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Abstract: Feature selection is an effective method to reduce the number of data features, which
boosts classification performance in machine learning. This paper uses the Tsallis-entropy-based
feature selection to detect the significant feature. Support Vector Machine (SVM) is adopted as the
classifier for classification purposes in this paper. We proposed an enhanced Teaching-Learning-Based
Optimization (ETLBO) to optimize the SVM and Tsallis entropy parameters to improve classification
accuracy. The adaptive weight strategy and Kent chaotic map are used to enhance the optimal ability
of the traditional TLBO. The proposed method aims to avoid the main weaknesses of the original
TLBO, which is trapped in local optimal and unbalance between the search mechanisms. Experiments
based on 16 classical datasets are selected to test the performance of the ETLBO, and the results are
compared with other well-established optimization algorithms. The obtained results illustrate that
the proposed method has better performance in classification accuracy.

Keywords: feature selection; optimization algorithm; Tsallis-entropy; teaching and learning; adaptive
weight strategy; Kent chaotic map

1. Introduction

Machine learning has been widely used in many practical applications such as data
mining, text processing, pattern recognition, and medical image analysis, which often rely
on large data sets [1,2]. From utilizing label information, feature selection algorithms are
mainly categorized as filters or wrapper approaches [3,4]. The wrapper-based methods
are commonly used to finish the classification task [5]. The main step includes classifiers,
evaluation criteria of features, and finding the optimal features [6].

The SVM algorithm is one of the most popular supervised models and is regarded as
one of the most robust methods in the machine learning field [7,8]. SVM has some robust
characteristics compared to other methods, such as excellent generalization performance,
which is able to generate high-quality decision boundaries based on a small subset of
training data points [9]. The largest problems encountered in setting up the SVM model
are how to select the kernel function and its parameter values. Inappropriate parameter
settings will lead to poor classification results [10].

Swarm intelligence algorithms can solve complex engineering problems, but different
optimization algorithms solve different engineering problems with different effects [11,12].
The optimization algorithms can reduce the time and improve the segmentation accuracy.
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There many optimization algorithms are proposed, such as Genetic Algorithm (GA) [13],
Particle Swarm Optimization (PSO) [14], Differential Evolution (DE) [15], Ant Colony
Optimization (ACO) [16], Artificial Bee Colony (ABC) algorithm [17], Grey Wolf Opti-
mizer (GWO) [18], Ant Lion Optimizer (ALO) [19], Moth-flame Optimization (MFO) [20],
Whale Optimization Algorithm (WOA) [21], Invasive weed optimization algorithm [22],
Flower Pollination Algorithm [23]. Although all algorithms have advantages, no-free lunch
(NFL) [24] has proved that no algorithm can solve all optimization problems.

There is no perfect optimization algorithm, and the optimization algorithm should
be improved to solve engineering problems better. Many scholars study the strategies for
improving optimization algorithm. The strategies commonly used by scholars are as follows
adaptive weight strategy and chaotic map. Zhang Y. proposed an improved particle swarm
optimization algorithm with an adaptive learning strategy [25]. The adaptive learning
strategy increased the population diversity of PSO. Dong Z. proposed a self-adaptive weight
vector adjustment strategy based on a chain segmentation strategy [26]. The self-adaptive
solved the shape of the true Pareto front (PF) of the multi-objective problem. Li E. proposed
a multi-objective decomposition algorithm based on adaptive weight vector and matching
strategy [27]. The adaptive weight vector solved the degradation of the performance of the
solution set. The chaotic map is also a general nonlinear phenomenon, and its behavior is
complex and semi-random. It is mathematically defined as the randomness generated by
a simple deterministic system [28]. Xu C. proposed an improved boundary bird swarm
algorithm [29]. The algorithm combined the good global convergence and robustness of
the birds’ swarm algorithm. Tran, N. T. presented a method for fatigue life prediction of
2-DOF compliant mechanism which combined the differential evolution algorithm and the
adaptive neuro-fuzzy inference system [30]. The experiment result shows that the accuracy
of the proposed method is high.

