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Abstract: The kinetics of nitroxide-mediated dispersion copolymerization with crosslinking of styrene
(STY) and divinylbenzene (DVB) in supercritical carbon dioxide (scCO2) is addressed experimentally.
2,2,6,6-Tetramethylpiperidinyl-1-oxy (TEMPO) and dibenzoyl peroxide (BPO) were used as nitroxide
controller and initiator, respectively. A high-pressure cell with lateral sapphire windows at 120 ◦C
and 207 bar was used to carry out the polymerizations. The nitroxide-mediated homopolymerization
(NMP) of STY, as well as the conventional radical copolymerization (FRC) of STY/DVB, at the same
conditions were also carried out as reference and for comparison purposes. The effect of nitroxide
content on polymerization rate, evolution of molecular weight averages, gel fraction, and swelling
index was studied.

Keywords: reversible-deactivation radical polymerization; nitroxide-mediated polymerization; poly-
mer networks; supercritical carbon dioxide; free radical copolymerization

1. Introduction

The properties of polymeric materials with tridimensional network structures pro-
duced by conventional free radical copolymerization with crosslinking (FRC) of vinyl and
divinyl monomers make them relevant for many technological applications. The best
performance in these applications is obtained when the materials possess homogeneous
structures. Unfortunately, the FRC of vinyl/divinyl monomers usually leads to highly
heterogeneous microstructures due to the inherent characteristics of this method, which
include slow initiation, fast propagation, high termination rates, and large dispersities (Ð)
of the molar mass of primary chains. Cyclization and compositional drift promote the
formation of highly compact crosslinked regions mixed with looser ones, which add to the
highly heterogeneous nature of polymer networks synthesized by this route [1].

The incorporation of reversible-deactivation radical polymerization (RDRP) controllers
during the manufacture of polymer networks by FRC of vinyl/divinyl monomers is re-
ported to reduce the heterogeneity of the materials [2]. Polymer networks with claimed
reduced heterogeneity of crosslink density distribution have therefore been synthesized
by nitroxide-mediated polymerization (NMP) [3–16], initiator-chain transfer-terminator
(INIFERTER) polymerization [16–21], atom transfer radical polymerization (ATRP) [22–31],
and reversible addition-fragmentation chain transfer (RAFT) polymerization [32–45]. The
first reports using NMP during the synthesis of polymer networks were pioneer reports
focused on the synthesis of the materials [3–6], measurement and control of the porosity of
the materials [7,8], synthesis in dispersed (mini-emulsion) [9–12] or micro-suspension [13]
conditions, generation of reliable kinetic data [14,15], and a review on NMP which includes
a comprehensive coverage of this topic [16]. The scope and progress are similar for the
other chemistries (INIFERTER, RAFT and ATRP).
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The use of compressed fluids as solvents in polymer chemistry gained relevance in
the 1990s and the first decade of this century. New developments continue in the present
decade. Carbon dioxide at supercritical conditions (scCO2) is the solvent most extensively
used. The replacement of conventional polluting organic solvents by scCO2 in organic
synthesis is important from a non-polluting green chemistry perspective. There are many
reports on the synthesis of polymers in scCO2 as a continuous phase [46–48]. A few reviews
on polymer chemistry in scCO2 are available [47,49–53].

A few years ago, we presented the first reports concerning the production of poly-
mer networks using RDRP chemistries and carried out in scCO2 [2,54,55]. The exam-
ples analyzed included the RAFT copolymerization of styrene (STY) and divinylbenzene
(DVB) [54,55], RAFT copolymerization of methyl methacrylate (MMA) and ethylene glycol
dimethacrylate (EGDMA) [2,55], and RAFT copolymerization of hydroxyethyl methacrylate
(HEMA) and EGDMA [55–57]. We have also modelled these copolymerizations [58].

Although recent studies focused on the synthesis of polymer networks in the presence
of RDRP controllers, such as the synthesis of soft, elastomeric, non-tacky polymer networks;
combining RAFT synthesis of the network followed by photo-induced ATRP grafting of
side chains [59]; the development of a novel class of acrylic acid (AA)-based superabsorbent
polymers (SAPs) with improved absorption performance by applying iodine transfer poly-
merization (ITP) [60]; the assessment of the advantages of RDRP polymer networks over
conventional FRC ones for 3D printing [61]; and the development of a photoinduced free
radical-promoted cationic RAFT polymerization method using the direct photolysis of the
RAFT agent as a radical source, which was further combined with photo-INIFERTER RAFT
polymerization to prepare polymer networks [62], have been reported lately (2019–2022),
none of them have been carried out in scCO2, and none of them have used NMP chemistry.

