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Abstract: The existing results show the applicability of the Over-Parameterized Model based
Hammerstein-Wiener model identification methods. However, it requires to estimate extra pa-
rameters and performer a low rank approximation step. Therefore, it may give rise to unnecessarily
high variance in parameter estimates for highly nonlinear systems, especially using a small and
noisy data set. To overcome this corruptive phenomenon. To overcome this corruptive phenomenon,
in this paper, a robust Hammerstein-Wiener model identification method is developed for highly
nonlinear systems when using a small and noisy data set, where two parsimonious parametrization
models with fewer parameters are used, and an iteration method is then used to retrieve the true
system parameters from the parametrization models. Such modification can improve the parameter
estimation performance in terms of accuracy and variance compared with the over-parametrization
model based identification methods. All the above-mentioned developments are analyzed with
variance analysis, along with a simulation example to confirm the effectiveness.

Keywords: Hammerstein–Wiener model; iteration method; nonlinear system identification

1. Introduction

The Hammerstein–Wiener (H-W) models, also called N-L-N models, are known
as a particular class of block-oriented nonlinear models where a Linear (L) subsystem is
embedded in two static Nonlinear subsystems (N). Due to the use of two nonlinear elements
instead of one, H-W models offer convenient higher modeling capabilities for nonlinear
systems, especially for nonlinear systems with both actuator and sensor nonlinearities [1].
H-W models identification has attracted considerable attention in the past years and a large
amount of works have been explored in different frameworks, see, for example, iterative
methods [2,3], and Least-Squares (LS) based Two-Step Algorithms (TSA) [4].

In this paper, the emphasis is put on the LS issue for H-W models with over-parametrization
methods, which was perhaps first studied by Bai [4] where first characterizes the orig-
inal H-W model by an over-parametrization model and then estimates the parameters
of this over-parametrization model (OPM) by using a LS method. In consequence, the
original system parameters are extracted from the estimated over parametrization model
parameters by performing low-rank approximation using Singular Value Decompositions
(SVDs). The TSA is attractive because of its numerical simplicity. Thus, following from this
pioneering work [4], a number of TSA-based methods have been proposed to identify H-W
models under different conditions: For instance, in [5], a auxiliary model multi-innovation
stochastic gradient (AM-MISG) based TSA was proposed for H-W models online identi-
fication, which has fast convergence rate with robust characteristics and its convergence
was proved by using the stochastic process theory. In [6], an instrumental variable based
TSA was proposed for H-W continuous-time models in the presence of colored noise.
In [7], a modified Bias-Eliminating Least-Squares (BELS) based TSA was proposed for H-W
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errors-in-variables models.The TSA has also been extensively used for the identification
of other types of block-oriented nonlinear systems, e.g., Hammerstein models [8,9], and
Wiener models [10].

In these contributions, all existing TSAs provide asymptotically consistent unbiased
estimations for H-W models when the data length tends to infinity. However, it is well
known that the existing TSAs related to the use of over-parametrization model and low-
rank approximation step may result in a degradation of the accuracy and variance of the
estimated quantities for highly nonlinear systems, especially for short noisy data length
sequences. One reason is that the over-parametrization model has much more parameters
than the actual Hammerstein-Wiener model, the extra parameters in TSAs may lead to
larger estimation errors and variances, and the number of the extra parameters increase
with the degree of nonlinearity. The other is that the low-rank approximation step in TSAs
inevitably brings some truncation errors, which will result in some loss of model quality.