Teaching-Learning-Based Optimization (TLBO) is proposed by R. V. Rao, which solves
the global problem of continuous nonlinear functions [31]. The TLBO approach works on
the philosophy of teaching and learning. Many scholars study the strategies to improve
the optimization ability for a different problem. Gunji A. B. proposed improved TLBO for
solving assembly sequence problems [32]. Zhang H. proposed a hybridizing TLBO [33].
The approach can enable better tracking accuracy and efficiency. Ho, N.L. presented
a hybrid Taguchi-teaching learning-based optimization algorithm (HTLBO) [34]. The
proposed method had good agreement with the predicted results. The strategies can
improve the optimal ability of TLBO. In this paper, for solving the problem of learning
efficiency and initial parameter setting, we use several strategies to enhance the optimal
ability of the TLBO.

The main contribution of our work includes:

(1) The enhanced Teaching-Learning-Based Optimization (ETLBO) is proposed to im-
prove optimal ability. The adaptive weight and Kent chaotic map are used to enhance
the TLBO. These two strategies can improve the searching ability of the students and
teachers in TLBO.

(2) We adopt the Tsaliis entropy-based feature selection method for finding the crucial
feature. The selected feature x and the parameter α of Tsallis entropy are optimized
by ETLBO.

(3) The parameter c of the SVM classifier is optimized by ETLBO for obtaining high
classification accuracy. The core idea of this method is to automatically determine the
parameter α of Tsallis entropy and parameter c of the SVM under different data.

The proposed method is tested on several feature selection and classification problems
in terms of several comment evaluation measures. The results are compared with other
well-established optimization methods. The obtained results showed that the proposed
ETLBO got better and promising results in almost all the tested problems compared to
other methods.

The rest of the paper is described as follows: Section 2 introduces Tsallis’s entropy-
based feature selection formula. Section 3, Enhance Teaching-learning-based optimization,
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and the ETLBO optimizes the feature selection design is introduced. In Sections 4 and 5,
the feature selection results and the algorithm analysis are given. Finally, the conclusions
are summarized in Section 6.

2. Related work
2.1. Tsallis Entropy-Based Feature Selection (TEFS)

TEFS estimates the importance of a feature by calculating its information gain (IG)
with respect to the target feature. The IG is calculated by subtracting the Tsallis entropy of
features concerning target from the total entropy of the target feature. The Tsallis entropy
and IG are defined as follow:

H(m) =
1

1− α
log

n

∑
i=1

pα
i (1)

IG(m|n ) = H(m)− H(m|n ) (2)

where, H(m) represents the Tsallis entropy of a feature m, IG(m|n ) represents the Tsallis
entropy of a target in terms of a feature n, m is the number of target feature, n is the total
number of the feature.

IG measures the significance of a feature by calculating how much information a
feature obtains us about the target.

2.2. SVM Classifier

SVM finds the optimal separation of hyperplanes between classes by focusing on
the training cases of the edges of effectively discarded classes. For training samples
F = {(x1, y1), . . . , (xn, yn)} in different dimensional spaces, a classifier can be accurately sum-
marized. The main core of SVM is finding a suitable kernel function k(xi, xj) = φ(xi) · φ(xj),
where φ(xi) is a nonlinear function, and the function is used to transfer the nonlinear space
of the sample input to two hyperplanes. The formula can be written as:

f (x) = w · φ(x) + b (3)

where, w is the weight vector, b is the threshold value, and (·) represents the inner product
operation. The objective of SVM is to determine the w, and b when minimizing the wTw/2,
it can be seen below:

min
1
2
‖w‖+ C

n

∑
i=1

ξi (4)

where, ξi is the slack variable, C is the penalty parameter.
The most commonly used kernel is the Gaussian kernel, used for data conversion in

SVM. The Gaussian kernel is defined as:

K(xi, xj) = exp(−
‖xi − xj‖2

2δ2 ) (5)

where, δ > 0 denotes the width parameter, and δ controls the mapping results.
The strategy of reducing multi-class problems to a set of dichotomies enables support

vector machines to be used more appropriately with fewer computational requirements,
that is, to consider all classes at once and thus to obtain a multi-class support vector machine.
One way to do this is by solving a single optimization problem, similar to the “one for all”
approach on a fundamental basis. There are n decision functions or hyperplanes, and the
problems can convert to one problem as:

min
1
2

n

∑
i=1

wT
i wi + C

m

∑
j=1

∑
i 6=yj

ξ i
jw

T
yj

ϕ(xj) + byj (6)
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where, ξ i
j ≥ 0. The resulting decision function can be represented as:

argmaxi(wT
i ϕ(xi) + bi) (7)