In this contribution we report the nitroxide-mediated copolymerization with crosslink-
ing of STY and DVB in scCO2 using 2,2,6,6-Tetramethylpiperidine-1-oxy (TEMPO) and
dibenzoyl peroxide (BPO) as the nitroxide controller and initiator, respectively. A high-
pressure cell with lateral sapphire windows at 120 ◦C and 207 bar was used as the reaction
vessel. The motivation and background for this study is contained in a patent generated in
our group [55].

2. Experimental
2.1. Chemicals

STY (Sigma-Aldrich, Naucalpan, México, 99%,) was washed three times using a
10 wt.% NaOH solution and dried for 24 h. with MgSO4. It was then filtrated, followed
by vacuum distillation at 22 ◦C. DVB (Sigma-Aldrich) was a technical mixture of isomers
(p-DVB and m-DVB) with approximately 80 wt.% DVB and was used without further
purification. Dibenzoyl peroxide (BPO) (Akzo Nobel Chemicals, Los Reyes La Paz, Mexico,
97 wt.%) was recrystallized twice from methanol. Carbon dioxide (Praxair, Naucalpan,
Mexico, 99.99% purity) was used without further purification. TEMPO (Sigma-Aldrich,
99 wt.%) was also used without additional purification steps. Krytox® 257 FSL (DuPont,
Mn = 2500 g mol−1) was used as a dispersing aid and was not purified.

2.2. Reaction System

The polymerization system, shown in Figure 1, was similar to the one used in our
previous systems on (co)polymerizations carried out in sc-CO2 [2,54,63,64]. The copolymer-
izations in scCO2 proceeded in a 38 mL high-pressure cell. A Dual Syringe Pump System
was used to feed CO2 into the vessel and bring it to supercritical conditions. Monomers
(8 g), initiator, TEMPO, stabilizer, and a magnetic stirring bar were placed inside the reactor.
A slow flow of CO2 was used to purge the reactor. It was then pressurized with CO2 until
a pre-defined pressure, lower than the desired reaction pressure, was reached. After that,
the reactor was heated using heating tape (heating elements distributed homogeneously
between flexible molded sheets of silicon) until the set reaction temperature (T = 120 ◦C)
was reached and maintained. Pressure was then increased to the required reaction pres-
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sure (P = 207 bar) by loading additional CO2. The reaction mixture was stirred using the
magnetic bar. The polymerization went on until the desired time elapsed.
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Figure 1. Sketch of the reacting system for NMC of styrene and divinylbenzene in scCO2.

2.3. Product Characterization

Monomer conversion was determined from gravimetry. Gel content and Swelling
Index (SI) were obtained gravimetrically from mass fractions separated by ultracentrifuga-
tion, using the same centrifuge as in our previous study [2]. Centrifugation at 18,000 RPM
took place for one hour. Molecular weight averages of the soluble fractions were mea-
sured by gel permeation chromatography (GPC). The same GPC equipment described in
Jaramillo-Soto et al. [2] was used. THF was filtered and used as the eluent at a flow rate of
1 mL/min. Polymer solutions of ±0.2 wt.% were prepared and allowed to dissolve for 24 h.
They were then micro filtered using injection volumes of 100 to 200 µL.

3. Results and Discussion
3.1. Operating Conditions and Cases Analyzed

The objective of this study was to analyze the kinetics of polymer network formation
by nitroxide mediated copolymerization (NMC) of styrene and divinylbenzene carried out
in scCO2. FRP and NMP of STY and conventional FRC of STY/DVB were also considered
in the study as reference systems useful in the analysis. The polymerizations reported in
this study, which are summarized in Table 1, proceeded at a temperature (T) of 120 ◦C
and pressure (P) of 207 bar, using Krytox 257 FSL as a stabilizer. The chemical structure
of Krytox 257 FSL is shown in Scheme 1. As shown in Table 1, eight case studies were
considered in this contribution, all carried out in scCO2. Case 1 deals with FRP of STY,
whereas Case 2 concerns the NMP of STY, and Case 3 refers to conventional FRC of STY
DVB. These three cases are reference cases. Cases 4 to 8 concern the NMC of STY and DVB
at different crosslinker and controller concentrations.

Table 1. Cases of homopolymerization of STY and copolymerization of STY/DVB in scCO2, either
conventional or NMP.