In this paper, inspired by the parsimonious models based identfication methods [11–14]
for block-oriented nonlinear Hammerstein models can improve the variance properties
of the over-parametrization model based methods, a robust consistent identification for-
mulation for H-W models is thus proposed to overcome the above-mentioned drawbacks
for highly nonlinear systems when using short noisy data length sequences, without the
necessity of estimating extra parameters and performing low-rank approximation.The main
contributions of the paper are stated below:

• Two parsimonious models with fewer parameters constructed to characterize the H-W
system instead of an over-parametrization model, and a projection based LS iterative
method is proposed to estimate all system parameters in a parallel fashion. The pro-
posed method avoids the estimating extra parameters and a low rank approximation
step in classical over-parametrization model based methods, which leads to improved
results compared to existing over-parametrization model based methods, because that
estimating extra parameters and performing low rank approximation may result into
a degradation of the accuracy of the estimated quantities.

• The variance analysis is given to demonstrate that the new method generally gives
smaller variance compared to conventional TSA method. Note that the results of
variance analysis explains why the proposed identfication methods can lead to im-
proved results compared to existing over-parametrization model based methods for
H-W systems.

Note that Hammerstein models and Wiener models are two special cases of Hammerstein–
Wiener models, that is, when nc = 1 and f1(u(t)) = u(t) in following (1), the Hammerstein–
Wiener models become Wiener models, and when nd = 1 and g1(y(t)) = y(t) in follow-
ing (1), the Hammerstein–Wiener models become Hammerstein models. The presented
methodology in this paper is general for N-L-N models, L-N models and N-L models.

The paper is organized as follows. In Section 2, the identification problem is presented.
In Section 3, the proposed method is presented, followed by the Variance analysis in
Section 4. Section 5 presents a simulation example to validate and evaluate the performance
of the new algorithm. Finally, some conclusions are drawn in Section 6.

2. Problem Statement and Analysis

Consider a particular class of nonlinear H-W model with polynomial nonlinearities,
see also [4]

y(t) =
nb

∑
j=1

bj

{
nc

∑
m=1

cm fm[u(t− j)]

}
+

na

∑
i=1

ai

{
nd

∑
l=1

dl gl [y(t− i)]

}
+ e(t) (1)

where system parameters are a = [a1, . . . , ana ], b = [b1, . . . , bnb ], c = [c1, . . . , cnc ], and
d = [d1, . . . , dnd ], {u(t)} and {y(t)} are the system input and output sequences, respectively,
{e(t)} is the noise sequence, and fm(•) and gl(•) are nonlinear functions. The following
general assumptions are made in this paper:
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A1 The first nonzero elements of a and b are positive and ‖a‖2 = 1 and ‖b‖2 = 1.
A2 The functions { fm(•)}nc

m=1 and gl(•)
nd
l=1 and degrees na, nb, nc and nd are known.

A3 {e(i)} is a zero-mean white noise sequence with finite variance δ2
e uncorrelated with

{u(j)} for all i, j, and uncorrelated with {y(j)} for i 6= j.

Assumption 1 ensures uniqueness of the N-L-N nonlinear system model, as the
introduction of a factor q (q 6= 0) to the pair (qa, d/q), the input-output relationship will
not change. The terms ‖a‖2 and ‖b‖2 can be set as any other positive number, the proposed
method can be directly used without any change.

Assumption 2 are related to a priori knowledge about the structure of the true system.
In this context the static nonlinearity of the N-L-N model is approximated using a linear
expansion in terms of basis functions. In generally, the basis functions and system orders
lie in the fact that tuning them are more directly related to a priori knowledge about the
true system. However, since the unknown coefficients of parameter vectors a, b, c and d
can give the degrees of freedom to accurately modeling the nonlinear systems, the basis
functions and system orders can be assumed to known simply for having not directly related
knowledge about the nonlinear function in practice. More specifically, the system orders
can be set high enough to provide enough degrees of freedom to accurately describing
the nonlinear N-L-N systems. The basis functions can be chosen as polynomial functions
simply, which is realistic in many applications where the nonlinearities characterizing the
systems are smooth enough [9]. Note that the identification method developed under
those assumptions in which the nonlinear basis functions as well as the system orders in
polynomial model supposed to be known can be regarded as a grey-box method compared
with the black-box model approach without any assumption about the structure of the
N-L-N model.