2.3. Fitness Function Design

The main indexes influencing FS are the classification error accuracy and the number
of features. So, how to balance the number of features and the classification is the essential
key for the FS problem. Whereas, f1 is the Normalized Mutual Information (NMI) [13]. The
formula can be seen as follow:

f1(x) = NMI(X, S) =
MI(X; S)

[G(X) + G(S)]/2
(8)

where, X is the set of clusters and S is the set of classes. The MI is the mutual information
between X and S [35]. It can be defined as follow:

MI(X; S) = ∑
k

∑
j

P
(
Xk ∩ Sj

)
log

P(Xk∩Sj)
P(Xk)P(Sj)

= ∑
k

∑
j

|Xk∩Sj|
N log

N|Xk∩Sj|
|Xk ||Sj|

(9)

where, P(Xk), P(Sj), P
(
Xk ∩ Sj

)
is the probability of the Xk, Sj, and Xk ∩ Sj. The G(X)

comes from the maximum likelihood estimation of probability.

G(X) = −∑
k

P(Xk) log P(Xk)

= −∑
k

|Xk |
N log |Xk |

N
(10)

3. Enhance Teaching-Learning-Based Optimization (ETLBO)

In this section, we introduce the proposed method in detail. Firstly, we introduce the
TLBO and the strategies used in the proposed method. And then, the ETLBO is introduced.
Finally, the flowchart of the proposed method is described.

3.1. Teacher Phase

It is the first part of the algorithm where the learner with the highest marks acts as
a teacher, and the teacher’s task is to increase the mean marks of the class. The update
process of i-th learner in teacher phase is formulated as:

Xi,new = Xi + rand× (Xteacher − TF × Xave) (11)

where, Xi is the solution of the i-th learner, Xteacher represents the teacher’s solution,
Xave means the average of all learners, rand is a random number in (0,1), and TF is
the teaching factor that decides the value of mean to be changed. The value can be
either 1 or 2, which is again a heuristic step and decided randomly with equal probability
TF = round[1 + rand(0, 1){2− 1}].

In addition, the new solution Xi,new is accepted only if it is better than the previous
solution, it can be formulated as:

Xi =

{
Xi,new f (Xi,new) > f (Xi)
Xi otherwise

(12)

where, f means the fitness function.

3.2. Learner Phase

The second part of the algorithm is where the learner updates its knowledge through
interaction with other learners. In each iteration, two learners interact with Xm and Xn, in
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which the more innovative learner improves the marks of other learners. In the learner
phase, one learner learns new things if the other learner has more knowledge than himself.
The phenomenon is described as follows:

Xm,new =

{
Xm + rand× (Xm − Xn); f (Xm) > f (Xn)
Xm + rand× (Xn − Xm); f (Xn) > f (Xm)

(13)

The temporary solution is accepted only if it is better than the previous solution; it can
be formulated as:

Xm =

{
Xm,new; f (Xm,new) > f (Xm)
Xm; otherwise

(14)

3.3. Adaptive Weight Strategy

The adaptive weight strategy is easier to jump out of local minima, facilitating global
optimization. While the TLBO solves the problem of the complex optimized function, the
algorithm will easily fall into the local optimum. And a smaller inertia factor is beneficial
for precise local search for the current search domain. We design a new weight strategy t
which can be written as follows:

t = (1− iter
Max_iter

)
1−sin(π iter

Max_iter )

(15)

where, iter is the current number of the iteration; Max_iter is the max number of the iteration.

3.4. Kent Chaotic Map (KCM)

Chaotic mapping is one kind of nonlinear mapping that can generate a random number
sequence. It is sensitive to initial values, which ensures that the encoder can generate an
unrelated encoding sequence. There are many kinds of chaotic maps, such as Logistic map,
Kent map, etc. In this paper, we use the Kent map as the improved strategy. The formula of
the Kent map can be seen as follow:

f (x) =
{ x

a 0 < x ≤ a
1−x
1−a a < x < 1

(16)

where, a is a variable value, x is the initial value of the x(0). In this paper, a = 0.5.

