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Abstract: This study simulated seabed high pressure and low temperature conditions to synthesize
natural gas hydrates, multi-stage depressurization mode mining hydrates as the blank group, and
then carried out experimental research on the decomposition and mining efficiency of hydrates by
depressurization and injection of different alcohols, inorganic salts, and different chemical agent con-
centrations. According to the experimental results, the chemical agent with the best decomposition
efficiency is preferred; the results show that: the depressurization and injection of a certain mass
concentration of chemical agents to exploit natural gas hydrate is more effective than pure depressur-
ization to increase the instantaneous gas production rate. This is because depressurization combined
with chemical injection can destroy the hydrate phase balance while effectively reducing the energy
required for hydrate decomposition, thereby greatly improving the hydrate decomposition efficiency.
Among them, depressurization and injection of 30% ethylene glycol has the best performance in
alcohols; the decomposition efficiency is increased by 52.0%, and the mining efficiency is increased by
68.2% within 2 h. Depressurization and injection of 15% calcium chloride has the best performance
in inorganic salts; the decomposition efficiency is increased by 46.3%, and the mining efficiency is
increased by 61.1% within 2 h. In the actual mining process, the appropriate concentration of chemical
agents should be used to avoid polluting the environment.

Keywords: natural gas hydrate; depressurization and chemical injection combined method; hydrate
decomposition efficiency; hydrate recovery efficiency

1. Introduction

As a new type of strategic energy in the future, the exploitation of natural gas hydrate
is of great significance. The mining principle is to change the stable phase equilibrium
condition of natural gas hydrate, and decompose natural gas hydrate to obtain natural gas.
The mining methods proposed by domestic and foreign hydrate mining experts mainly
include the pressure reduction method, the chemical injection method, the heat injection
method and the carbon dioxide replacement method [1,2]. Judging from the current indoor
test research and test mining, the pressure reduction method is more preferred.

The depressurization method reduces the pressure of the hydrate reservoir to below
the equilibrium pressure of the hydrate phase, and destroys the stability of the natural
gas hydrate [3]. Almenningen et al. [4] considered the depressurization method to be
the most cost-effective method through field examples and the status quo. However, the
experimental results of Li et al. [5], Wang et al. [6], and Zhou et al. [7] show that the
depressurization amplitude has a great influence on depressurization mining efficiency.
Zhao et al. [8] found that excessive pressure reduction may lead to reservoir instability.
Song et al. [9] simulated vertical well pressure reduction mining through ABAQUS and
found that reducing production pressure can effectively increase hydrate production, but
formation subsidence is also more likely to occur. Konno et al. [10] found that the excessive
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production of a pressure difference could lead to problems such as ice plugging or secondary
hydrate formation in the wellbore. The single depressurization method still faces the
problems of the rapid decay of the mining rate, low heat transfer efficiency, and low energy
utilization rate, but the use of stepped depressurization (i.e., multi-stage depressurization)
can effectively alleviate such problems. Therefore, using only the depressurization method
is not suitable for the long-term development of natural gas hydrate.

The chemical agent injection method is to inject chemical agents into the formation to
move the phase equilibrium curve of natural gas hydrate to a higher pressure and lower
temperature, so that the natural gas hydrate is decomposed [11,12]. The advantage of the
chemical injection method is that the heat required for the decomposition of natural gas
hydrate can be reduced, and the decomposition rate of natural gas hydrate can be effectively
increased in a short time. Sung et al. [13], Fan et al. [14] studied the effects of the pressure
reduction method and chemical injection method on the heat of hydrate decomposition,
and found that the chemical injection can significantly reduce the heat required for natural
gas hydrate decomposition and increase the decomposition efficiency. Sun et al. [15] found
through experiments that, compared with the conventional depressurization method,
ethylene glycol injection can significantly improve the recovery efficiency of natural gas
hydrate. Sun et al. [16] used a small three-dimensional device to deepen the study of
chemical injection to extract methane hydrate, and explored from the aspects of injection
concentration and injection rate. To sum up, chemical injection can effectively make up for
the shortage of depressurization mining.

