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Abstract: Within this article, the nonlinear vibration control of the rotor active magnetic bearings
system is tackled utilizing the integral resonant controller for the first time. Two integral resonant
controllers are proposed to mitigate the system lateral oscillations in the horizontal and vertical
directions. Based on the suggested control technique, the whole system dynamical model is derived as
a two-degree-of-freedom nonlinear system (i.e., rotor system) coupled linearly to two first-order filters
(i.e., the integral resonant controllers). The nonlinear autonomous system that governs the oscillation
amplitudes of the controlled system as a function of the control parameters is extracted by applying
perturbation analysis. The obtained autonomous system showed that the linear damping coefficients
of the rotor system are functions of the control gains, feedback gains, and internal loop feedback
gains of the coupled controller. Accordingly, the sensitivity of the rotor oscillation amplitudes to
the different control parameters is explored. The stability margins and the optimal control gains are
reported via plotting the different stability charts in two-dimensional space. The main acquired results
demonstrated that the vibration suppression efficiency of the proposed controller is proportional to
the product of both the control and feedback signal gains, and inversely proportional to the square
of the internal loop feedback gains. In addition, the analytical investigations confirmed that the
proposed integral resonant control method can force the rotor system to respond as a linear one with
a single periodic attractor when the control parameters are designed properly. Finally, numerical
simulations are performed that have illustrated the excellent correspondence with the obtained
analytical results.

Keywords: integral resonant controller; forward and backward whirling motion; stability; monostable,
bi-stable, and tri-stable solutions; quasiperiodic solution; poincaré-map; frequency spectrum

1. Introduction

The nonlinear vibration control of the Active Magnetic Bearings System (AMBS) is the
main subject of researchers and engineers worldwide due to its huge advantages over the
conventional bearings system. The working principle of the magnetic bearings system relies
on generating controllable magnetic forces to suspend the rotating shaft in its hovering
position without physical contact with the stator. This working mechanism has earned
the active magnetic bearings system many benefits over the conventional one such as
(1) frictionless operation, (2) no necessity for lubrication, (3) less maintenance, (4) high-
speed operation, (5) long working time, (6) clean environment, etc. Therefore, many
researchers have investigated the dynamical behaviors of this system, as well as pro-
posed different control strategies to enhance its dynamical stability. Ji et al. [1] studied
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the nonlinear behaviors of the 4-pole AMBS utilizing the conventional position-velocity
feedback control technique. The author investigated the system dynamics in two oscillation
modes. Firstly, he explored the system as an autonomous one via neglection of the rotor
eccentricity, where the obtained results showed that the AMBS can exhibit saddle-node,
saddle-connection, and Hopf bifurcations. Secondly, the author included the effect of
the rotor eccentricity in the studied model, where the analysis illustrated that the nonau-
tonomous system may have homoclinic orbit and transversal intersection. Saeed et al. [2,3]
investigated the 6-pole AMBS with two different control methods, where they explored the
vibration suppression efficiency of a proportional-derivative controller designed based on
the Cartesian displacements and Cartesian velocities of the rotor system in [2]. In addition,
the performance of a proportional-derivative controller implemented based on the radial
displacements and radial velocities has been investigated in [3]. Based on the analysis
introduced, they reported that the Cartesian control method has vibration suppression
efficiency higher than the radial one. On the other hand, the radial control technique
exhibited more stability features than the Cartesian method. The vibration control of the
8-pole AMBS with constant stiffness is investigated in [4-8]. Ji et al. [4,5] studied the
position-velocity controller efficiency in suppressing the oscillatory behaviors of an 8-pole
system at both the primary and superharmonic resonances. Yang et al. [6] discussed the
oscillation modes of the 8-pole AMBS using the energy and phase-difference technique,
where the obtained analysis demonstrated that the rotor system can perform either elliptic
or quasiperiodic oscillations. Saeed et al. [7] introduced a combination of both the linear
and nonlinear position-velocity controllers to enhance the dynamical behaviors of the
8-pole AMBS. They concluded that the integration of a cubic position controller can modify
the system oscillatory behavior to respond as a hardening or softening spring oscillator.
Saeed et al. [8] investigated the effect of rub-impact force on motion bifurcation of the 8-pole
AMBS. The authors explored the nature of system motion utilizing both the impact stiffness
and the dynamic friction coefficients as the bifurcation parameters. They reported that
the system can oscillate with one of three vibration modes, which are (a) full annular rub,
(b) period-n rub-impact, and (c) and quasiperiodic rub-impact. The efficiency of a time-
varying proportional-derivative controller in mitigating the nonlinear vibrations of the
8-pole AMBS is introduced by Zhang et al. [9-14]. Based on the investigations intro-
duced, they reported that the system exhibits Shilnikov multipulse chaotic motion. Fur-
thermore, the system can oscillate with periodic-n, quasiperiodic, and chaotic motion.
El-Shourbagy et al. [15] explored the oscillatory motion of the 12-pole AMBS for the first
time utilizing the conventional PD-controller, where the authors reported that the pro-
portional gain can play an important role in reshaping the system dynamics. Different
control methodologies to control the 16-pole AMBS have been introduced [16-21]. Saeed
and Kandil [16] utilized the PD-controller with two configuration methods to suppress the
nonlinear vibrations of the 16-pole AMBS. The authors implemented the proposed control
based on both the Cartesian and radial displacements and velocities of the rotor system.
They found that the Cartesian control can suppress vibrations better than the radial control
technique, while the radial control has higher stability characteristics than the Cartesian
one. Zhang et al. [17-21] investigated the bifurcation behaviors of the 16-pole system utiliz-
ing time time-varying PD-controller. The reliability and durability features of the active
magnetic bearing system made many of the researchers use it not only as a replacement
for the conventional bearings system but also as an active actuator with advanced control
algorithms to control the lateral vibrations in different rotating machinery [22-27].

The Integral Resonant Controller (IRC) proved its capability in suppressing the non-
linear oscillations and eliminating the catastrophic bifurcation behaviors for different
categories of the dynamical systems [28-34]. Diaz et al. [28] control the vibrations of a
lightweight structure utilizing IRC. Al-Mamun et al. [29] investigated the resonant vibra-
tions control of a piezoelectric micro-actuator utilized the integral resonant controller. The
authors concluded that the IRC is the best compared to the conventional control method
and the use of a notch filter. Omidi and Mahmoodi [30], and MacLean and Sumeet [31]
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introduced modified versions of the IRC to control the transversal oscillation of a smart
structure, where the obtained results demonstrated the efficiency of the applied controller.
Omidi and Mahmoodi [32,33] integrated the IRC along with the Positive Position Feedback
Controller (PPFC) to mitigate the primary resonance of a nonlinear flexible structure. The
authors concluded that the IRC has high efficiency in suppressing the response peaks due
to the PPFC. Recently, Saeed et al. [34] employed the nonlinear integral resonant controller
with time delays to eliminate the principal parametric oscillation of a vertically suspended
cantilever beam system. The authors showed that the introduced control method can
mitigate the system oscillation amplitude to zero. Despite the high efficiency of the IRC
in suppressing the nonlinear oscillations of different dynamical systems [28-34], it is not
applied before to control the lateral vibrations of the magnetic bearing system [1-27].

Within this work, the integral resonant controller has been introduced within this
article as a new control strategy to mitigate the nonlinear oscillations of the 8-pole rotor
active magnetic bearings system for the first time. Two integral resonant controllers are
coupled to the 8-pole rotor system to suppress its horizontal and vertical oscillations.
According to the proposed control method, the system equations of motion are derived
relying on the principle of classical mechanics. The perturbation analysis is utilized to
extract the controlled system amplitude-phase modulating equations. Then, the different
response curves and stability charts are plotted. The influence of the different control gains
on the system lateral vibrations is explored, and the system stability margins are reported.
The main obtained results demonstrated that the linear damping coefficients of the rotor
system are proportional to the product of both the control and feedback signal gains
(i.e., 71 73 and 72 14), and inversely proportional to the square of the internal loop feedback
gains (i.e,, A? and A3) of the coupled IRC controllers. In addition, it is reported that the IRC
can force the rotor system to vibrate as a linear one with negligible oscillation amplitudes if
the control parameters have been tuned properly.

2. Mathematical Modelling

This section is dedicated to obtaining the mathematical model of the eight-pole system
that is controlled by both proportional-derivative and integral resonant controllers. The
rotor system is modeled as shown in Figure 1 as a two-degree-of-freedom system that
performs instantaneous displacements x(t) and y(#) in X and Y directions when spinning
with angular speed v about its axes. In addition, eight identical electromagnetic poles are
utilized as an actuator to control the system oscillations via producing control force based
on a predefined control law. Accordingly, the system equations of motions can be written
as follows [35,36]:

2

mx(t) = mev- cos(vt) + Fxc 1)

2 sin(vt) + Fyc 2)

my(t) = mev
where m is the system mass, x(t) and y(t) are the temporal oscillations of the system in X
and Y directions, v denotes the system angular speed, e is the eccentricity of the rotor, Fxc,
Fyc represent the net control forces that are generated via the eight electromagnetic poles
to mitigate the rotor oscillations in X and Y directions. According to the electromagnetic
theory [36], the electromagnetic attractive forces F;, (j =1,2,3,...,8) of the eight poles
shown in Figure 1B can be expressed as follows:

12

F=A0y, j=12-8 3)
]

where A is constant such that A = }IVON 2A cos(0) (uo denotes the air-gap permeability,
N is the coil turn number of each pole, A cos(0) is the effective cross-sectional area), [;
denotes the electrical current in ampere of the j pole, /1; represent the instantaneous air
gap size as shown in Figure 1B. Let sy be the nominal air gap of the rotor system, and 2«
be the angle between every two consecutive poles as shown in Figure 1B. So, for the small
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deviations x(t) and y(t) of the rotor, the instantaneous air gap size /; can be expressed
as follows:

hj =so £ xsin(a) Fycos(a), j=1,5
hj =sg & xsin(a) £ycos(a), j=4,8 @
hj =so £ xcos(a) Fysin(a), j=2,6
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(B) ©

Figure 1. 8-pole rotor active magnetic bearing system: (A) basic working principle of the active
magnetic bearing system, (B) the rotor system in its nominal position with air-gap size sg, and (C) the
rotor system with small deviation and dynamic air-gap size hj, j =1,2,...,8.