3.5. Proposed Method

There are two phases in the basic TLBO search process to update the individual’s
position. In the teacher phase, we use the Kent chaotic map to improve the original state
of the teacher. The teacher can be endowed with different abilities to teach the different
students. This strategy allows the abilities of different teachers to be demonstrated. In the
learner phase, we design a learning efficiency to improve the students’ learning state. The
adaptive weight strategy can improve itself with the iteration increases. The students will
learn more knowledge at the beginning phase of the iteration. The students can obtain
enough knowledge at the end of the iteration, and the adaptive weight gets small. The
students can learn the different knowledge at the different phases. The formula can be
represented as follow:

Xm,new =

{
Xm × t + rand× (Xm − Xn); f (Xm) > f (Xn)
Xm × t + rand× (Xn − Xm); f (Xn) > f (Xm)

(17)

where, t is the adaptive weight.
The proposed classification method can be divided into two parts: feature selection

and the parameter selection of the SVM. At first, the Tsallis entropy of the target is calculated
using Equation (1). Then the entropy of each feature concerning the target is calculated and
subtracted from the target’s entropy using Equation (2). In this process, the selected feature
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x and the parameter α of Tsallis entropy are optimized by the ETLBO. The parameter α can
decide the ability of the Tsallis entropy.

In the second part, we use the ETLBO to optimize parameter c of SVM. The penalty
coefficient c is the compromise between the smoothness of the fitting function and the
classification accuracy. When c is too large, the training accuracy is high, and the general-
ization ability is poor; while c is too small, errors will be increased. Therefore, a reasonable
selection of parameter c can obviously improve the model’s classification accuracy and
generalization ability.

Finally, the selected feature x, the parameter α of Tsallis entropy, and the parameter
c of SVM are optimized by ETLBO. We use the parameter optimized by the ETLBO and
the SVM to classify the test dataset. The SVM classifier output the classification result. The
flowchart of the proposed method is shown in Figure 1.
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4. Experiment and Result

To analysis the effectiveness of the proposed method, five optimization algorithms are
used for comparison, such as PSO [13], WOA [20], HHO [36], TLBO [29], HSOA [37], and
HTLBO [34]. The PSO, WOA, HHO, and TLBO are the original optimization algorithms.
These optimization algorithms have the strong ability to find the optimal value of the
mathematical function. While these algorithms optimize the engineering problems, the
optimization performance is not well. Many schoolers study the strategies to improve
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the optimization algorithms. The HSOA and HTLBO are improved methods. These
two algorithms use the hybrid way to enhance the optimization ability of the SOA and
TLBO. The improved methods have the excellent performance to solve the problems which
mentioned in the reference [34,37]. However, these algorithms may not solve all problems.
Therefore, we select these algorithms as compared algorithms to test the performance of
the proposed method.

The set of parameters is the same as the reference. All the methods are coded and
implemented in MATLAB 2018B. To keep the fairness of the compared algorithms, each al-
gorithm runs 30 times independently. To test the performance of the comparison algorithm,
we set the number of populations to 30 and the maximum iteration to 500. The proposed
ETLBO is training in MATLAB2018B. Experiments are managed on a computer with an
i7-11800H central processing unit.

The results of the proposed method are described in this section. First, the fitness
values obtained by the different optimization algorithms are compared to show the per-
formances of these approaches. Then, we analyze the classification result of the compared
algorithms. Finally, the discussion of the proposed method is described.

4.1. Datasets and Evaluation Index

The benchmark datasets used in the evaluations are introduced. The dataset selects
16 standard datasets from the University of California (UCI) data repository [38]. Table 1
records the primary information of these selected datasets.

Table 1. The datasets used in the experiments.