In recent years, the combined depressurization and extraction technologies of natural
gas hydrate mainly include the depressurization and heat injection combined method, the
depressurization and replacement combined method, the depressurization and ground
decomposition combined method, etc. [17]. Among them, Sun et al. [18] established a
mathematical model, and the combined method of depressurization and heat injection
can greatly reduce the water cut and improve the recovery factor. Li S X et al. [19] and
Bai Y H et al. [20] found through physical and numerical simulations, that although the
combined method of heat injection and depressurization can effectively improve energy
utilization, long-term depressurization may lead to reservoir instability. Gupta et al. [21]
found that the depressurization and CO2 replacement method is efficient and economical,
and can effectively solve the permeability problem, but this method must strictly limit
the large amount of CO2 overflow, so it has extremely high technical requirements and
is not suitable for conventional mining. The combined method of depressurization and
ground decomposition can easily cause formation instability due to the instability of
shallow hydrate reservoirs on the seabed and the simultaneous action of pressure drop and
shallow mining, so the mining efficiency of this method is low. However, depressurization
and chemical injection can avoid the secondary formation of hydrate under the action of
chemical agents [22], and greatly improve the recovery efficiency in a short period of time,
obtain considerable economic benefits, and maintain reservoir stability. There are also other
technologies that increase the production rate, such as asphaltene control [23].

At present, there is a serious lack of basic data on the effect of that multi-stage depres-
surization and chemical injection combined method on hydrate recovery efficiency. It is
necessary to verify the feasibility of the multi-stage depressurization and chemical injection
method through experimental simulation, and at the same time, it is necessary to evaluate
the performance of efficient decomposition promotion. It can provide reasonable guidance
for the efficient exploitation of natural gas hydrate.

In this paper, self-made equipment is used to simulate the temperature and pressure
conditions of submarine hydrate reservoirs to generate hydrates with high saturation, and
a multi-stage depressurization and chemical injection combined exploration of natural
gas hydrate is carried out. The influence of the recovery efficiency, instantaneous gas
production dynamics, and the cumulative gas production changes during the hydrate
decomposition process were studied.
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2. Materials and Methods
2.1. Experimental Materials and Equipment

Experimental materials: deionized water, made in the laboratory; methane gas (purity
99.99%), Wuhan Huaxin Gas Company; quartz sand (0.82 mm, porosity 0.45), Shanghai
Sinopharm Reagent Chemical Factory; methanol (≥99%), ethylene glycol (≥99.5%), ethanol
(≥95%), calcium chloride (≥96%), sodium chloride (≥99.5%), potassium chloride (≥99.5%),
Longxi Science.

Experimental equipment: A XFH-II type natural gas hydrate synthesis and decom-
position simulation device was used in the experiment. The schematic diagram of the
composition of the gas hydrate synthesis and decomposition device is shown in Figure 1.
The device consists of an injection system, a pressurization system, a constant temperature
control system, a reactor system, a gas metering system and a data acquisition system.
Among them, the high-pressure stainless steel reaction kettle has a volume of 500 mL, a
pressure resistance of 20 MPa, and a working temperature of −20 to 50 ◦C; the temperature
sensor range is greater than 400 ◦C, and the accuracy is 0.1 ◦C; the gas flow meter range is
1000 mL/min, and the accuracy is 0.1 mL/min.
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Figure 1. Schematic diagram of the composition of the gas hydrate synthesis and decomposition device.

2.2. Experimental Steps
2.2.1. Natural Gas Hydrate Synthesis Steps

More than 90% of natural gas hydrates exist in seabed sediments with a temperature of
0–10 ◦C and a pressure of more than 10 MPa [24]. The main composition of hydrate deposits
is silt in the South China Sea, with a porosity of 33% to 55% [25] and an average gas hydrate
saturation of 13.7% to 45.2% [26]. Therefore, this experiment is based on the above research
to ensure that the basic requirements of the natural gas hydrate reservoir environment are
met. First, ensure that methane hydrate with high saturation is generated, and then ensure
that the pressure in the kettle is about 10 MPa after the methane hydrate is completely
generated. After many experiments and tests, when the experimental temperature is 4 ◦C
and the initial pressure is about 15 MPa, and the quartz sand with particle size of 0.82 mm
and porosity of 0.45 is selected to simulate the reservoir, basic methane hydrate reservoir
conditions can be achieved.