According to the schematic diagram shown in Figure 1C, the eight poles current
(I1, I, ..., Ig) can be proposed such that:

L(t) =1Is(t) = 1o —iy(t), L(t) =IB(t) = Iop+ix(t), }

(5 = () = I+ iy (5, Te(H) = I (t) = Io — ix(t). ©®

where Ij is constant current, and ix(t) and i,(t) are the control currents that depend on
the proposed control law. Within this work, a combination of both the linear proportional-
derivative controller and the integral resonant controller (i.e., PD + IRC controllers) are
suggested to control the nonlinear vibrations of the rotor AMB system for the first time.
Therefore, the currents i (t) and iy (t) are designed such that:

ie(£) = kyx(t) + ko (t) + kau(t), iy (t) = kyy(t) + ko (£) + kgo(t) ©6)

where kj is the linear proportional gain, ky denotes the linear derivative gain, k3 represents
the control gain of the integral resonant controller that is coupled to the horizontal vibration
mode x(t), and k4 is the control gain of the integral resonant controller that is coupled to
the vertical vibration mode y ().

Accordingly, the proposed integral resonant controllers are modeled as linear first-
order filters as follows [28-34]:

in(£) + pru(t) = ksx (1 %

0(t) + pao(t) = key(t) ®)

where u(t) and u(t) denote the displacement and velocity of the IRC that is connected
to the horizontal vibration mode. v(t) and v(t) denote the displacement and velocity of
the IRC that connected to the vertical vibration mode. p1, p; are constants, ks, k¢ are the
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feedback control gains. Figure 2 shows the engineering implementation of the proposed
control strategy in more detail.

8-Pole Rotor Active |y s..corxe)

Magnetic bearings
¥ — Sensor {y(t)

system

Control system

/ PD-Controllers \
Ky |
d
dt
ky [
kyy + k¥
kzdy— i

dt
Bias current \ /
unit (Ip)
| —
/ IRC-Controllers \

Figure 2. Block diagram to show the interconnection of both the proportional-derivative and the
integral resonant controllers to the rotor system.

Now, by substituting Equations (4)—(6) into Equation (3), we have

2

. 2
— lo—kiy—kayy—ksv - Io+k1x+kzx+k3u
b= A(so+xsin(a)fycos(:x) ’ h=A so+x cos(a)—y sin(a

F3 :A< Ip+kyx+kox+ksu )2 F4 — A( 10+k1y+kzy+k4v )

N

so+x cos(a)+y sin(a) so+xsin(a)+y cos(a)
. 2
_ lo+kyy+koy+kgo _ Io— klx k2x k3u
=4 <sofx sin(a)+ycos(a) J 7 Fo =2 sp—x cos(a)+ysin(a

: 2
F7:A( Io—klx—kzx—l.gu > , FBIA( IO kly kzy k4’0 )

sp—x cos(a)—y sin(a) sp—xsin(a)—y cos(a)

2 ©)

Based on the system geometry shown in Figure 1B, the net control forces Fxc and Fyc
in X and Y directions, can be expressed such that:

Fxc = (F6 +F—-F — F3) COS(IX) + (F5 + g — F — F4) sin(oc) (10)

Fyc = (Fl + Fg— F4 — F5) COS(DC) + (Fz +F —F— F6) sin(tx) (11)

Expanding Equations (10) and (11) using Taylor series up to third-order approximation
as given in Appendix A, and then substituting the resulting equations into Equations (1)
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and (2) with introducing the dimensionless variables and parameter t* = w;f, x* = =

%/
v = %, ut = %, v = %, p= i—gkl, = SOI‘(;’” ky, 11 = —8cos(a) %k3, o= —8 cos(a)“%gk4,
k k
M= o, = & M = %, Ay = %, f=8& Q=L wn = \/A/ms3, we get the
equations of motion (after neglecting the asterisks for brevity) as follows:
X 4 2ux + w?x — (a3 + apxy? + a3 xx + agxy? + oc5xy2 + tx6x5c2 + azxyy (12)
+B1x%u + Baxxu + Baxu® + Baxyv + Bsxv? + Bexyv + Bruy®) = OFf cos(Qt) + nyu
. . . . 2 2 .
7+ 2u1 + w?y — (a1 + ayx® 4 a3y + agyx® + asyx” + agyy” + ayyxx (13)
+Y1Y20 + Yayyo + Yayv? 4+ Yayxu + ysyu® + yeyxu + y7ox%) = QO f sin(Qt) + 10
i+ Au = n3x (14)
U+ A =14y (15)

where the coefficients y, w, aj, Bj, vj, j =1,2,...,7 are given in Appendix B. Equations (12)—(15)
represent the whole governing equations of motion of the controlled rotor system, where Equations
(12) and (13) represent the equations of motion of the controlled rotor system, and Equations (14) and
(15) are the equations of motion of the connected integral resonant controllers.

3. Analytical Investigations

To investigate the performance of the proposed control law (i.e., IRC controllers), the multiple
scales perturbation method is applied within this section to obtain the periodic solutions of the
nonlinear dynamical system given by Equations (12)—(15). Accordingly, the first-order approximate
solution to Equations (12)—(15) is proposed as follows [37,38]:

x(t,e) = x0(To, T1) + ex1(To, T1) (16)
y(t,e) = yo(To, Tv) +ey1(To, T1) (17)
M(t, S) = SM()(T(), Tl) + Ezul(T(), Tl) (18)
U(t, 8) = EU()(T(), Tl) + SZUl(To, Tl) (19)

where ¢ is an artificial parameter used as a book-keeping only [38], Tp = t, and T; = et. Accordingly,
the derivatives % and ;—:2 can be expressed in terms of Ty and T as follows:

2

d—z = Dj +2eDyD;, D; = 2 j=0,1 (20)

d
7:D D/ ’
T a7

dt

To obtain the system solution using the multiple scales method, the system parameters should
be scaled such that:

w=cept, f=¢f, wj=¢elj, 13 =¢ef3, qu=¢fy, j=1,...,7 (21)

Substituting Equations (16)—(21) into Equations (12) and (15) with equating the coefficients that
have the same power of ¢, we get

O (€%):
(D3 4+ w?)xg =0 (22)
(D§ +w?)yo =0 (23)
0 (e):
(Do + A1)ug = 3o (24)
(Do + A2)vo = fayo (25)
(D% + wz)xl = —2D0D1x02— 2fiDyxo + 5&1;48 + &2x0y% + &3x%D0x0 + 564]/%1)0)(0
+a5x0(Doyo)” + &6x0(Doxo)” + &7x0y0Doyo + P1x3uo + B2xoDoxottg (26)

—i—,83x0u(2) + Baxoyovo + ﬁ5xov% + BexoDoyovo + [57y%u0 + sz cos(O)t)
+111ug
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(D§+w@?)y1 = —2D0D1y02— 21Doyo + &12y8 + &yox3 + &3y5Doyo + &4x5Doyo
+asy0(Doxo)” + deyo(Doyo)” + &7y0x0Doxo + 111500 + Y210 Dovovo 27)
+Y3Y005 + YayoXoto + Ysyoup + YeyoDoXoo + y7xgug + Q2 f sin(Qf)
+11200
The steady-state solution of Equations (22)-(25) can be expressed as follows:
x(To, Ty) = A(Ty)e ™ + A(Ty)e T (28)
yo(To, Ty) = B(Ty)e ™0 + B(Ty)e M0 (29)
ug(To, Ty) = 61 A(Ty)eT0 + 51 A(Ty)e 0 (30)
v0(To, Ty) = 82B(T1)e™ ™0 + 5,B(Ty)e 0 (31)
wherei = v/—1, & = 4= s, 5, = =5, and A(Ty), B(Ty) are unknown functions that will be

A +w? A +w?
determined later. By substituting Equations (28)-(31) into Equations (26) and (27), we have

(D3 +w?)x; = [-2iw(D1A) — 2ifiwA + 341 AZA + 289 ABB + Gy AB? + ifizw A% A
+2ik4w ABB — itywAB? + 285w2 ABB — &5w?AB? + Rgw?A%A
+idywAB? 4 2B161 A2A + B363 A2A + By (5, ABB + 6, AB?) + B565 AB?
+Be(—iwdy ABB + iwdy AB?) + 2701 ABB + 17,61 AleiTo 4 [a1 A3 (32)
+8y AB? + idzwA3 + ifgw AB? — R5w? AB? — Rgw? A3 + ityw AB?
+B161 A3 + iBrwdy A3e3WTo + B352 A3e3iwTo 4 B, 5, AB? + P53 AB?
+iBewdy AB? + B761 AB?|e3wTo 4 102 foiOTo 4 ¢

(D3 + w?)y; = [—2iw(DyB) — 2ifiwB + 34 B?B + 28, BAA + 4, BA? + id3wB*B
+2if4wBAA — ikgwBA? + 2850w BAA — d5w*BA% + &gw?B%B
+id7wBA? + 27161 B*B + 71365 B”B + 14(81 BAA + 6, BA?) + 7507 BA
+96(—iwd BAA + iwd BA?) + 29701 BAA + 11261 Ble'“To + [&; B (33)
+&,BA? + id3wB? + iywBA? — &5w?BA? — Rgw? B3 + itywBA?
+7161B% + i72wNB?e¥T0 4 436783 + 146 BA?3T0 4 567 BA?
+ivewd BA? + 76, BA?)e3wTo %iQZfEIQTO +cc

where cc denotes the complex conjugate term. To obtain the solvability conditions of Equations
(32) and (33), the closeness of the rotor spinning speed () to the system natural frequency (w) is
described via introducing the detuning parameter ¢ as follows:

Q=w+o=w+eb (34)

Substituting Equation (34) into Equations (32) and (33), one can obtain the following solvabil-
ity conditions:

—2iw(D1A) — 2ifiwA +3& A>A + 28y ABB + & AB? + iw &3 A%A + 2iw &, ABB
—iw &y AB? + 2w? &5 ABB — w? a5 AB? + w? & A% A + iw &7 AB? 4 2815, AZA

+B302 A% A + 46y ABB + Bs6y AB? + B563N?AB? — iwBeday ABB + iwPedas AB? (35)
+2701ABB + 11161 A + § (w + ) fei*?To = 0
—2iw(D1B) — 2ifiwB + 3&; B?B + 280 BAA + &, BA? + iwi3B?B + 2iwiy,BAA
—iwiyBA? 4+ 2w?&sBAA — w?isBA? + w?agB?B + iwiyBA? 4 27v16,B*B (36)

+7303B°B + 7401 BAA + 1461 BA? + 1507 BA? — w601 BAA + icoy1 BA®
+2v700BAA 4 1207B — %i(a) + (T)ZfelWTO -0

To obtain the amplitude-phase equations of the controlled system, the functions A(T7) and
B(T1) can be expressed in the polar form as follows:

A(Ty) = 2a(Ty)e® ™), B(Ty) = Jb(Ty)e® (™) (37)
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Substituting Equation (37) into Equations (35) and (36), and then separating the real and

imaginary parts, we have the following amplitude-phase modulating equations:

2Ba1j3 2BsMi3

a =Gi(a,b g1, 92) = (V“‘W)‘J‘F% WS—W—W)HS’

1 _ Bama Belana _ 2B71s 2., 1(_ _ _Pams
+ (2“4 At T Ate? | Nta? ab=+ g —ws +az AT +?