Case Description [DVB] (wt.%) [TEMPO]/[BPO] a

1 FRP of STY 0 0
2 NMP of STY 0 1.1
3 FRC of STY/DVB 1 0
4 NMC of STY/DVB 1 1.1
5 NMC of STY/DVB 1.5 1.1
6 NMC of STY/DVB 3 1.1
7 NMC of STY/DVB 1 1.6
8 NMC of STY/DVB 1 3

a Molar ratio, [BPO] = 1 wt.% (wrt to monomer mixture), T = 120 ◦C, P = 207 bar.
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Scheme 1. Chemical structure of Krytox 257 FSL.

3.2. Comparison of Base Case of NMC of STY/DVB (Case 4) against Reference Situations
(Cases 1–3)

A comparison of a representative formulation of NMC of STY/DVB in scCO2 (Case 4)
against the reference situations of FRP of STY (Case 1), NMP of STY (Case 2), and FRC
of STY/DVB (Case 3) is shown in Figure 2. As expected, the slowest case is the NMP
of STY (Case 2), where the controller slows down the polymerization rate and there is
no crosslinker which accelerates it, and the fastest case corresponds to the conventional
FRC of STY/DVB, where opposite conditions prevail. Intermediate between these two
are the NMC of STY/DVB (Case 4), which is the second slowest system, and the FRP of
STY (Case 1). In this situation, the reduced polymerization rate caused by the controller
dominates over the action of the crosslinker.
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Figure 2. Conversion versus time profiles for the NMC of STY/DVB at [DVB] = 1 wt.% and
[TEMPO]/[BPO] = 1.1 (triangles) against reference cases of FRP of STY (Case 1, circles), NMP
of STY (Case 2, squares), and FRC of STY/DVB (Case 3, diamonds).

3.3. Effect of Crosslinker Content on Polymerization Rate and Evolution of Molecular
Weight Averages

The NMC of STY/DVB with a [TEMPO]/[BPO] ratio of 1.1 was taken as a base
formulation to study the effect of DVB content on the polymerization rate (Figure 3),
molecular weight development (Figures 4 and 5), gel fraction versus conversion, and the SI
versus conversion. It is observed in Figure 3 that the polymerization proceeds faster as the
amount of DVB crosslinker in the formulation is increased.
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Although not all the samples were characterized for molecular weight development,
a linear relationship between number average molecular weight (Mn) and conversion
is observed in Figure 4 (see trending line) for Case 5 of Table 1. The data point at 20%
monomer conversion seems to deviate from the linear trend. As observed in Figure 5, which
shows a plot of weight average molecular weight (Mw) versus conversion, the gelation
point occurs precisely between 20% and 25% monomer conversion, a situation that may
explain the deviation from the linear trend. It is clearly observed in Figure 5 that Mw
increases sharply during the pre-gelation period until the gelation point is reached, and
then decreases for the sol fraction during the post-gelation period (see the trending lines),
behavior typical for a system with polymer network formation.

Experimental profiles of gel percentage versus monomer conversion at three levels
of crosslinker are shown in Figure 6. The exact occurrence of the gelation points is not
captured with precision, but the qualitative trend, illustrated by the trending lines, is
clear: the gelation point occurs sooner when the concentration of DVB is increased. The
gelation point for the system with 3 wt.% DVB content (Case 6) occurs between 5 and 10%
monomer conversion; it occurs between 15 and 20% monomer conversion for the system
with 1.5 wt.% DVB content (Case 5) and it takes place between 20 and 30% conversion for
the system with 1 wt.% DVB content (Case 4). According to Figure 5, the gelation point for
Case 4 takes place at about 25% conversion, which agrees with the gelation point observed
in Figure 6.
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Figure 6. Effect of crosslinker content on gel development for the NMC of STY/DVB in scCO2 at
[TEMPO]/[BPO] = 1.1, T = 120 ◦C, and P = 207 bar.

As shown in Figure 7, the swelling index (SI) is very low before the gelation point. As
shown by the trending lines, a sudden increase in the SI around the gel point vicinity and
then a gradual decrease after the gelation period is observed for both situations (Cases 4
and 5). Open markers in Figure 7 are repeats of polymerization. Although it is not observed
clearly, most of the solid markers are repeats of the measurement for a single sample.
These results show that the repeatability of the technique is good, and the reproducibility,
understood as replication of the experiments in the same laboratory, is rather large. The
gelation points inferred from Figure 7 are slightly higher than those obtained from Figures 5
and 6, but the qualitative trend is correct, since the gelation point at the lower level of
crosslinker ([DVB] = 1 wt.%) occurs later than the corresponding one for the higher level
([DVB] = 1.5 wt.%).
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3.4. Effect of TEMPO Content on Polymerization Rate and Molecular Weight Development

