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Abstract: Networked nonlinear systems (NNSs) have great potential security threats because of
malicious attacks. These attacks will destabilize the networked systems and disrupt the communi-
cation to the networked systems, which will affect the stability and performance of the networked
control systems. Therefore, this paper aims to deal with the resilient control problem for NNSs
with dynamically triggering mechanisms (DTMs) and malicious aperiodic denial-of-service (DoS)
attacks. To mitigate the impact from DoS attacks and economize communication resources, a resilient
dynamically triggering controller (RDTC) is designed with DTMs evolving an adaptive adjustment
auxiliary variable. Thus, the resulting closed-loop system is exponentially stable by employing the
piecewise Lyapunov function technique. In addition, according to the minimum inter-event time,
the Zeno behavior can be excluded. Finally, the merits of the proposed controllers and theory are
corroborated using the well-known nonlinear Chua circuit.

Keywords: resilient dynamically triggering controller (DTRC); dynamically triggering mecha-
nisms (DTMs); denial-of-service (DoS); networked nonlinear systems (NNSs); resilient dynamically
event-triggering (RDET)

1. Introduction

Recently, due to the irreplaceable position of communication in the network, many
scholars have devoted their attention to the study of networked control systems. More
specifically, they are focusing on the data transmission of networked control systems be-
cause of the advantages of the information interaction based on the interconnection of
the different systems. Naturally, communication-based issues of control and optimization
are emerging and developing rapidly [1–3]. Although the advantages of communication
technology have brought seismic shocks to academia and industry, there exists a problem.
The limitations of the periodic sampling technique subject to guaranteeing desired system
performance by reducing the sampling period create a large amount of redundant sam-
pled data, resulting in network congestion and executing control tasks periodically after
the system is stabilized, which results in wasting network bandwidth and computation
resources. To tackle these limitations, an event-triggering technique has emerged at this
historical moment and developed rapidly based on supervising the controller’s update [4,5].
Herein, it is worth noting that the event triggering techniques not only ensure the desired
performance from control tasks but also decrease the update frequency of the controller,
resulting in energy saving in system communication. In the past decades, different types
of the event triggering techniques have been proposed, such as the static event-triggering
technique [6–8], dynamic event-triggering technique [9–11], stochastic event-triggering
technique [12–14], and switched event-triggering technique [15,16].

In addition, unreliable communication channels cause much concern in the discussion
of the stability and performance maintenance for networked control systems. In this regard,
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there exist some innovative works [17–19]. In particular, security-based networked control
systems resisting malicious attacks have been given attention in the past years [20,21].
Herein, it is worth noting that on the premise of ensuring system stability and desired
performance, the so-called security is the elasticity of resisting malicious cyber attacks.
Although there exist a few innovative and groundbreaking results for networked control
systems with co-design of the event triggering techniques and DoS attacks [22–24], the
co-design with dynamically triggering techniques and DoS attacks for NNSs is still a
challenging problem.

Up to now, although many innovative and groundbreaking results have sprung up
for the control and optimization in the framework of co-design of dynamically trigger-
ing techniques and DoS attacks [25–27], they primarily focus on linear systems. More-
over, some research results of nonlinear systems with DTMs and DoS attacks appear
sporadically [28–31], the existing DTMs have shown certain limitations in theorem research
and industrial practice. Inspired by the aforementioned discussion, this paper deals with
the resilient control problem for NNSs with DTMs and DoS attacks. More specifically, a
DTRC is designed with DTMs with an adaptive adjustment auxiliary variable, which can
result in the closed-loop system being exponentially stable by employing the piecewise
Lyapunov function technique. Meanwhile, a minimal inter-event time is obtained to ensure
it is Zeno-free under aperiodic DoS attacks. In addition, the innovations of this paper are
as follows:

• Different from the static trigger strategy in [22–24], a novel dynamically triggering
strategy is proposed for NNSs with aperiodic DoS attacks. Because of the longer trigger
intervals compared with the static trigger intervals, this strategy further reduces the
sampling data transmission rate and improves the usage of network resources.

• Compared with the trigger strategy in [23], the dynamically triggering resilient control
strategy is introduced into nonlinear systems to obtund the influence of aperiodic DoS
attacks. In addition, the sampled data cannot be transmitted even if condition (7) is
satisfied since aperiodic DoS attacks will result in the loss of control input during the
DoS attacks range.