Assumption 3 requires the noises to be white, which is realistic in many applications
when the main objective is on the plant model.

Based on (1), an over-parametrization model can be formulated as

y(t) = θΦ(t) + e(t) (2)

where

θ = [θ1, θ2] ∈ <1×(nbnc+nand) (3a)

θ1 = [b1c1, . . . , b1cnc , . . . , bnb c1, . . . , bnb cnc ] ∈ <1×nbnc (3b)

θ2 = [a1d1, . . . , a1dnd , . . . , ana d1, . . . , ana dnd ] ∈ <
1×nand (3c)

Φ(t) = [ f (t), g(t)]> ∈ <(nbnc+nand)×1 (3d)

f (t) = [ f1[u(t− 1)], . . . , fnc [u(t− 1)], . . . ,

f1[u(t− nb), . . . , fnc [u(t− nb)]]
> ∈ <nbnc×1 (3e)

g(t) = [g1[y(t− 1)], . . . , gnd [y(t− 1)], . . . ,

g1[y(t− nb), . . . , gnd [y(t− na)]]
> ∈ <nand×1. (3f)

Define

Y = [y(1), y(2), . . . , y(N)] (4a)

E = [e(1), e(2), . . . , e(N)] (4b)

F = [ f (1), f (2), . . . , f (N)] (4c)

G = [g(1), g(2), . . . , g(N)] (4d)

Φ = [F>, G>]>. (4e)
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It follows from (1)–(4) that

Y = θ1F + θ2G + E = θΦ + E. (5)

For the estimation of the unknown system parameters in (5), the following criterion is
considered in the TSA:

min
a,b,c,d

1
2
(Y− θΦ)>W(Y− θΦ) (6a)

s.t. rank(bc) = 1, rank(ad) = 1 (6b)

where W is a symmetric weighting matrix, e.g., an identity matrix of appropriate dimen-
sion I.

The TSA is a relaxation method by solving the unconstrained LS problem (6a) without
considering the rank constraint (6b), where the system parameters are extracted via SVDs,
see [4] for more details. Clearly, the number of extra parameters in the TSA method [4]
is nand + nbnc − na − nd − nb − nc, and two SVDs have to be used to extract the system
parameters from θ. These may deteriorate the accuracy and variance of estimated quantities.
Note that the number of the extra parameters in the TSA will increase as the degree of
nonlinearity of H-W models increases. The performance of the TSA method in terms of the
accuracy and variance of estimated quantities will be deteriorated for identifying highly
nonlinear systems from a limited number of noisy data.

This paper aims to seek a method to estimate unknown parameter vectors a, b, c and d
from the known observed input-output data {u(t), y(t)} collected at instants t = 1, . . . , N
without estimating extra parameters and performing SVDs.

3. The Proposed Method
3.1. Parsimonious Parametrization Model Formulation

We decouple θ into two parts θ1 and θ2. The over-parametrization model in (2) can be
then represented as following two parsimonious parametrization models (PPMs):

y(t) = aΦ1(t) + bΦ2(k) + e(t) = dΦ3(t) + cΦ4(k) + e(t) (7)

where

Φ1(t) = (d1g1[y(t− 1)] + · · ·+ dnd gnd [y(t− 1)], . . . ,

d1g1[y(t− na) + · · ·+ dnd gnd [y(t− na)])
> (8a)

Φ2(t) = (c1 f1[u(t− 1)] + · · ·+ cnc fnc [u(t− 1)], . . . ,

c1 f1[u(t− nb) + · · ·+ cnc fnc [u(t− nb)])
> (8b)

Φ3(t) =

(
na

∑
i=1

(aig1[y(t− i)]), . . . ,
na

∑
i=1

(aignd [y(t− i)])

)>
(8c)

Φ4(t) =

(
nb

∑
i=1

(bi f1[u(t− i)]), . . . ,
nb

∑
i=1

(bi fnc [u(t− i)])