2BsA; A A
2 Yt co2g— 291) (5 a0+ P
Bsii(A3—w?)  Beljaw

it A ) ab?sin(2¢, — 2¢1) + f S (w+ U’) sin(¢1)

g 2 293A212
b G ) =~ o+ (220 22 )

(A+w?)

1 _omans yeMs o 297 ) 2 1(_ 4
+ (2[)‘4 M+w?  A4w? A+a? a‘b+ 8 a4 +az A +w?

2ysMn3 YoMz | 2 o 1 <ﬂ . YaMiz
(/\2+w2) 7 + A t? a bCOS(Z(PZ 2‘P1) tglw —asw+ w(\1w?)

M=) | yesw
+ (/\2+w2) + A +w?

. A 2B1A
¢ =Gsla,b,91,92) = (‘7"" Zw(j\?fijz)) + i (3‘"1 + agw? + leJri?zs

+/53’7§()‘%*w2) )uz + i (20&2 + 20(5(02 + Bataly  Beljaw? + 257)\1713)172

)azb sin(2¢y — 2¢1) — %(w +0)? cos(¢2)

(A%+w2)2 A +w? A+w? A2 +w?
+8%; (txz —asw? + fgfwﬂé +55(}74(J/r\ ‘)U ) + ﬁﬁmw )bz cos(2¢2 —2¢1)
1 _ _ B 2Bshoni ﬁa)\zm 2 _
+8 ( g+ oy /\%erz (A%+w2)2 + )b sm(Zq)z 24)1)
2
—&—%(w + o) cos(¢1)
. A 2717
() =G4(1/’l,b,(p1,(p2): (0’+ %)4—%(3“14‘“66024‘%
1ni(M—w?) \ 12 L( 2y wzsw 277/\2’74> 2
+ (;%_"_;2)2 b+ 5o | 200 + 2050 + peaws: + Wt a
A 5 ;
iy (s e+ Tk + RO 4 e )aZ cos(292 ~ 2p1)
1 v 2vsMiz_ dveMips _
3 ( &g+ a7+ prawE (A%—}—uﬂ;z A2+w2)a sin(2¢2 — 2¢1)
2 .
—l—ﬁ(w + o) sin(¢7)

(38)

(39)

(40)

(41)

Inserting Equations (28)—(31) and (37) into Equations (16)-(19) with considering Equation (37),
one can obtain the analytical solution of the coupled system given by Equations (12)-(15) as follows:

x(t) = a(#) cos(Qt — 1 (1))

y(t) = b(t) cos(Qf — g5 (t))

u(t) = (/\%3_73&)2)110)[/\1 c0s(Qt — @1 (1)) + wsin(Qt — @1 (1))]
o(t) = ()%1_7'_74602)13(15)[/\2 cos(Qt — gy (1)) + wsin(Qf — go(£))]

(42)
(43)
(44)

(45)

where a(t) and b(t) are the system oscillation amplitudes in X and Y directions, respectively, and
@1(t) = ot — 01, @a(t) = ot — 0, are the corresponding phase angles. At steady-state oscillations, we

havea = b = ¢; = ¢, = 0. Substituting a = b = ¢; = ¢, = 0 into Equations (38)-(41), we get

2 2B3A112
Flabgen) == (s bl Ja b (na— 22 - f*))

1 A 2
5 (200 — B0, B2 — I Nl 4 (g + a7

_ Bama 2BsAa12 BeAans 2 _
A +w? + (At 32 + N tw? ab COS(ZQOZ Z(Pl)

Banada Bsi13 (A3 —w?)
w(M+w?) T w(A24w?)

f;wa)abz sin(2¢; — 2¢1) + f [ (w+0)?sin(g) =0

% ——tx5w+

(46)
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AM+aw? aw

2w (A34w?) A+w? (A2 ta?

1 VM velpw? | 297Aam 2
%(2042 +2a5w + AMrw? — Ata? + A tw? a

fula b o 02) = (0+ il ) + 6 (3m +agw? + 2t | i : 2))b2

+
1 2, vl A —@?) | enw? ) 2
+8—(zx2 —asw? + 0k + (/\3%+1 gt Ytz |atcos(292 = 2¢1) (49)

ool

- s 2yship3 veMams _
ag + a7 + Tore? ~ (arar) T Ate? a%sin(2¢; — 2¢1)

+ﬁ(w +0)?sin(¢y) =0
The nonlinear algebraic system f]-(u, b,¢1,¢2) =0, j =1,2,3,4 given by Equations (46)—(49)
governs the steady-state oscillation amplitudes (2 and b) and phase angles (¢ and ¢») of the controlled
rotor system as a function of IRC control parameters (11, #2, 13, 74, A1, A2). Therefore, one can
investigate the performance of the applied IRC in suppressing the steady-state oscillation amplitudes
of the controlled system via solving the nonlinear system f;(a,b, 1, 92) = 0, j = 1,2,3,4 utilizing
f or o as a bifurcation parameter as illustrated in Section 4. In addition, the solution stability of
Equations (46)—(49) can be explored via linearizing the nonlinear system given by Equations (38)—(41).
Therefore, if we assume (ag, by, 19, ¢20) is the solution of f]-(a, b,p1,92) =0, j =1,2,3,4, and
(a1, b1, @11, 1) is small deviations about that solution [39]. Accordingly, we have
a=ap+ay, b=>bo+by, 1= @0+ P11, 92 = 20 + P21, } (50)
a=ay, b="bi, ¢; =11, 2= ¢n

Substituting Equation (50) into Equations (38)-(41), one can obtain the following linear au-

tonomous system:
aGl aGl 8G1 aGl

a oaq oby  Jdenn 9@ a
' IO TES CO Yot )
by _ da db; Q11 a‘PZl 1 (51)
- T %G G G aG @
P11 da, b dpn dgn 1
@1 9Gs  9Gs  9G Gy 921

a1y by 9911 0921

where the coefficient of the above square Jacobian matrix is given in Appendix C. The linear dy-
namical system given by Equation (51) is topologically equivalent to the nonlinear system given by
Equations (38)—(41). Accordingly, one can check the solution stability of Equations (46)—-(49) via explor-
ing the eigenvalues of Equation (51). In the following section, the performance of the IRC is explored
via solving Equations (46)—(49) at different values of the control parameters (11, 2, 73, 714, A1, A2)
utilizing f or ¢ as the bifurcation parameters. In addition, the stability of the obtained solution (i.e.,
solution of Equations (46)—(49)) is investigated via checking the eigenvalues of Equation (51).

4. Bifurcation Analysis and Control Performance

The sensitivity analysis and control performance of the applied integral resonant controller in
suppressing the nonlinear oscillations of the rotor system are investigated within this section. The
different bifurcation diagrams are obtained via solving the nonlinear system f]-(a, b,p1,¢2) = 0,
j = 1,2,3,4 utilizing one of the system or controller parameters (o, f, 111, 2,43, #a) [40]. In ad-
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dition, the solution stability of Equations (46)—(49) has been studied via checking the eigenvalues
of the linearized model given by Equation (51). During plotting the different bifurcation diagrams
via solving fj(a,b, ¢1,92) = 0, j = 1,2,3,4, the proposed MATLAB code is designed to plot the
stable solution as a solid line and the unstable solution as a dotted line. Moreover, to guarantee
the accuracy of the obtained bifurcation diagrams, numerical validations are performed via solv-
ing numerically Equations (12)—-(15) using ODE45 (MATLAB function). The numerical solution
is plotted as a circle when sweeping the bifurcation parameter forward and as a big dot when
sweeping the bifurcation parameter backward. The system and controllers parameters are selected
such that: f = 0.015, p = 1.22, d = 0.005, « = 225, A1 = Ay = 10,551 = 12 = 113 = 14 = 0.0,
and Q) = w + o [7,8]. Before proceeding further, it is important to remember that the dimen-
sionless control parameters 71, #2, #3, 14, A1, and A are defined before Equation (12) such that
m = —Ssocli(;s(“)kg, = —%k&m = %’ My = %, M= %, and Ap = 5—2 Therefore, one
can easily deduce that #; and 7 represent the dimensionless control signal gains of the IRCs, #3
and 74 denote the dimensionless feedback signal gains of the IRCs, and A and A; are the internal
feedback gains of the IRCs (i.e., see Figure 2). Accordingly, the influence of the IRCs parameters
(71, M2, 113, N4, A1, and Ay) on the dynamical behaviors of the rotor system is investigated within the
following subsections considering the proportional and derivative control gain are fixed constant

(e, p = 1.22, d = 0.005).

4.1. The Rotor System Dynamics without IRC

The steady-state nonlinear vibration of the rotor system is explored within this section when
turning the integral resonant controller off (i.e., when 11 = 112 = 13 = 4 = Ay = Ay = 0.0), while
the proportional gain p = 1.22 and the derivative gain d = 0.005. Remember from Equation (34)
that o represents the closeness of the rotor angular speed () to its natural frequency w. Accordingly,
o is utilized within this article to describe the system oscillatory behaviors close to the resonance
conditions (i.e., when () — w). In Figure 3, the rotor system steady-state vibration amplitudes
(a and b) are plotted versus ¢ at two different values of the rotor eccentricity f = 0.01 and 0.02.
Figure 3A,B show that the rotor system exhibits a bistable periodic attractor if —0.018 < ¢ < 0.033,
otherwise, the rotor responds as a linear system with a single periodic attractor when f = 0.01.
In addition, Figure 3C,D illustrate that the rotor system has a complex c—response curve when
increasing the eccentricity to f = 0.02. Figure 3C,D illustrates that the rotor system can oscillate with
one of three oscillations modes, which are: single periodic solutions, bistable periodic solutions, and
tri-stable periodic solutions.