• Compared with [23], a new piecewise Lyapunov function is designed to ensure the
exponential stability of the networked control system under DoS attacks. In particular,
the minimum inter-event time excludes Zeno behavior in the resilient controller.
Moreover, the proposed method not only releases Assumption 4 in [23] but also
reduces the conservative of the system.

The structure of this article is as follows. First, NNSs and problem statements are
presented in Section 2. Then, the conditions for the stability of NNSs under DoS attacks
are driven in Sections 3. Furthermore, the satisfactory and better performance of the RDET
controller designed than the existing ones is provided in Section 4. Finally, the conclusion
is shown in Section 5.

Notations: R+ and Z+ represent the set of the positive real numbers and the set of the
positive integer numbers, respectively. Rn and Rn×m indicate the space of real n-vectors
and n×m matrices. x−1 is the inverse of x (function or matrix). ‖ · ‖means the 2-norm.

2. Problem Formulation

Figure 1 shows wireless NNSs under aperiodic DoS attacks. First, aperiodic DoS
attack scenarios are typically depicted by the sleeping intervals and DoS attack intervals
in Figure 2. Then, the dynamically triggering resilient control strategy and switching
controller are designed for NNSs, respectively. Next, based on these descriptions, we give
out the problem statement.
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Figure 1. Schematic representation of dynamic event-triggered control for nonlinear systems under
DoS attacks.

Figure 2. Situation of aperiodic DoS attacks. (a) presents the current instant in the sleeping interval,
and (b) presents the current instant in the DoS attack interval.

2.1. Networked Nonlinear Systems

Consider the following class of NNSs{
ẋ(t) = f (x(t), u(t))
x(0) = x0

(1)

where x(t) ∈ Rn is the system state; u(t) ∈ Rm represents the control input; x0 denotes the
initial condition; the Lipschitz continuous function f : Rn ×Rm → Rn satisfies f (0, 0) = 0
for all t ∈ R+.

For the sake of later analysis, we provide the following definitions and assumptions.

Definition 1 ([32]).

1. A function α : [0, ∞) → [0, ∞) is called a class of K if it is continuous, strictly increasing
and α(0) = 0. If α ∈ K and also α(s) → [0, ∞) as s → [0, ∞), then it is said to be of
class K∞.

2. A function β : [0, ∞)× [0, ∞) → [0, ∞) is called a class of KL if the function β(·, t) ∈ K
for all fixed t > 0 and the function β(s, ·) is decreasing and β(s, t) → 0 as t → ∞ for all
fixed s ∈ R+.

Definition 2 ([32]). System (1) is said to be globally weakly exponentially stable (GWES) if
there exist functions α1, α2 ∈ K∞ and constants δ > 0, M ≥ 1 such that for any initial value
x(0), the solution x(t) satisfies α1(‖x(t)‖) ≤ Me−δtα2(‖x(0)‖), ∀t ≥ 0. In particular, when
α1(‖x‖) = α2(‖x‖) = ‖x‖m, m ∈ Z+, it is said to be globally exponentially stable (GES).

Definition 3 ([32]). A function V : Rn → R≥0 is an ISS-Lyapunov function if there exist some
K∞ functions α1, α2, and γ that satisfy

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖)
∇V(x) f (x, u) ≤ −cV(x) + γ(‖u‖)

where c ∈ R+.
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Definition 4 ([32]). Given a local Lipschitz function V : Rn → R+, the upper left-hand Dini
derivative of V along system (1) is defined by

D−V[ f ] = lim
h→0−

sup
1
h
{V(x + h f )−V(x)}.

2.2. Aperiodic DoS Attacks

In this section, for the convenience of analysis and design, we assume that the DoS
attacks only occur on the measurement channel and that no packet loss or no delay occurs
during the sleeping intervals. As shown in Figure 2, {tm}(t0 ≥ 0) and {∆m}m∈N0(∆m ≥ 0)
represent the sequence of DoS on/off transitions times and the duration of the mth sleep
status, respectively. Correspondingly, for simplicity, letHm and Dm present the sleeping
interval and the attack interval, respectively.{

Hm = [tm, tm + ∆m)
Dm = [tm + ∆m, tm+1)

(2)

In addition, let Ξs(0, t) and Ξa(0, t) represent, respectively, all single sleeping ranges
and all single attack ranges {

Ξs(0, t) = {tm}
⋃Hm

⋂
[0, t)

Ξa(0, t) =
⋃Dm

⋂
[0, t).