Datasets Samples Features

1 Iris 150 4
2 Wine 178 13
3 Sonar 208 60
4 Vehicle 846 18
5 Balancescale 625 4
6 CMC 1473 9
7 Cancer 683 9
8 Vowel 871 3
9 Thyroid 215 5
10 WDBC 569 30
11 HeartEW 270 13
12 Lymphography 148 18
13 SonarEW 208 60
14 IonosphereEW 351 34
15 Vote 300 16
16 WaveformEW 5000 40

To evaluate the result of the health index diagnosis, we use the F-score, the accuracy
of the classification and the CPU time as the metric index.

The function of F-score can be defined as follow:

F− score = (1 + β2) · Precision · Recall
β2 · Precision + Recall

(18)

Precision =
Tp

Tp + Fp
(19)

Recall =
Tp

Tp + Fn
(20)

where, Tn is the number of negative classes, Fn is the number of negative classes, Tp is the
number of positive classes, and Fp is the number of positive classes.
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4.2. Experiment 1: Feature Selection

Table 2 shows the fitness value of the compared algorithms. The table shows that when
the number of features is small, the compared algorithms can reduce the number of features.
When the number of features increases, it takes a huge challenge for the optimization
algorithms. The ETLBO obtains better performance than compared algorithms. Table 3
shows the std of the fitness values. It can be known from the given table that the ETLBO
has strong robustness.

Table 2. The fitness values of compared algorithms.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271
Wine 0.1846 0.1657 0.1594 0.1709 0.1585 0.1576 0.1521
Sonar 0.2655 0.2147 0.2356 0.2386 0.2268 0.2258 0.2145

Vehicle 0.2972 0.2575 0.2746 0.2528 0.2432 0.2741 0.2716
Balancescale 0.0619 0.0519 0.0540 0.0613 0.0521 0.0556 0.0516

CMC 0.1937 0.1855 0.1837 0.1777 0.1701 0.1758 0.1621
Cancer 0.0629 0.0710 0.0660 0.0645 0.0634 0.0645 0.0612
Vowel 0.1251 0.1251 0.1251 0.1251 0.1251 0.1251 0.1251

Thyroid 0.0934 0.0853 0.0995 0.0922 0.0925 0.0921 0.0851
WDBC 0.3828 0.3155 0.3678 0.3258 0.3234 0.3221 0.3154

HeartEW 0.2942 0.2993 0.3325 0.2869 0.3077 0.2989 0.2814
Lymphography 0.2208 0.2040 0.2127 0.1965 0.1999 0.1989 0.1951

SonarEW 0.3650 0.4065 0.3892 0.3721 0.3610 0.3589 0.3514
IonosphereEW 0.3390 0.3425 0.3718 0.3339 0.3426 0.3411 0.3226

Vote 0.2274 0.2567 0.2460 0.2542 0.2215 0.2218 0.2158
WaveformEW 0.4348 0.4151 0.3998 0.4436 0.4278 0.4025 0.3915

Table 3. The std of fitness values.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 4.56 × 10−4 4.69 × 10−4 5.40 × 10−4 4.60 × 10−4 4.86 × 10−4 4.88 × 10−4 4.50 × 10−4

Wine 6.84 × 10−4 6.53 × 10−4 6.07 × 10−4 6.22 × 10−4 5.79 × 10−4 5.82 × 10−4 5.60 × 10−4

Sonar 1.27 × 10−4 1.12 × 10−5 1.00 × 10−5 1.08 × 10−5 1.10 × 10−5 1.11 × 10−5 1.00 × 10−5

Vehicle 6.54 × 10−4 6.16 × 10−4 6.37 × 10−4 6.95 × 10−4 6.13 × 10−4 6.15 × 10−4 6.10 × 10−4

Balancescale 4.25 × 10−4 4.49 × 10−4 4.50 × 10−4 4.89 × 10−4 4.17 × 10−4 4.20 × 10−4 4.10 × 10−4

CMC 4.13 × 10−4 3.47 × 10−4 3.96 × 10−4 3.56 × 10−4 3.40 × 10−4 3.41 × 10−4 3.30 × 10−4

Cancer 1.15 × 10−3 1.13 × 10−3 1.03 × 10−3 1.03 × 10−3 1.02 × 10−3 1.02 × 10−4 9.60 × 10−4

Vowel 7.80 × 10−4 7.68 × 10−4 8.44 × 10−4 7.94 × 10−4 7.74 × 10−4 7.78 × 10−4 7.50 × 10−4

