hutter, F.; Hoos, H.H.; Leyton-Brown, K.; Stützle, T. ParamILS: An automatic algorithm configuration framework. J. Artif. Intell.

Res. 2009, 36, 267–306. [CrossRef]
89. Hutter, F. Automated Configuration of Algorithms for Solving Hard Computational Problems. Ph.D. Thesis, University of British

Columbia, Vancouver, BC, Canada, 2009.
90. Coates, A.; Ng, A.Y. The importance of encoding versus training with sparse coding and vector quantization. In Proceedings of

the 28th International Conference on Machine Learning (ICML), Washington, DC, USA, 28 June–2 July 2011.
91. Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
pp. 215–223.

92. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA,
4–8 August 2019; pp. 2623–2631.

93. Rapin, J.; Teytaud, O. Nevergrad—A Gradient-Free Optimization Platform. 2018. Available online: https://GitHub.com/
FacebookResearch/Nevergrad (accessed on 10 September 2022).

94. Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez, J.E.; Stoica, I. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv 2018, arXiv:1807.05118.

95. Bergstra, J.S.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the Advances in
Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 2546–2554.

96. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, NA, USA, 3–6 December 2012; pp. 2951–2959.

97. Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Hardt, M.; Recht, B.; Talwalkar, A. Massively parallel hyperparameter tuning.
arXiv 2018, arXiv:1810.05934.

98. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter
optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.

99. Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W.M.; Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning, I.; Simonyan,
K.; et al. Population based training of neural networks. arXiv 2017, arXiv:1711.09846.

100. Bergstra, J.; Bardenet, R.; Kégl, B.; Bengio, Y. Implementations of algorithms for hyper-parameter optimization. In Proceedings of
the NIPS Workshop on Bayesian Optimization, Sierra Nevada, Spain, 16–17 December 2011; p. 29.

101. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
102. Das, L.; Sivaram, A.; Venkatasubramanian, V. Hidden representations in deep neural networks: Part 2. Regression problems.

Comput. Chem. Eng. 2020, 139, 106895. [CrossRef]

http://dx.doi.org/10.1002/aic.16689
http://dx.doi.org/10.1002/int.22647
http://dx.doi.org/10.1016/j.ece.2020.11.011
http://dx.doi.org/10.3390/s21041278
http://dx.doi.org/10.1145/3054912
http://dx.doi.org/10.1613/jair.2861
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
http://dx.doi.org/10.1016/j.compchemeng.2020.106895

	Introduction
	Reinforcement Learning
	Basics of RL
	Mathematical Background
	Definition
	Optimization Objective
	Algorithms

	Deep Reinforcement Learning
	Deep Q-Learning
	Deep Policy Gradient
	Deep Actor–Critic
	State-of-the-Art Algorithms

	Reinforcement Learning for Process Control
	Defining Elements of RL
	Batch Process
	Continuous Process
	Policy Deployment with Transfer Learning
	Conclusions about RL for Process Control

	Challenges for the Implementation of RL to Process Control
	Overview
	Proposed Learning Structure

	MDP Design and Agent Training through Imitation Learning
	Imitation Learning Techniques
	Hyperparameter Optimization
	Hyperparameter Optimization Software

	An Offline RL Control Experiment
	Case Study: Batch Process
	Tree-Structured Parzen Estimator
	Validation of the Control Experiment

	Conclusions
	References