(3)

To characterize the constraints of limited energy on DoS attacks, it is necessary to give
the following two assumptions for the frequency and the duration of DoS attacks, respectively.

Assumption 1 (DoS Duration [22]). There exist T0 ∈ R≥0 and T ∈ R>1 for all t ∈ R≥0, which
makes the following inequality hold

|Ξa(0, t)| ≤ T0 +
t
T

. (4)

Assumption 2 (DoS Frequency [22]). There exist m(t), TD0 ∈ R≥0 and TD ∈ R>0 for all
t ∈ R≥0, which makes the following inequality hold

m(0, t) ≤ TD0 +
t

TD
. (5)

Remark 1. The intent of the DoS attack is not generally sporadic and periodic, but aperiodic
(stochastic). Therefore, the periodic DoS attack is not realistic in theoretical research and practical
industrial production. To tackle this issue, this paper focuses on the more realistic aperiodic DoS
attacks in the following part. In addition, Assumption 1 excludes the situation of continuous DOS
attacks, which makes the considered system open-loop and uncontrollable.

In this subsection, we will illustrate the proposed procedures for a resilient dynamically
triggering strategy in favor of the aperiodic DoS attacks. To achieve this goal, denote e the
difference between the last successfully transmission state x(ti) and the current state x(t)

e = x(ti)− x(t), ∀t ∈ [ti, ti+1), i ∈ Z, t0 = 0 (6)

where ti is determined by the upcoming DTM (7).

ti+1 = inf{t > ti, t ∈ R|g(e) ≤ 0}. (7)
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Herein, similar to [9], using the trigger function g(e) = η + θ(ρ(1− c1)α(x)− γ(‖e‖)), θ ∈ R+.
Additionally, the internal dynamic variable η is to be defined before a new dynamic
triggering strategy sprung up, which is

η̇ = −λη + ρ(1− c1)α(‖x‖)− γ(‖e(t)‖), η(0) = 0 (8)

where η is a locally Lipschitz continuous K∞ function. Intuitively, η may be regarded as
a filtered value of α(1− c1)α(‖x‖)− γ(‖e(t)‖) (refers to [5]). In particular, the filter (8) is
possibly nonlinear if the η is nonlinear. The dynamic event-triggered strategy (7) reduces
to event-triggered strategy in [29] when θ goes to +∞ (detailed analysis refers to [9]).

Based on the discussion before, the following lemma is needed to guarantee η ≥ 0.

Lemma 1. The variable η defined in (8) is always non-negative.

Proof. According to (8), which corresponds to the following inequality:

η + θ(ρ(1− c1)α(‖x‖)− γ(‖e(t)‖)) ≥ 0. (9)

First, if θ = 0, then η ≥ 0 is true.
Second, if θ 6= 0, by combing (8) and (9), one has

η̇ + λη = ρ(1− c1)α(‖x‖)− γ(‖e(t)‖) ≥ −η

θ
, η(0) ≥ 0. (10)

Then, solve (10) for t ∈ [0,+∞), one has

η(t) ≥ η(0)e−(λ+
1
θ )t

which means that η is lower bound by a positive exponential signal, so one can obtain
η ≥ 0.

In addition, taking DoS attacks into consideration, as we all know, the measurement
data will be lost even if the condition (7) is satisfied. To alleviate the effects of DoS attacks,
a resilient strategy will be presented in the following. In particular, combining with (7), one
defines a novel RDET communication strategy as follows:

ti+1 = {ti+1 satisfies g(e) ≤ 0|ti+1 ∈ Hn} ∪ {tm}. (11)

Remark 2. With the opening of network control system communication, the system is more
vulnerable to all kinds of malicious attacks. In order to eliminate the adverse effects of the attack
and ensure better performance of the system, the elastic control technology based on dynamic event
triggering plays an important role. This is especially true in many industrial controls, such as power
systems [27], Chua circuits [30], and vehicle systems [31].