To visualize the bifurcation behaviors of the rotor system for a wide range of the eccentricity,
f is utilized as the main bifurcation parameter as shown in Figure 4 at two different values of the
rotor spinning speed () = w + 0, ¢ = 0.0, 0.05. It is clear from the figure that the rotor system may
lose its stability at strong eccentricity beside the three oscillations modes reported in Figure 3. Due
to the complex dynamical behaviors of the considered system that are reported in Figures 3 and 4,
the integral resonant controller is introduced as a novel control technique to mitigate the nonlinear
oscillation and to suppress the motion bifurcations of such system as discussed in Section 4.2.

0.8 0.8
Stable periodic solution Stable periodic solution
-------- Unstable periodic solution ======== Unstable periodic solution
[-] Numerical solution (forward sweep) o Numerical solution (forward sweep)
06k L] Numerical solution (backward sweep) | | 0.6l [ ] Numerical solution (backward sweep) | _
o= =0.018—>| ‘-é <—o=0.033 o= =0.018—> % =—o=0.033
c20.01 2. £=0.01 B
© 04l 2 2 single o o4 gc single
: 2 5 stable L= stable
2 @ P £ =t P
K periodic S periodic
2 solution me solution
0.2 S 0.2 L
p p
P\ i i [o-o-o-o- i
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
G (o3
(A) (B)

Figure 3. Cont.
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Figure 3. The rotor system cresponse curve at two different values of eccentricity f when the IRC
controllers are turned off: (A,B) the system oscillation amplitudes a and b when f = 0.01 and
(C,D) the system oscillation amplitudes a and b when f = 0.05.
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Figure 4. The rotor system fresponse curve at two different values of the rotor spinning speed
(QQ = w + 0): (A,B) the system oscillation amplitudes a and b when ¢ = 0.0, and (C,D) the system
oscillation amplitudes a and b when o = 0.05.



Processes 2022, 10, 271

12 of 35

4.2. The Rotor System Dynamics with IRC

This section is dedicated to exploring the influence of one of the connected integral resonant
controllers on the oscillatory behaviors of the rotor system when the other one is turned off. Before
investigating the effects of the IRC using the different bifurcation diagrams, let us first examine the
derived amplitude-phase equations (i.e., Equations (38)—(41)). It is clear from Equations (38)—(41)
that the coupling of the IRC to the rotor system has modified the rotor linear damping coefficient (u)

to the equivalent damping coefficients piy = p + % for the horizontal oscillation mode, and
1

By =p+ % for the vertical oscillation mode. In addition, the detuning parameter () has been
2

modified to oy = 0+ M __ for the horizontal oscillation mode, and oy, = 0 + % for the

20(A+w?) w(A3+w?)
vertical oscillation mode. Accordingly, the IRC adds the linear damping magnitude % to the
% to the vertical oscillation
mode. It is worthy to note that py is proportional to the product of both the control signal gain
(171) and feedback signal gain (13), and inversely proportional to the square of the internal loop
feedback gain (A1) of the IRC that is connected to the horizontal oscillation mode. In addition,
is proportional to the product of both the control signal gain (1) and feedback signal gain (174),
and inversely proportional to the square of the internal loop feedback gain (A;) of the IRC that is
connected to the vertical oscillation mode. Moreover, it should be noted that 1, 12, 73, 4, A1, and
Ay are the dimensionless forms of the original parameters k3, ks, ks, kg, p1, and py, respectively.
Therefore, we can deduce that the IRC that connected to the horizontal oscillation mode adds linear
damping magnitude proportional to the product of the actual feedback and control signal gains (k3ks),
while the IRC that is connected to the vertical oscillation mode adds linear damping magnitude
proportional to the product of the actual feedback and control signal gains (kske) as shown in Figure 2.

For simplicity, let us denote the IRC that is connected to the horizontal oscillation mode as
U-IRC and the IRC that is connected to the vertical oscillation mode as V-IRC. Based on the previous
discussion, setting #; or #3 or both to be equal to zero means the U-IRC is turned off. Also, setting
1 or 14 or both to be equal to zero means the V-IRC is turned off. Accordingly, the influence of
the proposed IRC on the response curves of the rotor system has been investigated in two stages of
analysis. Firstly, it is considered that the U-IRC is in action, while the V-IRC is deactivated via setting
772 =0or 4 = 0or #p = 14 = 0. Secondly, the effect of both U-IRC and V-IRC on the rotor system is
investigated simultaneously as one symmetric IRC.

horizontal oscillation mode and the linear damping magnitude

a. The influence of asymmetric IRC on the rotor system dynamics

The effect of the U-IRC on the rotor system dynamics has been explored within this section
considering the V-IRC controller is turned off via setting 17, = 0 or 4 = 0 or 57, = 14 = 0. Figure 5
shows the controlled rotor system o—response curve at three different values of the control signal
gain 11 (i.e.,, y; = 0.05, 0.2, and 0.4) when #p = 0, 173 = 14 = 0.2. It is clear from the figure that the
increase of the control signal gain 7, decreases the system oscillations in the horizontal direction
only, and eliminates the complex bifurcation behaviors of the whole system close to the resonance
condition (i.e., when ¢ close to or equal to zero). The obtained results in Figure 5 can be explained
based on the modified linear damping coefficients iy = p + % and py = p+ %, where
increasing #; with letting 77, = 0, 173 = 774 = 0.2 means increasing y, with fixing y, = p. Therefore,
the system oscillation at the horizontal direction decreases monotonically with increasing #;.

Numerical simulation for the controlled system according to Figure 5 when ¢ = 0.0 is illustrated
in Figures 6 and 7 via solving Equations (12)—(15) using ODE45 at the two different initial conditions
x(0) = x(0) = y(0) = y(0) = u(0) = v(0) = 0and x(0) = 0.2, x(0) = y(0) = y(0) = u(0) =
v(0) = 0. Figure 6 shows the steady-state time-response and the corresponding orbital motions of
the rotor system and the connected IRCs when o = 0.0, 77 = 0.05, 77 =0, 173 = 174 = 0.2. It is clear
from the figure that the rotor system is sensitive to the initial conditions, where the system has two
bistable periodic solutions as reported in Figure 5A,B. Moreover, the rotor whirling motion may be
forward or backward depending on the initial conditions.
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Figure 5. The rotor system oresponse curve at three different values of the control signal gain #;
when; =0, 73 =14 = 0.2 and f = 0.015: (A,B) the system oscillation amplitudes a and b when
71 = 0.05, (C,D) the system oscillation amplitudes a and b when #; = 0.2, and (E,F) the system

oscillation amplitudes a and b when 1; = 0.4.
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Figure 6. The rotor system steady-state time-response according to Figure 5A,B when ¢ = 0:
(A,B) temporal oscillation in X and Y directions, respectively, (D,E) temporal oscillations of the U-IRC
and V-IRC, respectively, (C,F) the corresponding periodic orbits.
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Figure 7. The rotor system steady-state time-response according to Figure 5E,F when ¢ = 0:
(A,B) temporal oscillation in X and Y directions, respectively, (D,E) temporal oscillations of the
U-IRC and V-IRC, respectively, (C,F) the corresponding periodic orbits.
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Figure 7 illustrates the time-response and corresponding periodic orbits of the rotor system
and IRCs according to Figure 5E,F when ¢ = 0.0, 71 = 04, 17, = 0, 13 = 14 = 0.2 using the
same initial conditions that were used to obtain Figure 6. The figure confirms that the rotor system
became insensitive to the initial condition when increasing the control signal gain #; to 0.4, where
the rotor exhibits backward whirling motion only regardless of the initial conditions. It is clear
from Figure 7 that the system oscillation amplitude at the X—direction is about half of the system
oscillation amplitude in Y —direction that agrees with the system response curve given in Figure 5E,F.

According to Equations (38) and (41), the equivalent linear damping coefficient y1, = p + %
is proportional to the product of the control signal gain #; and the feedback signal gain 13 regard-
less of the magnitude of each one individually. Also, the equivalent linear damping coefficient

Py =p+ % is proportional to the product of the control gain 77, and the feedback signal gain

14 regardless of the magnitude of each one individually. The influence of product of the control
and feedback signal gains of the U-IRC (i.e., #1#3) on the rotor system o—response curve when
#2114 = 0.0 is illustrated in Figure 8. The figure shows the system response curves at 77173 = 0.01, 0.04,
and 0.08. Comparing Figure 8A,B with Figure 5A,B, we can note that the two figures are the same,
where the product of #1773 = 0.01 and #2774 = 0.0. Also, Figure 5C,D and Figure 8C,D are identical,
where 171173 = 0.04 and 772174 = 0.0. In addition, Figure 5E,F and Figure 8E,F are the same because
71173 = 0.08 and #2774 = 0.0. According to Figures 5 and 8, we can confirm that the coupling of an
IRC to any dynamical system can mitigate the system’s nonlinear oscillations via adding a linear
damping coefficient that is proportional to the product of the feedback and control signal gains of the
coupled controller.