Natural gas hydrate synthesis steps: 1© Rinse the reactor with distilled water 3 times
to remove other chemical reagents left in the reactor from the previous experiment; 2© After
connecting the pipeline, check the airtightness of the device, and inject 4 MPa of gas into
the reaction kettle. If the pressure remains stable within 24 h, the airtightness is good;
3© Fill the reaction kettle with sand to 350 mL; 4© Add distilled water to predetermined

mass (160 g); 5© Open the exhaust valve, and quickly and repeatedly replace the air in the
reaction kettle with high-purity methane gas sample twice, so as to ensure that the gas
in the kettle has the same composition as the prepared gas as much as possible; 6© Use a
constant temperature water bath to adjust the temperature in the kettle to 4 ◦C, and in the
process of waiting for the temperature to reach a constant value, prepare a decomposer
solution for later use; 7© Methane gas was injected into the reaction kettle, and the injection
of methane gas was stopped after the pressure in the kettle reached 15 MPa. When the
pressure in the reactor is stable (observation for 2 h), the hydrate reaction is complete.
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2.2.2. Natural Gas Hydrate Decomposition Steps
1© After the hydrate is completely formed, multi-stage depressurization is carried out,

the pressure in the reactor is reduced to the specified decomposition and production pres-
sure for many times (the pressure shall be maintained after each stage of depressurization,
and the mining shall be continued for 1 h), and the chemical agent solution prepared in
advance is passed through the advection pump. The chemical agent solution was injected
into the reactor at the injection rate of 8 mL·min−1, so that the hydrate began to decompose;
2© When the gas production rate dropped to 0, the hydrate decomposition reaction was

considered to be over; 3© The data acquisition system was used to record the temperature
and pressure changes in the reaction kettle during the whole experiment process, save the
data after the experiment was completed, and clean the reaction kettle.

3. Results
3.1. Multi-Stage Depressurization and Alcohol Injection to Promote Hydrate Decomposition

At 4 ◦C, the equilibrium pressure of the methane hydrate phase is 3.9 MPA [27].
In the actual production process of hydrate reservoirs, an excessive wellhead pressure
difference may impact the wellbore and cause it to be damaged or collapse. Therefore,
the three-stage depressurization mode of -4 MPa-3 MPa-2 MPa was used in the experi-
ments. The use of the third-order depressurization mode can not only reduce the risk of
reservoir collapse, but also shorten the effective production time of natural gas hydrate
and increase the decomposition efficiency of natural gas hydrate. The mining conditions
of multi-stage depressurization +20%/30% ethylene glycol, multi-stage depressurization
+20%/30% methanol, and multi-stage depressurization +20%/30% ethanol were investi-
gated respectively, and they were decomposed with pure depressurization. Methods were
compared. The experiment was repeated 3 times, and a set of data closest to the average
was taken. The experimental results are shown in Figures 2 and 3 and Table 1.
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Table 1. Relevant experimental parameters of gas hydrate depressurization and alcohol injection production.