Next, we use the following DoS attacks as follows:

W(t) =
{

0, t ∈ [tm, tm + ∆m)
1, t ∈ [tm + ∆m, tm+1).

(12)

In this paper, the state-dependent control input u(t) = k(x(t)) under DoS attacks can
be represented as

u(t) = (1−W(t))k(x(t)). (13)
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Based on the above analysis, in what follows, combining (1), (12), and (13), the
switched version of system (1) can be represented as

ẋ(t) = f (x(t), (1−W(t))k(x(t))), (14)

In the following sections, the conditions for the exponential stability of system (14)
with DoS attacks will be provided.

3. Main Result

This section aims to develop a piecewise Lyapunov function for NNS under DoS
attacks. The resilient analysis of nonlinear switched system (14) is discussed, and the
related parameters are obtained. Theorem 1 is presented to guarantee the RDET control for
NNS under DoS attacks. In addition, it is worth noting that the Zeno behavior is excluded
in Theorem 2.

Theorem 1. Consider the NNSs (1) under DoS attacks satisfying Assumptions 1 and 2, under the
switched controller (13) with dynamic event-triggered condition (7). If some K∞ functions α1, α2
and γ hold, then the switched Lyapunov function Vj, j = 1, 2 of (14) satisfies the following inequality

α1(‖x‖) ≤ Vj(x) ≤ α2(‖x‖) (15)

∇V1(x) · f (x, k(x + e)) ≤ −ω1V(x) + γ(‖e‖), (16)

t ∈ Ξs(0, t)

∇V2(x) · f (x, 0) ≤ ω2V2(x), t ∈ Ξa(0, t) (17)

V1(x) ≤ µ1V2(x−), V2(x) ≤ µ2V1(x−) (18)

where µ1, µ2 ≥ 1, ω1 > 0, ω2 > 0 and the parameters TD in (6) and T in (4) satisfy

ln(µ1µ2)

TD
+

(ω1 + ω2)

T
≤ ω1. (19)

Then, system (14) is GWES. In particular

‖x(t)‖ ≤ α−1
1

(
Me−β1tα2(‖x(0)‖)

)
. (20)

Proof. To show the complete theoretical analysis of the above theorem, we will deal with it
in two steps.

Case 1: Assume there are no DoS attacks.
For t ∈ Hm, according to (16) and DTM (11), the derivative of V1(x(t)) is subject to

V̇1(x(t)) ≤ −c1V1(x(t)) + γ(‖e‖) + η̇

≤ −ρc1V1(x(t))− c1(1− ρ)V1(x(t)) + γ(‖e‖)
− λη + c1(1− ρ)V1(x(t))− γ(‖e‖)
≤ −ρc1V1(x(t))− λη

≤ −ω1V1(x(t)) (21)

where ρ ∈ (0, 1) and ω1 = c1ρ.
Case 2: Assume there are DoS attacks.
For t ∈ Dm, based on (17), it is easy to obtain the derivative of V2(x(t)) as follows

V̇2(x(t)) ≤ ω2V2(x(t)). (22)
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Hence, combing (21) with (22) gives a piecewise Lyapunov functional, t ∈ Hm and
t ∈ Dm, respectively, can be found as below

V(x(t)) =


e−ω1(t−tm)V(x(tm)), t ∈ Hm

eω2(t−tm−1−∆m−1)V(x(tm−1 + ∆m−1)),
t ∈ Dm.

First, assume t ∈ Ξs(0, t), according to definition 4, one has

V1(x(t)) ≤e−ω1(t−tm)V1(x(tm))

≤µ1e−ω1(t−tm)V2(x−(tm))

≤µ1e−ω1(t−tm)eω2(tm−tm−1−∆m−1)

V2(x(tm−1 + ∆m−1))

≤µ1µ2e−ω1(t−tm)eω2(tm−tm−1−∆m−1)

V1(x−(tm−1 + ∆m−1))

...

≤(µ1µ2)
m(0,t)e−ω1(t−tm+∆m−1+···+∆0)

eω2(tm−∆m−1−···−∆0)V(x(0))

≤(µ1µ2)
TD0+

t
TD e(ω1+ω2)T0

e(ω1+ω2)
t
T−ω1tV(x(0))

=M1e[
ln(µ1µ2)

TD
+

(ω1+ω2)
T −ω1]tV(x(0)) (23)

where M1 = (µ1µ2)
TD0 e(ω1+ω2)T0 .