The influence of increasing the eccentricity (f) on the rotor system oscillation amplitude when
activating the U-IRC such that #1773 = 0.04 with turning off the V-IRC (i.e., 77174 = 0.0) is illustrated in
Figure 9. The figure shows the system f—response curve at two different values of the rotor spinning
speed () = w + o, 0 = 0.0, 0.05). It is clear from the figure that the rotor system responds as a
linear system with a single periodic attractor at the small eccentricity magnitudes (f). However,
the nonlinear behaviors may dominate the system response when f is increased beyond a critical
value. Figure 9A,B show that the system may respond with a single periodic solution as long as
f < 0.01199, but the rotor may respond with one of two stable periodic solutions depending on the
initial conditions if 0.01199 < f < 0.02779. The figure also illustrates that the rotor system can exhibit
either a periodic or aperiodic solution depending on the initial conditions if 0.02779 < f < 0.0366, but
the system performs aperiodic oscillations if the eccentricity is increased beyond 0.0366. Figure 9C,D
illustrate the rotor system f—response curve when o = 0.05. It is clear from the figure the complex
dynamics of the rotor system when increasing f from zero to 0.05, where the system responds with
a single periodic solution as long as f € [0,0.01245[U]0.01652, 0.02058], but the system has bistable
periodic solutions as long as f € [0.01245, 0.01652[U] 0.02058, 0.044]. In addition, the rotor system
exhibits periodic or aperiodic solution depending on the initial conditions if f > 0.044.
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Figure 8. Cont.
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Figure 8. The rotor system cresponse curve at three different values of the product of the control
signal gain (171) and feedback signal gain (13) of the U-IRC (i.e., 7113 = 0.01, 0.04, 0.08) when turning
off the V-IRC (i.e., 2774 = 0.0): (A,B) the system oscillation amplitudes a and b when 7113 = 0.01,
(C,D) the system oscillation amplitudes a and b when 7173 = 0.04, and (E,F) the system oscillation
amplitudes a and b when #1773 = 0.08.

The stability charts of the 8-pole rotor system are plotted in f — 77113 plane to show the stable
and unstable solution regions when o = 0.0, 0.05 as illustrated in Figure 10. It is clear from the figure
that the increase of 7173, increases the stable solution region which guarantees the stable oscillations
of the system at the large magnitude of the rotor eccentricity. Also, the figure confirms that the rotor
system has three oscillation modes when activating the U-IRC controller only. These three modes are
(1) stable periodic solution only regardless of the initial conditions, (2) stable or unstable periodic
solution depending on the initial conditions, and (3) unstable periodic solution only regardless of
the initial conditions. To validate the accuracy of the obtained stability chart in Figure 10, numerical
simulations for the system equations of motion (i.e., Equations (12)—(15)) are performed as shown in
Figures 11-13 according to the three points (p;, p,, p3) that marked in Figure 10B. Figure 11 shows
the steady-state temporal oscillations of the rotor system and the connected IRCs according to the
point p; that marked in Figure 10B (i.e., when f = 0.075, #1973 = 0.05, 7, = 0.0, 54 = 1). The
figure shows the temporal oscillations and the corresponding Poincaré-map at the initial conditions
x(0) = #(0) = y(0) = §(0) = u(0) = v(0) = 0 and x(0) = 03, ¥(0) = y(0) = §(0) = u(0) =
v(0) = 0. It is clear from Figure 11 that both the system and the controllers oscillate with aperiodic
motion regardless of the initial conditions that agree with the point p; that marked in Figure 10B.
Figure 12 illustrates the temporal oscillations and the corresponding Poincaré-map of both the rotor
system and the IRCs according to the point p, that showed in Figure 10B (i.e., when f = 0.075,
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s = 0.15, 12 = 0.0, 74 = 1). It is clear from the figure that the rotor system vibrates with aperiodic
motion at zero initial conditions (i.e., x(0) = x(0) = y(0) = y(0) = u(0) = v(0) = 0), but modifying
the initial conditions so that x(0) = 0.3, x(0) = y(0) = y(0) = u(0) = v(0) = 0, has forced the rotor
system to oscillate periodically. Accordingly, Figure 12 confirms that the rotor system may respond
with a periodic or aperiodic motion depending on the initial conditions that agree with the point p,
that marked in Figure 10B. The nonlinear oscillations of the rotor system and the connected controller
are simulated as shown in Figure 13 according to the point p; that illustrated in Figure 10B (i.e.,
when f = 0.075, 71173 = 0.25, 17, = 0.0, 774 = 1). The figure is obtained using the two different initial
conditions that are used to obtain Figures 11 and 12. It is clear from Figure 13 that the system is
insensitive to the initial conditions, where the system responds periodically with the same oscillation
amplitude regardless of the initial conditions that agree with the point p; that is marked in Figure 10B.
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Figure 9. The rotor system fresponse curve at two different values of the rotor spinning speed
(= w+ 0,0 =0.0, 0.05) when activating the U-IRC (i.e., #1773 = 0.04) and turning off the V-IRC
(i.e., 72174 = 0.0): (A,B) the system oscillation amplitudes a and b when ¢ = 0.0, and (C,D) the system
oscillation amplitudes a and b when o = 0.05.
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Figure 10. Stability chart of the rotor system in f — #;73 plane at two different values of ¢ when
#1214 = 0.0: (A) 0 = 0.0, and (B) o = 0.05.
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Figure 11. The rotor system steady-state time-response according to the point p; shown in Figure 10B
(i.e., when f = 0.075, 71173 = 0.05, 12 4 = 0): (A-C) temporal oscillation in X and Y directions and
the corresponding Poincaré map, respectively, (D-F) temporal oscillations of the U-IRC and V-IRC

and the corresponding Poincaré map, respectively.
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Figure 12. The rotor system steady-state time-response according to the point p, shown in Figure 10B
(i.e.,, when f = 0.075, 73173 = 0.15 17, = 0.0, and 14 = 1): (A-C) temporal oscillation in X and Y
directions and the corresponding Poincaré map, respectively, (D-F) temporal oscillations of the U-IRC
and V-IRC and the corresponding Poincaré map, respectively.
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Figure 13. The rotor system steady-state time-response according to the point p; shown in Figure 10B
(i.e.,, when f = 0.075, 1173 = 0.25 17, = 0.0, and 774 = 1):(A-C) temporal oscillation in X and Y
directions and the corresponding Poincaré map, respectively, (D-F) temporal oscillations of the
U-IRC and V-IRC and the corresponding Poincaré map, respectively.
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b.  The influence of symmetric IRC on the rotor system dynamics

The dynamical behavior of the rotor system when activating both the U-IRC and V-IRC con-
trollers simultaneously is discussed in this section. Figure 14 shows the steady-state oscillation
amplitudes of the rotor system (a & b) versus the parameter ¢ at three different values of the product
of the control and feedback gains (i.e., when #1173 = #2174 = 0.01, 0.04, 0.08). It is clear from the
figure that the increase of #1173 = 1214, increases the system equivalent linear damping coefficients
#x and py as discussed before, which ultimately decreases the system oscillation amplitudes and
eliminates the motion bifurcations as illustrated in Figure 14E,F. Comparing Figure 14 with Figure 8,
it is clear from Figure 8E,F that the rotor system responds as a nonlinear system with a bistable
periodic attractor at a specific range of the rotor spinning speed when #1773 = 0.08 & #2774 = 0.0, while
Figure 14E,F show that the system responds as a linear one with a single periodic attractor regardless
of the rotor spinning speed when #7113 = #2174 = 0.08. Accordingly, we can deduce that the dynamical
behavior of the rotor system when activating one of the IRCs is completely different than the system
dynamic when both the U-IRC and V-IRC are activated simultaneously. It is clear from Figure 14 that
the worst resonance occurs at ¢ = 0.0, therefore #1773 = #2774 are used as a bifurcation parameter to
explore the influence of increasing 17173 = ##4 on the system oscillation amplitudes when o = 0.0
as illustrated in Figure 15. It is clear from the figure that the system oscillations amplitudes are a
monotonic decreasing function of #1773 = #/274. In addition, the figure confirms the system bistable
oscillation amplitudes have been merged into a single periodic attractor when #1773 = 17214 exceeded
a specific value.

It has been concluded before that the coupling of the IRCs to the rotor system modified the

rotor linear damping coefficient (i) to the equivalent damping coefficients py = p + % and
By =p+ % In addition, the detuning parameter (') has been modified to oy = 0 + M)(‘l)zilji,z)
2 1

Aaijaijy
2w (/\%-‘rwz)
of the IRCs on the oscillation amplitudes (2 & b) is illustrated in Figure 16, where Figure 16A,B
show the rotor system oscillation amplitudes at Ay = Ap = 0.1, 1.0 when 173 = #2174 = 0.08. It is
clear from Figure 16A,B that the rotor system vibration amplitudes (2 and b) when Ay = A, = 0.1
is smaller than its oscillation amplitudes when Ay = A, = 1.0. It is worthy to mention that the
obtained results in Figure 16A,B agree with the derived equations of the equivalent linear damping
coefficients px and py, where py and py inversely proportional to 2/\% and to 2A3, respectively.
Moreover, Figure 16A,B indicate that internal loop feedback gains (A; and A;) play an important
role in shifting the system oc—response curve to the right or the left via modifying the detuning

M Azij2ijy
2w (A3 +a?) 2w(A3+a?)
oscillation amplitude at 171773 = 172174 = 0.08 when the internal loop feedback gains are increased to
A1 = Ay = 2.0. Comparing Figure 16C,D with Figure 16A,B, we can confirm that the increase of
the internal loop feedback gains from Ay = A; = 1.0 to A; = Ay = 2.0, has decreased equivalent
damping coefficients y, and py, which ultimately forced the rotor system to respond as a nonlinear
one with high vibration amplitudes.

The f—response curve of the rotor system when 3173 = 172174 = 0.08 are illustrated in Figure 17
at two different values of the rotor spinning speed () = w + 0, ¢ = 0.0, 0.05. It is clear from
Figure 17 that the controlled rotor system will respond with periodic motion as long as 0.0 < f < 0.05.
However, the system may respond as a linear system with a single periodic attractor or as a nonlinear
one with a bistable periodic attractor depending on the eccentricity magnitude. Comparing Figure 17
with Figure 4, we can confirm that the activation of both the U-IRC and V-IRC simultaneously has
eliminated the unstable oscillation of the uncontrolled rotor system that showed in Figure 4. In
addition, the four oscillation modes that are noticed in Figure 9 when activating the U-IRC only, have
been reduced to two desirable oscillation modes only as illustrated in Figure 17, which are single and
bistable periodic motion.

and 0y = o+ . Accordingly, the influence of internal loop feedback gains (A and Ay)

parameter o to oy = o + and oy =0 + . Figure 16C,D shows the rotor system
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Figure 14. The rotor system cresponse curve at three different values of the product of the control
signal gain (771, #2) and feedback signal gain (173, #4) of the IRCs: (A,B) the system oscillation
amplitudes a and b when #1173 = #2174 = 0.01, (C,D) the system oscillation amplitudes a and b when
71173 = K214 = 0.04, and (EF) the system oscillation amplitudes a and b when #1773 = #2174 = 0.08.
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Figure 15. The rotor system #1173 = #21j4response curve when ¢ = 0.0: (A) steady-state oscillation
amplitude a in Xdirection, and (B) steady-state oscillation amplitude b in Ydirection.
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Figure 16. The rotor system oresponse curve at three different values of the internal loops feedback
gains A1 and Ay when #1773 = 112174 = 0.08: (A,B) the system oscillation amplitudes a and b when
A = A =0.1, 1.0, and (C,D) the system oscillation amplitudes a and b when A; = A, = 2.0.
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Figure 17. The rotor system fresponse curve at two different values of the rotor spinning speed
(Q = w+0,0 = 0.0, 0.05) when activating both the U-IRC and V-IRC (i.e., 173 = #2174 = 0.08):
(A,B) the system oscillation amplitudes a and b when ¢ = 0.0, and (C,D) the system oscillation
amplitudes a and b when ¢ = 0.05.