Cases 3, 4, 7, and 8 of Table 1, all of them with [DVB] = 1 wt.%, were used to analyze
the effect of controller (TEMPO) content on the NMC of STY/DVB at T = 120 ◦C and
P = 207 bar. It is observed in Figure 8 that increasing TEMPO content in the reacting
mixture results in decreased polymerization rates (slower conversion versus time profiles),
a result which is expected in RDRPs.
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It is shown in Figure 9 that the Mn versus conversion (x) profiles for Cases 7 and 8
follow linear trends, with the case with lower TEMPO content reaching slightly higher
molecular weights.
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Figure 10 shows profiles of Mw versus x. At first sight, the data points do not seem
to show clear trends. However, when each profile is analyzed individually, the expected
trends are revealed. In the case at [TEMPO]/[BPO] = 1.1, only two data points (triangles) are
observed in Figure 10; one of them (x = 0.1) seems to correspond to an increasing profile for
the pre-gelation period, and the other (x = 0.33) to a decreasing profile for the post-gelation
period (see solid black trending lines). This indicates that the gelation point for Case 4
occurs between 15 and 25% monomer conversion. In the case at [TEMPO]/[BPO] = 1.6,
there are three data points at conversions lower than 20% monomer conversion, which
shows an increasing trend that agrees with the increasing trend of a crosslinking system for
the pre-gelation period. The data point at x = 0.3 seems to correspond to a decreasing profile
for the post-gelation period. This behavior is illustrated with the short-dashed red trending
lines. The gelation point for Case 7 occurs between 15 and 28% monomer conversion. In
the system at [TEMPO]/[BPO] = 3 (Case 8), although the data points are scattered, all of
them seem to follow the increasing trend of a profile during the pre-gelation period. As
indicated by the long-dashed green trending line, it seems that the gelation point was not
reached before 24 h, which was the maximum time where samples were taken.
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Figure 11 shows the profiles of gel percentage versus conversion. As expected, gelation
is delayed as the amount of TEMPO is increased. From the data points at low conversions,
it can be inferred that the gelation point in the absence of a controller (Case 3) occurs very
early during the polymerization (no data point available); gelation occurs between 5 and
10% monomer conversion for Case 4 and between 13 and 25% for Case 7. The colored
trending lines of Figure 11 provide an easier way to visualize these results.
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The results of the SI versus conversion shown in Figure 12 confirm that gelation did
not take place during the time that the polymerization was monitored in Case 6, the one
with [TEMPO]/[BPO] = 3 (green trending line and green squares). On the other hand,
the SI for Case 7 increased abruptly and then decreased between 20 and 30% monomer
conversion, which indicates that gelation took place in that interval, in agreement with
what was observed in Figures 10 and 11 (see red trending line and red diamonds).
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4. Conclusions

Polymer networks synthesized by FRC of STY/DVB in scCO2, at 120 ◦C and 207 bar,
in a high-pressure cell with lateral sapphire windows are reported for the first time. The
novelty of this process includes the combination of three technological aspects: (a) synthesis
of polymer networks; (b) use of RDRP chemistry for the synthesis of controlled polymer
microstructures; and (c) the use of scCO2 as a green route to carry out the polymerization.
The results obtained confirmed that crosslinking and gelation took place, that the presence
of TEMPO slowed down the polymerization and delayed the occurrence of the gelation
point, and that growth was less disordered than in conventional FRC. The reduced rate of
polymerization is observed in the conversion versus time profiles, where higher conversions
are reached when the amount of TEMPO is reduced. The effect of TEMPO delaying the
occurrence of gelation is clearly observed in the Mw versus conversion, SI versus conversion,
and gel fraction versus conversion profiles.

The nature of the reactor did not allow obtaining more abundant and precise exper-
imental data but did allow us to prove the concept that we proposed earlier for RAFT
copolymerization of STY/DVB in scCO2 [2,54,55] to the case of NMC of vinyl/divinyl
monomers in scCO2. Namely, polymer networks with different kinetic behavior during the
polymerization (slower polymerization rates and delayed gelation) and less heterogeneous
crosslink density distributions are obtained when TEMPO is used as a controller, and the
material is easily dried by depressurization of the reactor. Our experimental data do not
provide direct information on the homogeneity of the polymer network, but the linear rela-
tionship between Mn and conversion suggests that less heterogeneous are indeed produced
when TEMPO is included in the formulation. This is an issue that requires further analysis
in future studies on the topic.
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