Then, assume t ∈ Ξa(0, t), according to definition 4 again, one has

V2(x(t)) ≤eω2(t−tm−1−∆m−1)V2(x(tm−1 + ∆m−1))

≤µ2eω2(t−tm−1−∆m−1)V1(x−(tm−1 + ∆m−1))

≤µ2eω2(t−tm−1−∆m−1)e−ω1∆m−1 V1(x(tm−1))

≤µ1µ2eω2(t−tm−1−∆m−1)e−ω1∆m−1 V2(x−(tm−1))

...

≤µ
m(0,t)−1
1 µ

m(0,t)
2 e−ω1(∆m−1+···+∆0)

e−ω2(t−∆m−1−···−∆0)V(x(0))

≤µ
m(0,t)−1
1 µ

m(0,t)
2 e−ω1(t−Ξa)e−ω2Ξa V(x(0))

=M2e[
ln(µ1µ2)

TD
+

(ω1+ω2)
T −ω1]tV(x(0)) (24)

where M2 = µ−1
1 (µ1µ2)

TD0 e(ω1+ω2)T0 .
Finally, combining (23) and (24), one has

V(x(t)) ≤ Me−[ω1−
ln(µ1µ2)

TD
− (ω1+ω2)

T ]tV(x(0)) (25)

where M = max{M1, M2}.
In what follows, using (15), the above inequality (25) can be modified as
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α1(‖x(t)‖) ≤V(x(t)) ≤ Me−β1tV(x(0))

≤Me−β1tα2(‖x(0)‖) (26)

where β1 = ω1 − ln(µ1µ2)
TD

− (ω1+ω2)
T . Based on (26), if DoS attacks satisfy ln(µ1µ2)

TD
+

(ω1+ω2)
T ≤ ω1, then, system (1) with control input (11) under DoS attacks is GWES. Further,

one has

‖x(t)‖ ≤ α−1
1 (Me−β1tα2(‖x(0)‖)).

The proof is completed.

Remark 3. This theorem characterizes the system’s resilience issue. Moreover, ln(µ1µ2)
TD

+ (ω1+ω2)
T ≤ ω1

shows that the stability of NNSs can be guaranteed in the event they suffer from more DoS attacks
that satisfy some constraints of attack interval and attack frequency.

Remark 4. It is worth pointing out that the inequality constraint on α1 and γ in Assumption 4
in [23] is unnecessary in our work. More specifically, in this article, with the aid of introducing a
piecewise Lyapunov function, Assumption 4 in [23] is removed, which reduces the conservatism of
the system.

Next, we will give the conditions that void the Zeno behavior. Before continuing the
discussion, we impose an assumption.

Assumption 3 ([5]). Because of the Lipschitz continuity of the function f (x, u), there exists a
constant L1 which satisfies the following inequality

‖ f (x, u‖ = ‖ f (x + k(x + ei)‖
≤ L1(‖x‖+ ‖ei‖) (27)

where u(t) = k(x(ti)), t ∈ [ti, ti+1).

Theorem 2. For the NNSs (1) under the event-triggered strategy (11) and the controller (13), there
exists a minimal inter-event time τ ensures that Zeno behavior does not exist, where τ is given by

τ ≥ 1
2L1

ln(
(2γ−1(η/θ + ρ(1− c1)α(x))

‖x(ti)‖
+ 1).

Proof. First, we define the inter-execution time τ = ti+1 − ti. According to the ZOH
scheme, there is ėi = 0 when t = ti. Meanwhile, with the inequality (27), one has

‖ẋ‖ = ‖ f (x, u(x + ei)‖
≤ L1(‖x‖+ ‖ei‖). (28)

Furthermore, for ∀ t ∈ [ti, ti+1), it is easy to get the following equation

ẋ = −ėi. (29)

Next, combining (6), (28), and (29), one has

‖ėi‖ ≤ L1(‖x(ti)− ei‖+ ‖ei‖).
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Herein, using the comparison lemma, we have

‖ei‖ ≤
‖x(ti)‖(e2L1(t−ti) − 1)

2
. (30)

With (11) associated with

η + θ(ρ(1− c1)α(x)− γ(‖ei‖)) ≤ 0,

from this inequality (31), we get

‖ei‖ ≥ γ−1(η/θ + ρ(1− c1)α(x)). (31)

Finally, combining with (30), (31), and t− ti ≤ τ, t ∈ [ti, ti+1), one has

τ ≥ 1
2L1

ln(
(2γ−1(η/θ + ρ(1− c1)α(x))

‖x(ti)‖
+ 1),

where η > 0, θ > 0. The proof is completed.