A full picture for the stability boundary in f — #7113 = #7214 is visualized as shown in Figure 18
when o = 0.0 and 0.05. It is clear from the figure the increase of the controller gain (17173 = #214),
stabilizes the system motion for a wide range of the rotor eccentricity, where the width of the
stable solution regions along the f axis is increased exponentially as a function of the control gain
11113 = 2174. Comparing Figure 18 with Figure 10, one can deduce that the controlled system has
simple bifurcation behaviors when activating both the U-IRC and V-IRC simultaneously. In addition,
the system can oscillate periodically without losing its stability for a wide range of the excitation
force f.

To validate the accuracy of the obtained stability charts in Figure 18, numerical simulations for
the system temporal equations (i.e., Equations (12)—(15)) are illustrated in Figures 19 and 20 according
to the points p; and p, that illustrated in Figure 18A, respectively. The temporal oscillation, frequency
spectrum, and the corresponding Poincaré-map of the controlled rotor system are illustrated in
Figure 19 according to the points p; (f, #1173 = #2172) = (0.15, 0.1) that is marked in Figure 18A
within the unstable solution region. It is clear from Figure 19 that the rotor system exhibits chaotic
oscillations (i.e., aperiodic motion) as predicted in the stability chart given in Figure 18A. In addition,
Figure 20 simulates the temporal oscillations, frequency spectrum, and the corresponding Poincaré-
map of the rotor system according to the points p,(f, #7143 = 112174) = (0.15, 0.25) illustrated in
Figure 18A within the stable solution region. By examining Figure 20, one can conclude that the rotor
system performs a stable periodic motion that agrees with the stability chart given in Figure 18A with
excellent accuracy.
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Figure 18. Stability chart of the rotor system in f — #7113 = 12174 plane at two different values of ¢:
(A) 0 = 0.0, and (B) ¢ = 0.05.
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Figure 19. The rotor system steady-state time-response according to the point p; shown in Figure 18A

(i.e., when f = 0.15, 1573 = 112 4 = 0.1): (A,B) temporal oscillation in X and Y directions, respec-

tively, (C,D) temporal oscillations of the U-IRC and V-IRC, respectively, (E,F) frequency spectrum,

(G,H) the corresponding Poincaré map.
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Figure 20. The rotor system steady-state time-response according to the point p; shown in Figure 18A
(i.e., when f = 0.15, 71173 = 172 174 = 0.25): (A,B) temporal oscillation in X and Y directions, respec-
tively, (C,D) temporal oscillations of the U-IRC and V-IRC, respectively, (E,F) frequency spectrum,
(G,H) the corresponding Poincaré map.

Finally, the controlled system stability chart in o — #1773 = 172174 has been established as shown
in Figure 21 at three different magnitudes of the eccentricity f (i.e., f = 0.05, 0.1, and 0.15). It is
clear from the figure that the unstable solutions area lies close to the primary resonance (i.e., close
to ¢ = 0.0). In addition. The figure shows that the increase of the excitation force f, increases the
unstable solution region. However, one can avoid the instability of the rotor system even at the large
eccentricity (i.e., f = 0.15) if the control gains are adjusted so that #1173 = #2174 > 0.15 regardless
of the rotor spinning speed () = w + ¢ (See Figure 21C). Numerical validations for the accuracy of
the obtained stability charts that are given in Figure 21 have been illustrated in Figures 22 and 23.
The nonlinear vibrations of the rotor system according to the point p; (¢, 1173 = #2172) = p1(0, 0.1)
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that lies within the unstable solution region in Figure 21B, have been simulated numerically as
shown in Figure 22 via solving Equations (14)—(17) using ODE45. By exploring Figure 22, we can
find that the rotor system performs an unstable quasiperiodic motion that agrees with the point
p;- On the other hand, the temporal oscillations of the considered system according to the point
Po(0, Mz = n21s) = p,(0, 0.15) that lies within the stable solution region in Figure 21B, have
been illustrated in Figure 23, where the system has responded with periodic oscillation as expected

from Figure 21B.
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s
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i
o
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0
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Figure 21. Stability chart of the rotor system in o — #1773 = 7274 plane at three different values of f:
(A) f =0.05,(B) f =0.1,and (C) f = 0.15.
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Figure 22. The rotor system steady-state time-response according to the point p; shown in Figure 21B
(i.e., when o = 0.0, 11773 = 12 774 = 0.1): (A,B) temporal oscillation in X and Y directions, respec-
tively, (C,D) temporal oscillations of the U-IRC and V-IRC, respectively, (E,F) frequency spectrum,
(G,H) the corresponding Poincaré map.
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Figure 23. The rotor system steady-state time-response according to the point p; shown in Figure 21B
(i.e., when o = 0.0, #1173 = 12 4 = 0.15): (A,B) temporal oscillation in X and Y directions, respec-
tively, (C,D) temporal oscillations of the U-IRC and V-IRC, respectively, (E,F) frequency spectrum,
(G,H) the corresponding Poincaré map.

5. Case Study

Within this section, a practical case study for the 8-pole rotor system with the proposed con-
trol method (i.e., PD+IRC controller) has been investigated to show how to simulate the dynam-
ics of a physical system based on the obtained dimensionless results given in Section 4. Con-
sider the dimensionless system parameters that are used to obtain Figure 23 and corresponding
physical parameters of the eight-pole system given in Table 1 [41,42]. The actual temporal os-
cillations (i.e., x(t) = spx*(t) & y(t) = spy*(t)) and the corresponding actual control currents
(ix(t) = kax(t) +kox(t) +kau(t) & iy(t) = kyy(t) + kay(t) + k4ov(t) of the rotor system are simulated
in Figure 24, where the actual control current can be obtained based on Equation (6) as follows:
ix(t) = kysox* (t) + kpsgwnx” (t) + kasou* (t) and iy(t) = kisoy*(t) + kasowny” (t) + kgsqu(t).
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Table 1. Actual system parameters and the corresponding dimensionless parameters.

Dimensionless System
Parameters for Figure 23

The Corresponding Physical System Parameters That Used to Obtain Figure 24
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Figure 24. The actual lateral oscillations of 8-pole rotor system in X and Y directions in meter, and
the corresponding control currents in ampers according to the physical system parameters given in
Table 1: (A,B) the instantaneous oscillations of the rotor system in X and Y directions, and (C,D) the
instantaneous control currents of the controllers.
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Figure 24 shows the actual temporal oscillations of the 8-pole rotor system in meter at X and
Y directions, and the corresponding actual control currents in ampere in each electromagnetic pole
according to the system physical parameters given in Table 1. It is clear from Figure 24A,B that the
rotor lateral oscillations are always smaller than the air gap along the time axis, which confirm the
rotational motions of the shaft without any contact with the legs of the electromagnetic poles. Also,
Figure 24C,D show that the maximum instantaneous control currents in each pole do not exceed two
amperes, which confirm the feasibility of the applied control algorithm in mitigating the rotor lateral
oscillation with small control currents.

6. Conclusions

The nonlinear vibrations control of the 8-pole rotor system has been tackled within this article.
The integral resonant controller (IRC) has been proposed to control the system lateral vibrations for the
first time. The U-IRC and V-IRC controllers have been coupled to the horizontal and vertical oscillation
modes of the considered system, respectively. The whole system equations of motion are derived
as two second-order nonlinear differential equations (i.e., rotor system) coupled to two first-order
linear differential equations (i.e., IRC controllers). Then, the asymptotic analysis is applied to obtain
an approximate solution for the derived nonlinear mathematical model. The different bifurcation
diagrams have been plotted and the sensitivity analysis for all controller parameters has been explored.
In addition, many stability charts in the two-dimensional space have been established to investigate
the stability margins of the different control parameters. Moreover, numerical validations for the
different response curves have been performed. According to the above discussions, the following
important remarks can be summarized:

1. The coupling of the U-IRC to the horizontal oscillation mode of the rotor system has modified

the system linear damping coefficient y to i = p + %

2. The coupling of the V-IRC to the vertical oscillation mode of the rotor system has modified the

system linear damping coefficient p to py = p + 2(122#2)
2

3. According to the concluded points (1) and (2), the vibration suppression efficiency of the IRC
relies on adjusting the linear damping coefficient for the targeted system via designing the
optimum values of the control gains (171, 72), feedback gains (13, 74), and internal feedback
gains (A1, Aj).

4. The coupling of an IRC to a nonlinear oscillatory system is resulting in modifying its linear
damping coefficient, where the equivalent linear damping of the controlled system is propor-
tional to the product of the control and feedback gains of the IRC, and inversely proportional to
the square of internal loop feedback gain.

5. The optimum vibration suppression efficiency of the IRC controller could be achieved via
designing its control and feedback gains so that their product is at the maximum possible value,
as well as its internal feedback gain should be at the smallest possible value.