)>
. (8d)

Define
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Φ1 = [Φ1(1), Φ1(2), . . . , Φ1(N)] =


d 0 . . . 0 0
0 d 0 . . . 0
: : : : :
0 0 . . . 0 d


︸ ︷︷ ︸

η1

G (9a)

Φ2 = [Φ2(1), Φ2(2), . . . , Φ2(N)] (9b)

Φ3 = [Φ3(1), Φ3(2), . . . , Φ3(N)] (9c)

Φ4 = [Φ4(1), Φ4(2), . . . , Φ4(N)]. (9d)

It follows from (7) that

Y = aΦ1 + bΦ2 + E = dΦ3 + cΦ4 + E. (10)

3.2. Parsimonious Identification Method

We consider an iterative estimation procedure to estimate unknown parameters
from (10). Projecting the row space of Y in (10) onto the orthogonal complement of the row
space of the matrix F, we have

YΠ⊥F = (aΦ1 + bΦ2 + E)Π⊥F = (dΦ3 + cΦ4 + E)Π⊥F (11)

where Π⊥F = IN − F>(FF>)−1F. Due to bΦ2 = θ1F and cΦ4 = θ1F, we have

YΠ⊥F = aΦ1Π⊥F + EΠ⊥F = dΦ3Π⊥F + EΠ⊥F . (12)

Once d is assumed to be known, the parameter vector a can be estimated without
knowing c and b, while the parameter vector d can be estimated with only knowing a,
which allows an iterative method to obtain a and d based (12). The details of estimation of
a and d are listed as below.

• An LS estimate â(k) can be obtained by substituting d̂(k−1) into (12) as

â(k) = YΠ⊥F Φ̂
>(k−1)
1 (Φ̂

(k−1)
1 Π⊥F Φ̂

>(k−1)
1 )−1 (13)

where the estimate Φ̂
(k−1)
1 of Φ1 is a function of d̂(k−1).

• The unique solution â(k) can be obtained by performing a normalization operation
as follows:

â(k) = â(k)/‖â(k)‖2. (14)

• An LS estimate d̂(k) can be obtained by substituting â(k) into (12) as

d̂(k) = YΠ⊥F Φ̂
>(k)
3 (Φ̂

(k)
3 Π⊥F Φ̂

>(k)
3 )−1 (15)

where the estimate Φ̂
(k)
3 of Φ3 is a function of â(k).

In similar arguments to estimate a and d, by projecting the row space of Y in (10) onto
the orthogonal complement of the row space of the matrix G, we get

YΠ⊥G = bΦ2Π⊥G + EΠ⊥G = cΦ4Π⊥G + EΠ⊥G . (16)

• An LS estimate b̂(k) can be estimated by substituting ĉ(k−1) into (16) as

b̂(k) = YΠ⊥G Φ̂
>(k−1)
2 (Φ̂

(k−1)
2 Π⊥G Φ̂

>(k−1)
2 )−1 (17)

where the estimate Φ̂
(k−1)
2 of Φ2 is a function of ĉ(k−1).
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• The unique solution b̂(k) can be obtained by performing a normalization operation
as follows:

b̂(k) = b̂(k)/‖b̂(k)‖2. (18)

• An LS estimate ĉ(k) can be estimated by substituting b̂(k) into (16) as

ĉ(k) = YΠ⊥G Φ̂
>(k)
4 (Φ̂

(k)
4 Π⊥G Φ̂

>(k)
4 )−1 (19)

where the estimate Φ̂
(k)
4 of Φ4 is a function of b̂(k).

The following general assumption A4 about persistently exciting (PE) conditions is
made for system identifiability.

A4 Matrices F and G are full row rank.