Thyroid 6.82 × 10−4 6.79 × 10−4 7.33 × 10−4 7.22 × 10−4 7.26 × 10−4 7.26 × 10−4 6.70 × 10−4

WDBC 1.05 × 10−3 1.01 × 10−3 1.02 × 10−3 1.01 × 10−3 9.74 × 10−4 9.78 × 10−4 9.40 × 10−4

HeartEW 9.67 × 10−4 9.34 × 10−4 9.08 × 10−4 1.00 × 10−3 8.91 × 10−4 8.93 × 10−4 8.80 × 10−4

Lymphography 8.62 × 10−4 7.11 × 10−4 8.00 × 10−4 8.13 × 10−4 7.44 × 10−4 7.47 × 10−4 6.90 × 10−4

SonarEW 4.54 × 10−4 3.81 × 10−4 3.91 × 10−4 4.50 × 10−4 4.00 × 10−4 4.02 × 10−4 3.80 × 10−4

IonosphereEW 9.56 × 10−4 8.85 × 10−4 8.22 × 10−4 7.72 × 10−4 7.82 × 10−4 7.88 × 10−4 7.40 × 10−4

Vote 8.81 × 10−4 9.30 × 10−4 9.87 × 10−4 9.64 × 10−4 9.23 × 10−4 9.25 × 10−1 8.50 × 10−4

WaveformEW 4.34 × 10−4 4.51 × 10−4 4.28 × 10−4 4.34 × 10−4 3.92 × 10−4 3.93 × 10−4 3.90 × 10−4

Table 4 shows the number of the selected attributes. The compared algorithms can
reduce the number of features. The attributes are little, and the compared algorithms obtain
the same result. The ETLBO gets the least attributes among the compared algorithms
when the attributes are large. The total attributes of the dataset, the ETLBO also obtain the
least attributes than other algorithms. It means that the ETLBO can reduce the number
of features. However, reducing the number of features does not mean the classification
accuracy is high.
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Table 4. The average number of selected attributes.

Attributes PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 4 3 3 3 3 3 3 3
Wine 13 6 6 5 10 6 6 5
Sonar 60 31 32 32 48 29 29 28

Vehicle 18 4 4 4 4 4 4 4
Balancescale 4 4 3 4 4 4 3 3

CMC 9 7 6 6 8 7 8 6
Cancer 9 5 6 5 7 6 6 5
Vowel 3 3 3 3 3 3 3 3

Thyroid 5 4 4 3 4 4 4 3
WDBC 30 9 8 7 10 7 8 6

HeartEW 13 5 5 4 6 5 5 4
Lymphography 18 6 7 7 6 8 6 5
SonarEW 60 19 18 19 22 15 13 12

IonosphereEW 34 25 23 20 17 15 14 12
Vote 16 8 7 9 8 6 6 6

WaveformEW 40 21 26 24 23 20 18 16
Total 336 160 161 155 183 142 136 121

Table 5 shows the parameter obtained by ETLBO. It can be seen from the table that
the ETBLO obtains the different values under the diverse dataset. The ETBLO not only
reduce the number of features but also acquires the parameter α of Tsallis entropy and
the parameter c of SVM. We will test the performance of the compared algorithms in the
next section.

Table 5. The parameter obtained by ETLBO.

α c

Iris 0.52 1.14
Wine 0.64 1.20
Sonar 0.80 1.24

Vehicle 0.22 1.83
Balancescale 0.77 1.17

CMC 0.26 1.22
Cancer 0.15 0.65
Vowel 0.07 1.82

Thyroid 0.61 1.01
WDBC 0.81 1.17

HeartEW 0.78 0.95
Lymphography 0.47 1.64

SonarEW 0.08 1.82
IonosphereEW 0.55 0.99

Vote 0.73 1.58
WaveformEW 0.55 0.73

Total 0.73 1.83

4.3. Experiment 2: Classification

Table 6 shows the classification results of compared algorithms. Table 7 shows the f-score
of the compared methods. The table result shows that the ETLBO is better than the original
TLBO. The strategies improve the optimal ability of the TLBO. At the same time, the HSOA and
ETLBO are better than the other algorithms. It means that the strategies significantly boost the
original optimization algorithms. It can be known that the methods can be ordered as follows
in terms of them F-score result: ETLBO > HTLBO > HSOA > HHO > PSO > WOA > TLBO.
To sum up, the ETLBO obtains the high f-score values.
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Table 6. The classification accuracy of compared algorithms.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 0.9545 0.9481 0.9320 0.9167 0.9548 0.9546 0.9579
Wine 0.9413 0.9303 0.9232 0.9369 0.9411 0.9479 0.9488
Sonar 0.9160 0.9375 0.9242 0.9025 0.9347 0.9359 0.9435