6.  The proper selection of the IRC control parameters can eliminate the catastrophic static bifurca-
tion behaviors of the rotor system and force it to oscillate with negligible vibration amplitudes.
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Abbreviations
X, X, X Displacement, velocity, and acceleration of the rotor system in X direction
vy Displacement, velocity, and acceleration of the rotor system in Y direction
u,u Displacement and velocity of the integral resonant controller that connected to
the horizontal oscillation mode of the rotor system
v,0 Displacement and velocity of the integral resonant controller that connected to
the vertical oscillation mode of the rotor system
U Linear damping coefficient of the rotor system
w Linear natural frequency of the rotor system
(@) Spinning speed of the rotor system
f Rotor system eccentricity
1,12 Control gains of the integral resonant controllers
13,14 Feedback gains of the integral resonant controllers
A, A2 Internal loop feedback gains of the integral resonant controllers
p Proportional control gain
d Derivative control gain
aj,j=1,...,7  Cubic nonlinearity coupling coefficients due to the proportional-derivative controller
Bj,j=1,...,7 Cubic nonlinearity coupling coefficients due to the integral resonant controller in
X direction
¥j,j=1,...,7 Cubic nonlinearity coupling coefficients due to the integral resonant controller in
Y direction
o The main bifurcation parameter, where o = Q — w
a,b Steady-state oscillation amplitudes of the rotor system in X and Y directions
01, P2 Steady-state phase angles of the rotor system in X and Y directions
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Appendix B

i = 4d cos(a), w
a1 = 16cos*(a) 4 16 sin* (a) 4 8p? cos?(a) — 24p cos® («),

ay = 8p? sin?(a) + 96 cos? (w) sin?(a) — 72p cos(«) sin®(a),

a3 = 16pd cos?(a) — 24d cos® (&), 0y
ay = —24d cos(a) sin?(«), a5
ag = 8d? cos?(«), x7
B1 = —2pi cos(a) + 3171 cos?(a), B2
Bs = st Ba
Bs = g3 tan (), Be
B7 = 3ip1 sin’ (), M
Y2 = —2d1 cos(a),
Y4 = —2py tan(a) sin(&) 4 67y sin? (), s
Yo = —2dip; tan(a) sin(a), ¥7
Appendix C
B ) i (o - )

3=

= /8pcos(a) —8,

= —24d cos(«) sin’(a),

= 8d%sin®(a),

= 16pd sin?(«) — 48d cos(a) sin? (),
= —2dn cos(a),

= —2pi tan(a) sin(a) + 612 sin? (),
= —2di, tan(a) sin(«),

= —2p1; cos(a) + 3175 cos?(a),

2
M2

|
ol

72 tan (a)

|
o0

= 315 sin®(a),

21 Balls Bearz
a5+ g | 204 — 55 — B8R
0ot 8( 47 A T Ml

2 2B5y3 A
— 27 V02 4 L ( oy — B 4 Psiiha

+ Bensts ) b2 cos(2¢20 — 2¢10)

A%+w2 A+a? (/\%erz)2 A +w?
200202
1( ap Banary ﬁS’i4(A2*w) Bellaw A
[ R - b sin(2¢20 — 2
sl & 5 + (A +w?) w3 +) B+a? |0 (2920 — 2¢10),
2

G _ 1o Bals Betarr 2B7113 1 Baia 2BsniA2

= 1{on, — — — agby + 7 | —og +ay —
b, 4< 4 Btw?  AMtw?  A3+e? oo + g 4+ a7 A +w? + (A§+w2)2

2(22_ .2
+'36’74)‘2>u0bo cos(2¢20 — 2¢10) — § (% —asw + Py Py )

M+w?

Aﬁ%ﬁﬁ; >ﬂobo sin(2¢20 — 2¢10),

(A3+e?) T WA +a?)

9G; 1 Balla 2Bsira | Beraly 2 o 1(%
=L =2 —ag+ay— agbg sin(2 -2 (32 —asw
g 4( a7 =t W2 T Xra? |20%S (2¢20 = 2¢10) + 3 (G —as
2012 2
Bailary Bsnz(A\—w?) _ Bemaw 2 f 2
- agbs cos(2¢0 — 2 5—(w + o) cos
RTpvEmEy preIvET i g LI (2920 = 210) + 5 (w + )" cos(@10),
G _ _1(_ _ _Bais 2B513) Belara 2 o _ _1(m
o = 4< ay +az Ar? + 22y + prawy: agb sin(2¢2 — 2¢1) — 1 (2 — asw
A sz (M3—w?) _ Bemaw 2
byt - agb? cos(29, —2
w(AZ+a?) w()\%+w2)2 A2+a? 0% (292 1),
G _1(p Y413 YoM 271 1 Y4113 29513M
= ;[ 2a4 — — - aobo + 7 | —ag +ay — FAB, . =B
day 4 ( 4 /\%erz /\%erz /\§+w2 0% + g 4 a7 A%erz (A%erZ)z
A 1( a Yalj3M 1515V —w?)
+ 2321 ) aobg cos (2920 — 210) + 3 [ 2 — asw +
A%erz 070 ( $20 (Pl(]) 4\ w 5 w(/\%+w2) w(/\%erZ)z
Yell3w .
+ A%éf(ﬂ)aobo sin(2¢20 — 2¢10),
G _ 1 3 2y 2aM3de N2 1 a3 YelsM
=— 2| as— — b+ 3| 204 — F213 — SE-1
by <P[ + 2(A3+w?) T\ AMtw? (A%+w2)2 ot 3 4 ABtw?  Atw?
_2ym N2 1 _omls _ 205MM L yeiM ) 2 _
i ) +gl —watar Brod T (rar) + Vra? )% cos(2¢20 — 2¢10)

413M 1513 (M —w?) Yel3W

1[ a2
+3| &5 —asw+
8\ w 5 w(A3+w?) w(/\%erZ)Z Mtw?

ll% Sin(Z(pzo — 2?10),



Processes 2022, 10, 271

33 of 35

References

G, 1 143 2513, v ) 27 o 1/
52 =4|- — - a 2¢0 — 2 — 12—
g1 4( R A v RERvET: t a2 5o sin (220 — 2¢10) — 5 (2 — asw
A BN -?) | e \ 2
R (A azbo cos(2¢y0 — 2
w(/\%erz) w(/\%erZ)Z A%erz 070 ( P20 ‘PlO)
G, _ 1 Y413 2513M L v | 25 o 1
Sor = ——( 0y + oy — %ra? T arar)? + B adbo sin(2g20 — 2¢10) + 1 (2 — asw
YalzM BB -w?) | yepw _ f
+w(/\%+w2) + (a2 + pay )a2by cos(2920 — 2¢10) + 4 (w + o) sin(g2),
2032 2
%5 _ Loy aget 4 2200 BB ) o S (5107 cos(gu)
911 Aw A2 4+ w? (A2 + wZ)z 203w !
aG A Ww? | 2Bz 1 A
T = b (o 2us B — By 2 Y (02— s+ BT
Bsma(A\3—w?) | Benaw? _ 1(_ _ Bama _ 2PsuiA
T eyt bz )bocos(2e = 2g10) + i —aa a7 = 5ty - GG
o .
+ fgfwg ) bo sin(2¢20 — 2¢10),
0G 1 () ge? 4 Pamd +ﬁs’li(A%*wz) +/56’74W b2 sin(2¢20 — 2¢10)
Erri il 5 tw? (/\%erz)z A+ $20 P10
_1(_ _ Bama _ 2Bsmida | Bemady \p2 _
4< ay +az M+ T B rat) + Py b§ cos(2¢20 — 2¢10)
2.
—Zaj(;w (w + )" sin(¢10),
G _ _ 1 _ ﬂ4'l4/\2 Bsii(A3—w?) | Bemaw® \12 s _
Yo T e (zxz asw? + ti? + W2 + P b sin(2¢20 — 2¢10)
1(_ _ B 2Bsuiho /36’74/\2 2 Yo — 2
+4< a4+ ay pravE: (A%+w2)2 -+ pras bO COS( @20 (PIO)
le 1 A W? | 29pmA ; A
201202 2
s13(AM—w) | yeipw _ 1 Y 2%']37‘1
(ran? Atz )0000s(2920 = 2010) = 3 —ea a7+ iy — Tt
A .
- 7}%13‘0; a0 sin(2¢20 — 2¢10),
2052 2
9Gy _ 1 30y + agw?® + 2nmda | 333 — @) by — (w+a)2 sin(¢20)
2 2 2 2 ’
b, 4w A+ w (A3 + w?) 2bjw
0Gy L o — asc? + 74'13/\1 + 1513 (A —w?) + Yel3w” a2 sin(2 — 2¢10)
o Aw \ 42 5 Mtw? ()\%erz)z A2 )70 $20 — =¢10
2
1(_ Yans  _ 215M3M  veiizh 2 _
+3z ( oy 4 oy + A%erz (/\%+w2>z /\%+w2 ag COS(ZQDZO 2([)10),
G,  _ 1 _ ’74’13A1 BBM-w?) | e’ \ 2 _
Yor T i <0¢2 asw? + Yt + ) + P ag sin(2¢20 — 2¢10)
2
1 ez 205M3M  veiizM 2 _
7 < ag + a7 + B+ T arar) | Mtw? ag cos(2¢20 — 2¢10)

+ﬁ(w + ) cos(9a).-

1.  Ji, J.C; Yu, L; Leung, A.Y.T. Bifurcation behavior of a rotor supported by active magnetic bearings. J. Sound Vib. 2000, 235,

133-151. [CrossRef]

2. Saeed, N.A.; Mahrous, E.; Awrejcewicz, J. Nonlinear dynamics of the six-pole rotor-AMBs under two different control configura-
tions. Nonlinear Dyn. 2020, 101, 2299-2323. [CrossRef]

3. Saeed, N.A.; Awwad, E.M.; El-Meligy, M.A; Nasr, E.S.A. Radial Versus Cartesian Control Strategies to Stabilize the Nonlinear
Whirling Motion of the Six-Pole Rotor-AMBs. IEEE Access 2020, 8, 138859-138883. [CrossRef]

4. i, ].C,; Hansen, C.H. Non-linear oscillations of a rotor in active magnetic bearings. J. Sound Vib. 2001, 240, 599-612. [CrossRef]

5. Ji,].C; Leung, A.Y.T. Non-linear oscillations of a rotor-magnetic bearing system under superharmonic resonance conditions. Int.
J. Nonlinear Mech. 2003, 38, 829-835. [CrossRef]

6. Yang, X.D.; An, H.Z,; Qian, Y.J.; Zhang, W.; Yao, M.H. Elliptic Motions and Control of Rotors Suspending in Active Magnetic
Bearings. J. Comput. Nonlinear Dyn. 2016, 11, 054503. [CrossRef]