The assumption A4 is a general assumption for all identification methods, which
can be easily guaranteed by constructing F and G based on random signals. Based on
which, once the initial values d̂(0) and ĉ(0) are nonzero, it follows from (10) that matrices
(Φ̂1(0), Φ̂2(0)) will be full row rank, due to that the rank of matrices η̂1 and η̂2 with nonzero
parameters d̂(0) and ĉ(0) are full row rank, such that the estimates â(1) in (13) and b̂(1)
in (17) are ensured nonzero. Once the nonzero estimated parameters â(1) and b̂(1) are
obtained, and then ĉ(1) and d̂(1) are ensured nonzero, due to that the rank of matrices η̂3
and η̂4 with nonzero parameters â(1) and b̂(1) are also full row rank. Following above
arguments, we conclude that once the PE matrices and the nonzero initial values are given,
the proposed algorithm can provide consistent estimated parameters.

The parameters are estimated asynchronously from the PPMs by two independent
projection based iterative methods, thus the proposed method, referred to as Asynchronous
Parsimonious Method (APM), is summarized as Algorithm 1.

Algorithm 1:

1. Initialization: d̂(0) and ĉ(0): arbitrary nonzero values.
2. Iteration:

for k = 0 : convergence

a1. Estimate â(k) as (13) and (14).
a2. Estimate d̂(k) as (15).
a3. If the stopping criterion is satisfied, and break, else go to step (a1).
end

3. Iteration:
for k = 0 : convergence

b1. Estimate b̂(k) as (17) and (18) .
b2. Estimate ĉ(k) as (19).
b3. If the stopping criterion is satisfied, and break, else go to step (b1).
end

4. Let â> = â>(k)sgn(â>1 (k)), b̂> = b̂>(k)sgn(b̂>1 (k)), d̂2 = d̂2(k + 1)sgn(â>1 (k)), and
ĉ2 = ĉ2(k + 1)sgn(b̂>1 (k)), where sgn() is a sign function and â>1 (k) and b̂>1 (k) are
the first element of â>(k) and b̂>(k), respectively.

4. Variance Analysis

Following the Theorem 1 in [11], one can eaily prove that the proposed method with
arbitrary nonzero initial values d̂(0) and ĉ(0) provides consistent estimates for H-W models.
This section, we analyze the variance of the AMP estimates relative to that of conventional
TSA algorithm. Due to all paramters are estimated in a similar way, we only analy the
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variances of estimated paramter â. The LS estimation error variance of θ̂ in TSA [4] can be
computed as,

cov(θ̂1, θ̂2) = δ2
e (ΦΦ>)−1 (20)

Substituting (4e) into (20), we have

cov(θ̂1, θ̂2) = δ2
e

[
FF> FG>

GF> GG>

]−1

(21)

Based the block matrix inversion relation in [15], we have

cov(θ̂2) = δ2
e (GG>)−1 + δ2

e (GG>)−1GF>Q−1(GF>)>(GG>)−1 (22)

where Q = FF> − FG>(GG>)−1GF>.
Since the solutions of â, b̂, ĉ and d̂ are provided by SVD, decompositions of θ̂1, and θ̂2.

Omitting the error terms more than first order which do not contribute to the estimation
error variance, deriving based on first-order Taylor expansion of SVD in [16], the variance
of the parameter estimation errors of â can be computed in approximately as following,

cov(âTSA) = δ2
e (η1FF>η>1 )

−1+

δ2
e (η1FF>)−1FG>Q−1(FG>)>(FF>η>1 )

−1 (23)

Note that the second terms at the right-hand side of (52) are positive definite, we have

cov(âTSA) ≥ δ2
e (η1FF>η>1 )

−1 (24)

In a similar way as (20), the estimation error variances of â, b̂, ĉ and d̂ in APM are
computed as following

cov(âAPM) = δ2
e (η̂1FF>η̂>1 )

−1 (25)

Since estimates from AMP are consistent, neglecting the high-order terms in above
equations for asymptotic variance, and only considering the noise terms for estimation
error variances, we have

cov(âAPM) = δ2
e (η1FF>η>1 )

−1 (26)

Compared (24) and (26), we conclude that the APM estimates generally have a smaller
variance than those of the TSA estimates by neglecting high-order terms in estimation error.