Index
Pure

Multistage
Buck

Multi-Stage
Depressur-
ization +

20%
Ethylene

Glycol

Multi-Stage
Depressur-
ization +

30%
Ethylene

Glycol

Multi-Stage
Depressur-
ization +

20%
Methanol

Multi-Stage
Depressur-
ization +

30%
Methanol

Multi-Stage
Depressur-
ization +

20%
Ethanol

Multi-Stage
Depressur-
ization +

30%
Ethanol

Experimental
pressure/MPa 14.85 14.82 14.80 14.81 14.83 14.81 14.83

Experimental
temperature/◦C 4 4 4 4 4 4 4

Experiment end
pressure/MPa 10.27 10.12 10.30 10.14 10.24 10.34 10.24

Hydrate
Saturation/% 48.0 48.5 46.5 48.5 48.0 46.1 48.2

Injection
rate/(mL·min−1) 8 8 8 8 8 8 8

Buck mode/MPa -4-3-2 -4-3-2 -4-3-2 -4-3-2 -4-3-2 -4-3-2 -4-3-2

Cumulative gas
production/L 48.83 54.51 54.14 53.25 53.47 53.76 53.45

Decomposition
complete time/min 300 163 144 163 152 194 179

Average gas
production

rate/(mL·min−1)
161.7 334.4 376.0 326.7 351.8 277.1 298.6

It can be seen from Figures 2 and 3 and Table 1 that in the pure depressurization
mode, when the pressure is reduced to 4.00 MPa for constant pressure production, the
instantaneous gas production rate increases rapidly, and then decreases rapidly. This
is because the decomposition occurs when the pressure is reduced to 4.00 MPa. The
driving force is insufficient, the decomposition gas production is small, the instantaneous
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gas production rate cannot be supported, and the gas production is basically free gas;
the migration in the hydrate layer causes the decomposition of methane hydrate, and
the instantaneous gas production rate is greatly improved, which is obviously better
than pure depressurization production. Among them, the decomposition performance
of multi-stage depressurization + 20%/30% ethylene glycol mode is the best, and the
time required for multi-stage depressurization + 20% ethylene glycol and multi-stage
depressurization + 30% ethylene glycol to completely decompose natural gas hydrate is
163 min and 144 min, respectively. Compared with pure multi-stage depressurization, the
decomposition efficiency is increased by 45.7% and 52.0%, respectively. When multi-stage
depressurization + 30% ethylene glycol is produced at a constant pressure of 4.00 MPa, the
early instantaneous gas production rate exceeds 750 mL/min, the gas production rate is
still 292 mL/min in the later stage, which is obviously better than other alcohols; when the
multi-stage depressurization + 30% ethylene glycol is produced at a constant pressure of
3.00 MPa, the instantaneous gas production rate in the final stage drops to 78 mL/min, this
is because the hydrate has basically completely decomposed during the constant pressure
production of 4.00 and 3.00 MPa in the multi-stage depressurization + 30% ethylene glycol
mode, and the decomposed gas is insufficient, so the instantaneous gas production rate
drops rapidly.

Since the initial pressure is about 14.85 MPa, and multi-stage depressurization is
reduced to 2.00 MPa, the final cumulative gas production should be basically the same
within the allowable error range. In order to understand the production efficiency of the
combined method in a certain period of time, the gas production at the end of production
at a constant pressure of 4.00 and 3.00 MPa (i.e., 2 h of production) was selected for
comparison. It can be seen from Figures 2 and 3 that the production efficiency of multi-
stage depressurization and alcohol injection in the first 2 h of production time is much
greater than that of the pure depressurization mode. The mining efficiency of +30% ethylene
glycol is the best; compared with the pure multi-stage depressurization mode, the multi-
stage depressurization + 20% ethylene glycol mode increases the production efficiency
by 65.3%, and the multi-stage depressurization + 30% ethylene glycol mode produces
Efficiency increased by 68.2%.

From the experimental results, multi-stage depressurization and alcohol injection
can effectively improve the extraction and decomposition efficiency of hydrate reservoirs
compared with simple depressurization. In addition, the chemical concentration of the
combined method is much lower than that of Wang et al. [28], which is more efficient and
economical. This is because the multi-stage depressurization destroys the stability of the
hydrate, and, secondly, the organic reagents such as ethylene glycol, methanol, ethanol
and other alcohol molecules, and the hydrophilic hydroxyl group destroys the crystal
structure of the hydrate and promotes the decomposition of the hydrate [29]. At the same
time, with the increase of alcohol concentration, the hydrate decomposition efficiency
also increased gradually. This is because the high-concentration alcohol solution has a
greater impact on the phase equilibrium conditions of methane hydrate, and adding high-
concentration alcohol solution can reduce the decomposition heat of methane hydrate [15],
which improves the decomposition efficiency of hydrate.

The experiment found that ethylene glycol had the best effect on promoting the
decomposition of hydrate. This is because, compared with methanol and ethanol, the
decomposition heat in ethylene glycol solution is lower, and the cluster structure formed
by methanol molecules and ethanol molecules reduces the number of active molecules,
which is not conducive to the decomposition of hydrates [30].

3.2. Multi-Stage Depressurization and Salt Injection to Promote Hydrate Decomposition

High-quality salts may crystallize and cause blockage of the injection pipeline. There-
fore, multi-stage depressurization + 10%/15% calcium chloride, multi-stage depressur-
ization + 10%/15% sodium chloride, multi-stage depressurization + 10%/15% potassium
chloride are the best. The mining conditions of decompression + 10%/15% potassium
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chloride were compared with pure decompression decomposition. The experiment was
repeated three times, and the group closest to the average was taken. The experimental
results are shown in Figures 4 and 5 and Table 2.
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Table 2. Relevant experimental parameters of gas hydrate depressurization and salt injection production.