7. El-Shourbagy, S.M.; Saeed, N.A.; Kamel, M.; Raslan, K.R.; Abouel Nasr, E.; Awrejcewicz, ]. On the Performance of a Nonlinear
Position-Velocity Controller to Stabilize Rotor-Active Magnetic-Bearings System. Symmetry 2021, 13, 2069. [CrossRef]


http://doi.org/10.1006/jsvi.2000.2916
http://doi.org/10.1007/s11071-020-05911-0
http://doi.org/10.1109/ACCESS.2020.3012447
http://doi.org/10.1006/jsvi.2000.3257
http://doi.org/10.1016/S0020-7462(01)00136-6
http://doi.org/10.1115/1.4033659
http://doi.org/10.3390/sym13112069

Processes 2022, 10, 271 34 of 35

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Saeed, N.A.; Mahrous, E.; Abouel Nasr, E.; Awrejcewicz, J. Nonlinear dynamics and motion bifurcations of the rotor active
magnetic bearings system with a new control scheme and rub-impact force. Symmetry 2021, 13, 1502. [CrossRef]

Zhang, W.; Zhan, X.P. Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and
time-varying stiffness. Nonlinear Dyn. 2005, 41, 331-359. [CrossRef]

Zhang, W.; Yao, M.H.; Zhan, X.P. Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying
stiffness. Chaos Solitons Fractals 2006, 27, 175-186. [CrossRef]

Zhang, W.; Zu, ].W.; Wang, EX. Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying
stiffness. Chaos Solitons Fractals 2008, 35, 586—608. [CrossRef]

Zhang, W.; Zu, ].W. Transient and steady nonlinear responses for a rotor-active magnetic bearings system with time-varying
stiffness. Chaos Solitons Fractals 2008, 38, 1152-1167. [CrossRef]

Li, J.; Tian, Y.; Zhang, W.; Miao, S.F. Bifurcation of multiple limit cycles for a rotor-active magnetic bearings system with
time-varying stiffness. Int. . Bifurc. Chaos 2008, 18, 755-778. [CrossRef]

Li, J.; Tian, Y.; Zhang, W. Investigation of relation between singular points and number of limit cycles for a rotor—AMBs system.
Chaos Solitons Fractals 2009, 39, 1627-1640. [CrossRef]

El-Shourbagy, S.M.; Saeed, N.A.; Kamel, M.; Raslan, K.R.; Aboudaif, M.K.; Awrejcewicz, J. Control Performance, Stability
Conditions, and Bifurcation Analysis of the Twelve-Pole Active Magnetic Bearings System. Appl. Sci. 2021, 11, 10839. [CrossRef]
Saeed, N.A,; Kandil, A. Two different control strategies for 16-pole rotor active magnetic bearings system with constant stiffness
coefficients. Appl. Math. Model. 2021, 92, 1-22. [CrossRef]

Wu, R.; Zhang, W.; Yao, M.H. Nonlinear vibration of a rotor-active magnetic bearing system with 16-pole legs. In Proceedings
of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
Cleveland, OH, USA, 6-9 August 2017. [CrossRef]

Wu, R;; Zhang, W.; Yao, M.H. Analysis of nonlinear dynamics of a rotor-active magnetic bearing system with 16-pole legs. In
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, Cleveland, OH, USA, 6-9 August 2017. [CrossRef]

Wu, R.Q.; Zhang, W.; Yao, M.H. Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole
legs and time varying stiffness. Mech. Syst. Signal Process. 2018, 100, 113-134. [CrossRef]

Zhang, W.; Wu, R.Q,; Siriguleng, B. Nonlinear Vibrations of a Rotor-Active Magnetic Bearing System with 16-Pole Legs and Two
Degrees of Freedom. Shock. Vib. 2020, 2020, 5282904. [CrossRef]

Ma, W.S.; Zhang, W.; Zhang, Y.F. Stability and multi-pulse jumping chaotic vibrations of a rotor-active magnetic bearing system
with 16-pole legs under mechanical-electric-electromagnetic excitations. Eur. J. Mech. A/Solids 2021, 85, 104120. [CrossRef]
Ishida, Y.; Inoue, T. Vibration suppression of nonlinear rotor systems using a dynamic damper. . Vib. Control. 2007, 13, 1127-1143.
[CrossRef]

Saeed, N.A. On the steady-state forward and backward whirling motion of asymmetric nonlinear rotor system. Eur. ]. Mech.
A/Solids 2019, 80, 103878. [CrossRef]

Saeed, N.A. On vibration behavior and motion bifurcation of a nonlinear asymmetric rotating shaft. Arch. Appl. Mech. 2019, 89,
1899-1921. [CrossRef]

Saeed, N.A.; Eissa, M. Bifurcation analysis of a transversely cracked nonlinear Jeffcott rotor system at different resonance cases.
Int. J. Acoust. Vib. 2019, 24, 284-302. [CrossRef]

Saeed, N.A.; Awwad, E.M.; El-Meligy, M.A_; Nasr, E.S.A. Sensitivity analysis and vibration control of asymmetric nonlinear
rotating shaft system utilizing 4-pole AMBs as an actuator. Eur. |. Mech. A/Solids 2021, 86, 104145. [CrossRef]

Saeed, N.A.; El-Bendary, S.I; Sayed, M.; Mohamed, M.S.; Elagan, S.K. On the oscillatory behaviours and rub-impact forces of a
horizontally supported asymmetric rotor system under position-velocity feedback controller. Lat. Am. ]. solids struct. 2021, 18, €349.
[CrossRef]

Diaz, LM.; Pereira, E.; Reynolds, P. Integral resonant control scheme for cancelling human-induced vibrations in light-weight
pedestrian structures. Struct. Control Health Monit. 2012, 19, 55-69. [CrossRef]

Al-Mamun, A.; Keikha, E.; Bhatia, C.S.; Lee, T.H. Integral resonant control for suppression of resonance in piezoelectric micro-
actuator used in precision servomechanism. Mechatronics 2013, 23, 1-9. [CrossRef]

Omidi, E.; Mahmoodi, S.N. Nonlinear integral resonant controller for vibration reduction in nonlinear systems. Acta Mech. Sin.
2016, 32, 925-934. [CrossRef]

MacLean, ].D.J.; Sumeet, S.A. A modified linear integral resonant controller for suppressing jump phenomenon and hysteresis in
micro-cantilever beam structures. . Sound Vib. 2020, 480, 115365. [CrossRef]

Omidi, E.; Mahmoodi, S.N. Sensitivity analysis of the Nonlinear Integral Positive Position Feedback and Integral Resonant
controllers on vibration suppression of nonlinear oscillatory systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 149-166.
[CrossRef]

Omidi, E.; Mahmoodi, S.N. Nonlinear vibration suppression of flexible structures using nonlinear modified positive position
feedback approach. Nonlinear Dyn. 2015, 79, 835-849. [CrossRef]

Saeed, N.A.; Moatimid, G.M.; Elsabaa, EM.; Ellabban, Y.Y.; Elagan, S.K.; Mohamed, M.S. Time-Delayed Nonlinear Integral
Resonant Controller to Eliminate the Nonlinear Oscillations of a Parametrically Excited System. IEEE Access 2021, 9, 74836-74854.
[CrossRef]


http://doi.org/10.3390/sym13081502
http://doi.org/10.1007/s11071-005-7959-2
http://doi.org/10.1016/j.chaos.2005.04.003
http://doi.org/10.1016/j.chaos.2006.05.095
http://doi.org/10.1016/j.chaos.2007.02.002
http://doi.org/10.1142/S021812740802063X
http://doi.org/10.1016/j.chaos.2007.06.044
http://doi.org/10.3390/app112210839
http://doi.org/10.1016/j.apm.2020.11.005
http://doi.org/10.1115/DETC2017-67103
http://doi.org/10.1115/DETC2017-67105
http://doi.org/10.1016/j.ymssp.2017.07.033
http://doi.org/10.1155/2020/5282904
http://doi.org/10.1016/j.euromechsol.2020.104120
http://doi.org/10.1177/1077546307074577
http://doi.org/10.1016/j.euromechsol.2019.103878
http://doi.org/10.1007/s00419-019-01551-y
http://doi.org/10.20855/ijav.2019.24.21309
http://doi.org/10.1016/j.euromechsol.2020.104145
http://doi.org/10.1590/1679-78256410
http://doi.org/10.1002/stc.423
http://doi.org/10.1016/j.mechatronics.2012.10.001
http://doi.org/10.1007/s10409-016-0577-z
http://doi.org/10.1016/j.jsv.2020.115365
http://doi.org/10.1016/j.cnsns.2014.10.011
http://doi.org/10.1007/s11071-014-1706-5
http://doi.org/10.1109/ACCESS.2021.3081397

Processes 2022, 10, 271 35 of 35

35.

36.

37.
38.

39.
40.
41.

42.

Ishida, Y.; Yamamoto, T. Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications, 2nd ed.; Wiley-VCH Verlag
GmbH & Co. KGaA: New York, NY, USA, 2012. [CrossRef]

Schweitzer, G.; Maslen, E.H. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery; Springer: Berlin/Heidelberg,
Germany, 2009. [CrossRef]

Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; Wiley: New York, NY, USA, 1995. [CrossRef]

Nayfeh, A.H. Resolving Controversies in the Application of the Method of Multiple Scales and the Generalized Method of
Averaging. Nonlinear Dyn. 2005, 40, 61-102. [CrossRef]

Slotine, J.-J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991.

Yang, W.Y.; Cao, W.; Chung, T.; Morris, ]. Applied Numerical Methods Using Matlab; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005.
Saeed, N.A.; Awwad, E.M.; EL-meligy, M.A.; Abouel Nasr, E. Analysis of the rub-impact forces between a controlled nonlinear
rotating shaft system and the electromagnet pole legs. Appl. Math. Model. 2021, 93, 792-810. [CrossRef]

Saeed, N.A.; Kamel, M. Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor
system. Nonlinear Dyn. 2017, 90, 457—478. [CrossRef]


http://doi.org/10.1002/9783527651894
http://doi.org/10.1007/978-3-642-00497-1
http://doi.org/10.1002/9783527617586
http://doi.org/10.1007/s11071-005-3937-y
http://doi.org/10.1016/j.apm.2021.01.008
http://doi.org/10.1007/s11071-017-3675-y

	Introduction 
	Mathematical Modelling 
	Analytical Investigations 
	Bifurcation Analysis and Control Performance 
	The Rotor System Dynamics without IRC 
	The Rotor System Dynamics with IRC 

	Case Study 
	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