5. Case Studies

In this section, we use a benchmark Hammerstein–Wiener model with highly nonlin-
earities modified from [4] to evaluate the proposed APM and compare it with the TSA. The
system model of the benchmark example is presented in the following:

a = [0.1569, 0.0934, 0.5477, 0,−0.7303,−0.3651]>

b = [0.1569, 0.0934, 0.5477, 0, 0.7303, 0.3651]>

c = [1, 4, 3, 7, 1, 3.4]>

d = [0.4, 0.25]>

f (t) = [u(t), u2(t), u3(t), u4(t), u5(t), u6(t)]>

g(t) = [y(t), sin(y(t))]>.
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The input {u(t)} and the measurement noise {e(t)} are chosen as two zero-mean
Gaussian random sequences. The variance of {u(t)} is fixed as one, while the variance of
{e(t)} is adjusted to achieve a given Signal-to-Noise Ratio (SNR). In this example, three
SNR values will be considered, i.e., 15, 20, and 25 dB. For each experimental condition,
we conduct a Monte-Carlo (MC) simulation of 100 runs, each with N = 500 data points.
The performance of the methods is evaluated with respect to the accuracy and standard
deviations in tracking the system parameters θ = (a, b, c, d) and output.

More specifically, the quality of the estimates is evaluated by investigating the Pa-
rameter Estimation Errors (PEE), Variance Accounted For (VAF) on a validation data set
which is different from the one used for model identification. The PEE and VAF are defined
as follows:

PEE =
‖θ− θ̂‖2

‖θ‖2
100%

VAF = max
{

0, 1− var(ȳk − ŷ)
var(ȳk)

}
100%

where the operator var(·) denotes the variance of its argument, ȳk denotes the noise-free
simulated output of the system, and ŷk denotes the the noise-free simulated model output.
The VAF is allowed to reach 100%, and PPE is allowed to reach 0% when the model is equal
to the true system.

Theoretically, the computational complexity of the proposed APM per iteration is
O(N2), which is obviously more computationally demanding than O(N) in the TSA,
because of the projection operations [17]. Fortunately, from the averaged estimation results
of Euclidean norm ‖θ‖ for 100 MC simulations at each iteration in APM under different
SNRs shown in Figure 1, we observe that APM converges very quickly within 4 iterations
for high SNRs (e.g., 20 and 25 dB), and also provides accurate estimation results even for a
low SNR of 15 dB. It is concluded that the APM can provide accurate estimation results
for highly nonlinear systems from a limited number of noisy samples. The estimated
parameters in θ along with the mean values and standard deviations and the PEE are listed
in Table 1. From the results shown in Table 1, we can conclude that

Table 1. Estimated results of θ and PEE.

True APM (SNR = 15) APM (SNR = 20) APM (SNR = 25) TSA (SNR = 15) TSA (SNR = 20) TSA (SNR = 25)

a1 = 0.1569 0.1604 (±0.0793) 0.1654 (±0.0617) 0.1477 (±0.0423) 0.1643 (±0.0840) 0.1669 (±0.0597) 0.1470 (±0.0467)
a2 = 0.0934 0.0912 (±0.0632) 0.0906 (±0.0443) 0.0979 (±0.0326) 0.0855 (±0.0836) 0.0907 (±0.0485) 0.0928 (±0.0367)
a3 = 0.5477 0.5442 (±0.1472) 0.5480 (±0.1187) 0.5465 (±0.0277) 0.5162 (±0.1961) 0.5407 (±0.0413) 0.5474 (±0.0280)

a4 = 0 0.0009 (±0.0500) 0.0032 (±0.0357) 0.0002 (±0.0267) 0.0014 (±0.00826) 0.0041 (±0.0413) 0.0026 (±0.0333)

a5 = −0.7303 −0.7218
(±0.0481)