Vehicle 0.9012 0.9306 0.9147 0.9358 0.9345 0.9339 0.9414
Balancescale 0.9338 0.9241 0.9308 0.9287 0.9450 0.9442 0.9465

CMC 0.9440 0.9271 0.9259 0.9253 0.9387 0.9371 0.9454
Cancer 0.9060 0.9180 0.9403 0.9356 0.9349 0.9408 0.9438
Vowel 0.9600 0.9477 0.9429 0.9559 0.9628 0.9581 0.9651

Thyroid 0.9031 0.9249 0.9048 0.8849 0.9202 0.9282 0.9285
WDBC 0.9329 0.9351 0.9177 0.9057 0.9345 0.9358 0.9385

HeartEW 0.9230 0.9118 0.9143 0.8995 0.9323 0.9271 0.9358
Lymphography 0.9022 0.9256 0.9001 0.9141 0.9210 0.9180 0.9268

SonarEW 0.9360 0.9115 0.9116 0.9164 0.9336 0.9357 0.9361
IonosphereEW 0.9361 0.9448 0.9276 0.9233 0.9384 0.9441 0.9458

Vote 0.9136 0.9170 0.9217 0.9008 0.9381 0.9378 0.9451
WaveformEW 0.9276 0.9354 0.9229 0.9029 0.9292 0.9284 0.9365

Table 7. The f-score of compared algorithms.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 0.9362 0.9038 0.9193 0.9007 0.9262 0.9334 0.9498
ine 0.9118 0.9116 0.9175 0.9219 0.9194 0.9288 0.9433

Sonar 0.9043 0.913 0.9206 0.8754 0.9223 0.9091 0.9359
Vehicle 0.8782 0.8895 0.9038 0.9142 0.918 0.9164 0.9387

Balancescale 0.9169 0.9055 0.9139 0.9139 0.9309 0.9276 0.9422
CMC 0.9295 0.9 0.8988 0.8977 0.9217 0.9109 0.9429

Cancer 0.8861 0.9119 0.8945 0.9104 0.9133 0.9223 0.9396
Vowel 0.9399 0.914 0.9336 0.9345 0.9464 0.9506 0.9601

Thyroid 0.8812 0.8759 0.8954 0.8585 0.908 0.904 0.9211
WDBC 0.9102 0.9039 0.9071 0.8913 0.9128 0.9143 0.9329

HeartEW 0.8936 0.8887 0.8962 0.8892 0.9045 0.9186 0.9275
Lymphography 0.8894 0.8725 0.9117 0.8891 0.8883 0.9109 0.9184

SonarEW 0.9199 0.8988 0.897 0.8888 0.9066 0.9092 0.9360
IonosphereEW 0.9171 0.9088 0.9212 0.9090 0.9304 0.9168 0.9411

Vote 0.8890 0.9108 0.9057 0.8776 0.9225 0.9204 0.9449
WaveformEW 0.9115 0.8948 0.9106 0.8888 0.9089 0.9102 0.9346

To sum up, the ETLBO obtained the best result in compared algorithms. The ETLBO
not only reduces the number of features but also obtains high classification accuracy. Table 8
shows that the std of classification accuracy. The ETLBO has a better stable ability than other
algorithms. The proposed method has strong robustness to finish the classification task.

A statistical test is an essential and vital measure to evaluate and prove the perfor-
mance of the tested methods. Parameter statistical test is based on various assumptions.
This section uses well-known non-parametric statistical test types, Wilcoxon’s rank-sum
test [39]. Table 9 shows the results of the Wilcoxon rank-sum test. It can be found that the
ETLBO is significantly different from other methods.