4. Simulation

In this section, the practical merits of the proposed controllers and theory are corrobo-
rated using the well-known nonlinear Chua circuit, as shown in Figure 3. Considering the
control input u = (u1; u2; u3), its dynamics are generated as

v̇1 =
v2 − v1

RC1
− f (v1)

C1
+ u1,

v̇2 =
v1 − v2

RC2
+

v3

C2
+ u2,

i̇3 = −v2

L
− R0v3

L
+ u3

(32)

where v1 and v2 are voltages across C1 and C2, respectively. i3 is current through the
inductance. f (v1) = g1v1 + g2v3

1 is characteristic of the nonlinear resistance RN .
Next, let x1 = v1, x2 = v2, x3 = i3, and x = (x1; x2; x3). Then, (32) can be transferred

into the following as 

ẋ1 =
x2 − x1

RC1
−

g1x1 + g2x3
1

C1
+ u1,

ẋ2 =
x1 − x2

RC2
+

x3

C2
+ u2,

ẋ3 = − x2

L
− R0x3

L
+ u3

(33)

According to [33], there exists a chaotic attractor (see Figure 4) when some parameters
are fixed at C1 = 0.7; C2 = 7.8; L = 1.897; R0 = 0.01499; g1 = −0.59; g2 = 0.02; R = 2.1;
u = 0. Meanwhile, system (33) is rewritten as

ẋ1 = 0.1626x1 + 0.6803x2 − 0.0286x3
1 + u1,

ẋ2 = 0.0611x1 − 0.0611x2 + 0.1282x3 + u2,

ẋ3 = −0.5271x2 − 0.079x3 + u3.

(34)

Set the initial state x0 = (−0.6061;−0.3483; 0.6013). System (34) is unstable without
the control input u. Then, set θ = 0.1; η = 0.1; λ = 0.5; ρ = 0.01; simulation time [0, 200s]
with sampling period h = 0.05s.

Case 1: According to Theorem 1, one can design a controller u = [−0.01x1; 0;−0.1x3]
under the RDET strategy (11) to stabilize system (34) without aperiodic DoS attacks. The
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state response of system (34) is shown in Figure 5. Moreover, the number of triggered
packets to be transmitted is 82 times. The event interval time of the event generator is
depicted in Figure 6. In particular, one can design another controller u = [−0.1x1; 0;−0.1x3]
under event-triggered communication scheme (7) to stabilize system (34) without DoS
attacks. Meanwhile, a stable periodic solution will be presented in Figure 7. The event
intervals of the event generator are depicted in Figure 8.

Case 2: In the sequence, under the same circumstances, once system (34) suffers
from malicious aperiodic attacks, the system is unstable in Figure 9, where the gray areas
represent the DoS attack time intervals. In addition, release time intervals are depicted in
Figure 10 with 756 triggered packets to be successfully transmitted to the controller under
the event-triggered communication scheme (7).

Case 3: The system is not GAS with u = 0. The stabilizing control law is u =
[−2x1;−2x2; − x3]. We select V1(x) = 1

2‖x‖2 as a Lyapunov function when t ∈ Hm, so
that the V1(x) > 0 holds true if ‖x‖ 6= 0. Notice that

∇V1(x) f (x, u) =x1 · ẋ1 + x2 · ẋ2 + x3 · ẋ3

=− 1.8374x2
1 + 0.7414x1x2 − 2.0611x2

2

− 1.079x2
3 − 0.3989x2x3 − 0.0286x4

1

− 2x1e1 − 2x2e2 − x3e3

≤− 0.4667x2
1 − 0.4909x2

2 − 0.8795x2
3

+ e2
1 + e2

2 + e2
3

≤− 0.403V1(x) + ‖e‖2. (35)