−0.7178
(±0.1473)

−0.7271
(±0.0252)

−0.6758
(±0.2514)

−0.7317
(±0.0419)

−0.7249
(±0.0257)

a6 = −0.3651 −0.3597
(±0.07317)

−0.3478
(±0.0839)

−0.3690
(±0.0228)

−0.3164
(±0.1460)

−0.3510
(±0.0398)

−0.3713
(±0.0267)

b1 = 0.1569 0.1572 (±0.0128) 0.1577 (±0.0068) 0.1558 (±0.0040) 0.2757 (±0.2053) 0.1515 (±0.0770) 0.1620 (±0.0377)
b2 = 0.0934 0.0930 (±0.0121) 0.0931 (±0.0060) 0.0939 (±0.0038) 0.0039 (±0.3265) 0.0692 (±0.1037) 0.0913 (±0.0367)
b3 = 0.5477 0.5465 (±0.0155) 0.5478 (±0.0112) 0.5468 (±0.0079) 0.1405 (±0.4996) 0.4736 (±0.2627) 0.5469 (±0.0313)
b4 = 0.7303 0.7293 (±0.0114) 0.7306 (±0.0074) 0.7299 (±0.0050) 0.1432 (±0.5629) 0.6178 (±0.3892) 0.7220 (±0.0511)
b5 = 0.3651 0.3676 (±0.0176) 0.3634 (±0.0156) 0.3675 (±0.0093) 0.1299 (±0.4004) 0.3028 (±0.2003) 0.3720 (±0.1045)

c1 = 1 1.0774 (±0.2146) 0.9999 (±0.1701) 1.0022 (±0.0967) 0.2651 (±0.8143) 0.8495 (±0.5122) 0.9914 (±0.3376)
c2 = 4 4.0237 (±0.8490) 3.9649 (±0.4590) 4.0077 (±0.2340) 1.1182 (±3.0569) 3.3149 (±1.7629) 3.9646 (±0.4040)
c3 = 3 2.6377 (±1.3845) 2.9785 (±0.6425) 3.0432 (±0.3804) 0.9981 (±2.5809) 2.5448 (±1.6301) 3.0505 (±0.3848)
c4 = 7 7.1772 (±1.6055) 7.0295 (±1.4038) 7.0416 (±0.7487) 1.9601 (±10.3455) 6.1131 (±4.6544) 7.1346 (±0.8611)
c5 = 1 1.0199 (±1.3840) 1.0168 (±0.5661) 0.9645 (±0.3401) 0.0885 (±1.6670) 0.8553 (±0.7665) 0.9455 (±0.3612)

c6 = 3.4 3.5277 (±1.3443) 3.4013 (±1.0777) 3.3914 (±0.5844) 0.7933 (±5.1063) 2.7925 (±1.8014) 3.2967 (±0.6655)
d1 = 0.4 0.5043 (±0.1304) 0.4927 (±0.1017) 0.5014 (±0.0040) 0.4731 (±0.1723) 0.5027 (±0.0071) 0.5064 (±0.0045)
d2 = 0.25 0.2551 (±0.0675) 0.2481 (±0.0595) 0.2500 (±0.0211) 0.2518 (±0.1244) 0.2549 (±0.0330) 0.2501 (±0.0216)

PPE (%) 38.7442
(±21.5544)

18.7887
(±10.3743) 10.8245 (±5.8194) 130.4982

(±71.5442)
36.6713

(±48.9617) 11.8245 (±7.0916)
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Figure 1. Averaged estimation results of ‖θ‖2 at each iteration for APM under different SNRs.

• Under the same noise levels, the proposed APM provides better estimation results in
terms of accuracy and standard deviations than TSA.