Index
Pure

Multistage
Buck

Multi-Stage
Depressur-
ization +

10%CaCl2

Multi-Stage
Depressur-
ization +

15% CaCl2

Multi-Stage
Depressur-
ization +

10% NaCl

Multi-Stage
Depressur-
ization +

15% NaCl

Multi-Stage
Depressur-
ization +
10% KCl

Multi-Stage
Depressur-
ization +
15% KCl

Experimental
pressure/MPa 14.85 14.92 15.07 14.91 14.86 14.85 14.86

Experimental
temperature/◦C 4 4 4 4 4 4 4

Experiment end
pressure/MPa 10.27 10.46 10.40 10.24 10.48 9.33 10.07

Hydrate
Saturation/% 48.0 46.5 48.2 49.1 45.7 57.2 50.5

Injection
rate/(mL·min−1) 8 8 8 8 8 8 8

Buck mode/MPa -4-3-2 -4-3-2 -4-3-2 -4-3-2 -4-3-2 -4-3-2 -4-3-2

Cumulative gas
production/L 48.83 53.84 55.20 54.17 52.92 53.90 53.11

Decomposition
complete time/min 300 174 161 211 189 289 240

Average gas
production

rate/(mL·min−1)
161.7 309.4 342.9 256.7 280.0 186.5 221.3

As can be seen from Figures 4 and 5 and Table 2, after the combined method of multi-
stage depressurization and salt injection is adopted, the instantaneous gas production rate
is also significantly improved, which is better than that of pure multi-stage depressur-
ization; multi-stage depressurization and injection of 10% Calcium chloride, multi-stage
depressurization and injection of 15% calcium chloride all show excellent decomposition
performance, the instantaneous gas production rate at the constant pressure stage of 4 and
3 MPa is significantly higher than that of other salt injections as the hydrate is rapidly
decomposed. Therefore, the natural gas hydrate decomposes completely at a relatively
fast rate during the constant pressure decomposition of 2 MPa; the time required for the
multi-stage depressurization + 10% calcium chloride injection and the multi-stage decom-
pression + 15% calcium chloride injection to completely decompose the natural gas hydrate
are, respectively, 174 min and 161 min, and the decomposition efficiency was increased by
42.0% and 46.3%, respectively compared with pure multistage depressurization.

It was found from the experimental process that the mining efficiency of multi-stage
depressurization + 10% calcium chloride injection and multi-stage depressurization + 15%
calcium chloride injection is high, and much larger than the pure multi-energy depressur-
ization mode; compared with the pure multi-energy depressurization mode, the mining
efficiency of multi-stage depressurization + 10% calcium chloride injection is improved
by 54.6%, and the mining efficiency of multi-stage depressurization + 15%, while calcium
chloride injection is improved 61.1%.

From the experimental results, multi-stage depressurization and salt injection can effec-
tively improve the extraction and decomposition efficiency of hydrate reservoirs compared
with simple depressurization, and it increases with the increase of mass concentration,
which is consistent with the experimental results of Ding et al. [31]. This is due to the strong
coulomb force of inorganic salt reagents, and it is easy to break the hydrate crystal structure
through the combination of hydrogen bonds and water molecules, thereby promoting the
decomposition of hydrates. This ability increases with the increase of particle concentration;
inorganic salts can change the self-diffusion effect of water molecules in the system. As
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the mass concentration of inorganic salt increases, the activity of water molecules in the
solution decreases and the self-diffusion coefficient decreases, while the self-diffusion coef-
ficient of water molecules in hydrates increases [32], thereby promoting the decomposition
of hydrates.

It was also found from the experiment that calcium chloride has the best effect on
promoting the decomposition of natural gas hydrate. This is because the addition of
salt solution reduces the energy required for hydrate decomposition; in calcium chloride
solution, the energy required for natural gas hydrate decomposition is very low, and the
ability to destroy the natural gas hydrate lattice is stronger [33] and more favorable for
hydrate decomposition.

4. Conclusions

The experimental study found that multi-stage depressurization combined with the
chemical agent injection method can increase mining efficiency by more than 68% in the
first two hours after chemical agent injection, compared with the single depressurization
method, which has the advantage of significantly increasing the mining efficiency. However,
considering the field exploitation of natural gas hydrates, this method also has some
limitations. Multi-stage depressurization combined with the injection of thermodynamic
chemicals with a higher mass concentration (such as methanol, ethylene glycol, etc.) may
pollute the environment and cost more.

From the perspective of economic and environmental benefits, the combined method
needs to reasonably optimize the injection amount of thermodynamic chemicals or use
multiple chemicals together to reduce costs and increase gas production. Secondly, in the
future, it is necessary to constantly develop green, efficient, and economic kinetic chemicals
to replace traditional thermodynamic chemicals. I believe that the reasonable application
of multi-stage depressurization combined with chemical injection method is expected to be
an efficient method for the on-site exploitation of natural gas hydrate.
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