Next, We select V2(x) = 1
2 (x2

1 + x2
2 + 2x2

3) as Lyapunov function when t ∈ Dm, so that
the V2(x) > 0 holds true if ‖x‖ 6= 0. Notice that

∇V2(x) f (x, 0) =x1 · ẋ1 + x2 · ẋ2 + 2x3 · ẋ3

≤0.5333x2
1 + 0.7726x2

2 + 0.3050x2
3

≤0.0314V2(x). (36)

According to the aforementioned analysis, there exist α1(·) = x2
1 + x2

2 + x2
3 and

α2(·) = 2x2
1 + 2x2

2 + 2x2
3, which satisfy (15) in Theorem 1. Meanwhile, (35) and (36) al-

low ω1 = 0.403, ω2 = 0.0314 to satisfy (16) and (17) in Theorem 1, respectively. In addition,
set β1 = 0.1165, µ1 = 1 and µ2 = 2, which satisfy (18) in Theorem 1. Let T0 = 0.1, T = 2,
TD0 = 0.1, and TD = 10, one has ln 2

10 + (0.403+ 0.0314)
2 = 0.2865 < 0.403 and ‖x(t)‖ ≤

α−1
1 (Me−β1tα2(‖x(0)‖)) satisfy (19) and (20), respectively. Moreover, m ≤ 0.1 + 200

10 = 20.1
and ‖x(t)‖ ≤ 0.1204e−0.233t.

Herein, Figure 11 depicts the state responses of system (34) under DoS attacks, and
which shows that system (34) is stable. The release instants are depicted in Figure 12,
and there are 716 sampled packets transmitted successfully Under the supervision of the
DTM (11). Figure 13 presents the aperiodic DoS attack sequence. Next, Table 1 presents a
comparison of the different triggering strategies.

First, before analyzing Table 1, we give out design formulas on a triggering rate, which
is expressed as eventnumber

samplenumber
. Second, from Table 1, it is obvious that once the system suffers

from aperiodic DoS attacks, the number of triggering events and the triggering rate will
add the same parameters designed before to the framework. On contrary, the average
interval will become small to add the number of triggering events and compensate for lost
packets due to DoS attacks.
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Figure 3. Diagram of a nonlinear Chua circuit.

Figure 4. The chaotic attractor for the Chua circuit.
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Figure 5. State responses of triggering control systems without aperiodic DoS attacks.
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Figure 7. Stable periodic solution of triggering control systems without aperiodic DoS attacks.
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Figure 8. Release time intervals corresponding to a stable periodic solution.
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Figure 11. The stable state trajectories under aperiodic DoS attacks.
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Figure 12. Triggered instants and release intervals under aperiodic DoS attacks.
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Figure 13. Aperiodic DoS attacks.

Remark 5. In the simulation, the modeling and generation of DoS attacks is similar to [22]. Since
the attacks are affected by energy constraints, they are intermittent non-periodic attacks, and only
focus on the single communication channels (sensor-to-controller).

Remark 6. Figures 6 and 12 display the triggered intervals of the four strategies. Figure 6 indicates
RDET strategy can generate a bigger average interval than the ET strategy without aperiodic DoS
attacks. Moreover, a similar result is presented in Figure 12, namely, the RDET strategy can
generate a bigger average interval than the RET strategy suffering aperiodic DoS attacks. This
result is consistent with Table 1.
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Table 1. Comparing different control schemes.

Strategies Trigger Average Interval Triggering Rate

ET in [5] 120 1.67 3%

DET in [9] 82 2.44 2.05%

RET in [22] 960 0.21 24%

DTRC in this work 716 0.28 17.9%

5. Conclusions

In this paper, we have designed a DRTC to stabilize NNSs under malicious aperiodic
DoS attacks. Furthermore, the stability criterion is obtained under malicious aperiodic DoS
attacks based on Lyapunov theory. In addition, the minimal inter-event time τ excludes
Zeno behavior for the controller (13) with dynamically triggering strategy (11). Finally,
the merits of the proposed controllers and theory are corroborated using the well-known
nonlinear Chua circuit. Based on our current work, in the future, we will consider security-
based event-triggered learning control for NNSs subject to stochastic attacks.
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