• The two methods yield similar results for SNR = 25 dB (the corresponding PEEs are
10.8245 (±5.8194) and 11.8245 (±7.0916), respectively). The performance of APM is
obviously better than the performance of TSA for c2, c4, c6, PEE for SNR = 20 dB, and
c1, c2, c3, c4, c5, c6, VAF, PPE for SNR = 15 dB. The attenuation of the signal levels does
not obviously affect the APM while it deteriorates the performance of TSA significantly,
showing that proposed APM is more robust to noise and data size.

The calculated VAFs for the proposed APM and TSA are given in Figure 2, while
the corresponding histograms of the VAF values are shown in Figure 3. In Table 2 the
mean values and standard deviations of VAF are given. The results show that the VAFs
of APM are better than that of TSA under the same noise levels. The results verify again
our argument: as the avoidance of introducing extra parameters and performing SVD to
estimate the parameters of (a, b, c, d) from the products ad and bc, the proposed APM based
on PPMs with fewer parameters can enhance the accuracy of the estimated quantities and
decrease the variance of estimates, for the identification of highly nonlinear Hammerstein-
Wiener systems given short noisy data length sequences.
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Figure 2. VAF of APM (left, red line) and TSA (right, blue line) under different SNRs.
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Figure 3. Histogram of VAF values of APM and TSA under different SNRs.

Table 2. Estimated Results of VAF under Different SNRs.

Methods VAF

APM (SNR = 15 dB) 99.79 (±0.0977)
APM (SNR = 20 dB) 99.94 (±0.0270)
APM (SNR = 25 dB) 99.97 (±0.0214)
TSA (SNR = 15 dB) 56.81 (±31.1700)
TSA (SNR = 20 dB) 97.03 (±3.5800)
TSA (SNR = 25 dB) 99.40 (±0.5200)

To evaluate the sensitivity of the proposed APM under different sample lengths, the
mean values of PEE and VAF for 100 Monte-Carlo simulations with respect to different
N and SNRs using proposed APM and TSA are shown in Figures 4 and 5, respectively. It
can be seen that the proposed method provides quite good performance when N > 100.
The performance of the proposed APM in terms of PEE and VAF is better than the TSA
especially for identifying N-L-N systems from a limited number of noisy data with a low
SNR, see PEE and VAF when data point N < 1000 and SNR = 25 dB. These results show
that proposed APM is more robust to noise and data size.
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Figure 4. Averaged results of PEE for APM (left, red line) and TSA (right, blue line) under different
N and SNRs, where N ∈ [100, 4000].
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Figure 5. Averaged results of VAF for APM (left, red line) and TSA (right, blue line) under different
N and SNRs, where N ∈ [100, 4000].

6. Conclusions

A new identification formulation for H-W models, referred to as APM, is presented.
The avoidance of using over-parametrization models leads to a number of improvements,
i.e., reducing the number of unknown parameters to be estimated and avoiding a trun-
cated SVD step, so improving the estimated quantities in terms of accuracy and variance
compared to TSA. These improvements especially hold for highly nonlinear H-W model
identification from a limited number of noisy samples. The reasons why the new method
results in an improvement model over the previous LS method have been demonstrated by
variance analysis. The application to an illustrative example has well demonstrated the
effectiveness and merit of the proposed method in comparison with TSA. Future work
should focus on identifying other nonlinear systems by taking into account some additional
prior knowledge about the systems.
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Abbreviations
The following abbreviations are used in this manuscript:

H-W Hammerstein–Wiener
N-L-N Nonlinear-Linear-Nonlinear
BELS Bias-Eliminating Least-Squares
TSA Two-Step Algorithms
OPM over-parametrization model
SVDs Singular Value Decompositions
AM-MISG auxiliary model multi-innovation stochastic gradient
APM Asynchronous Parsimonious Method
TSA Two-Step Algorithms
SNR Signal-to-Noise Ratio
PEE Parameter Estimation Errors
VAF Variance Accounted For
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