The CPU time is also an important index for the practical engineering testing problem.
The CPU time results of the compared algorithms can be seen in Table 10. The CPU time
ordering of each algorithm is: TLBO < PSO < WOA < HHO < ETLBO < HTLBO < HSOA.
Although the ETLBO costs considerable CPU time, the classification accuracy has good
performance. At the same time, the ETLBO uses less CPU time than HSOA. It means that
the strategies have good adaptive effectiveness for the TLBO. The strategies enhance the
TLBO under less CPU time than the improved method.
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Table 8. The std of classification accuracy.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 4.57 × 10−5 4.69 × 10−5 5.45 × 10−5 4.63 × 10−5 4.90 × 10−5 4.60 × 10−5 4.54 × 10−5

Wine 6.87 × 10−5 6.56 × 10−5 6.08 × 10−5 6.22 × 10−5 5.84 × 10−5 6.90 × 10−5 5.65 × 10−5

Sonar 1.28 × 10−6 1.12 × 10−5 1.01 × 10−6 1.08 × 10−5 1.10 × 10−6 1.28 × 10−6 1.00 × 10−5

Vehicle 6.60 × 10−5 6.19 × 10−5 6.39 × 10−5 6.98 × 10−5 6.14 × 10−5 6.63 × 10−5 6.12 × 10−5

Balancescale 4.28 × 10−5 4.50 × 10−5 4.52 × 10−5 4.92 × 10−5 4.18 × 10−5 4.31 × 10−5 4.13 × 10−5

CMC 4.14 × 10−5 3.50 × 10−5 3.97 × 10−5 3.58 × 10−5 3.41 × 10−5 4.18 × 10−5 3.32 × 10−5

Cancer 1.15 × 10−4 1.14 × 10−4 1.03 × 10−4 1.04 × 10−4 1.02 × 10−4 1.16 × 10−5 9.62 × 10−5

Vowel 7.80 × 10−5 7.69 × 10−5 8.48 × 10−5 7.98 × 10−5 7.78 × 10−5 7.88 × 10−5 7.55 × 10−5

Thyroid 6.86 × 10−5 6.83 × 10−5 7.39 × 10−5 7.28 × 10−5 7.33 × 10−5 6.88 × 10−5 6.74 × 10−5

WDBC 1.06 × 10−4 1.01 × 10−4 1.02 × 10−4 1.02 × 10−4 9.84 × 10−5 1.06 × 10−5 9.42 × 10−5

HeartEW 9.76 × 10−5 9.43 × 10−5 9.11 × 10−5 1.00 × 10−4 8.95 × 10−5 9.86 × 10−5 8.86 × 10−5

Lymphography 8.70 × 10−5 7.18 × 10−5 8.07 × 10−5 8.16 × 10−5 7.50 × 10−5 8.73 × 10−5 6.94 × 10−5

SonarEW 4.55 × 10−5 3.84 × 10−5 3.92 × 10−5 4.51 × 10−5 4.02 × 10−5 4.56 × 10−5 3.81 × 10−5

IonosphereEW 9.61 × 10−5 8.88 × 10−5 8.24 × 10−5 7.74 × 10−5 7.87 × 10−5 9.66 × 10−5 7.45 × 10−5

Vote 8.82 × 10−5 9.35 × 10−5 9.97 × 10−5 9.64 × 10−5 9.31 × 10−5 8.89 × 10−5 8.56 × 10−5

WaveformEW 4.38 × 10−5 4.55 × 10−5 4.29 × 10−5 4.35 × 10−5 3.94 × 10−5 4.41 × 10−5 3.92 × 10−5

Table 9. Wilcoxon’s rank-sum test of classification accuracy.

PSO WOA HHO TLBO HSOA HTLBO

p-Value h p-Value h p-Value h p-Value h p-Value h p-Value h

Iris <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Wine <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Sonar <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Vehicle <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Balancescale <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CMC <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Cancer <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Vowel <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Thyroid <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
WDBC <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

HeartEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Lymphography <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

SonarEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
IonosphereEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Vote <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
WaveformEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

4.4. Experiment 3: Compared with Different Classifiers

In this section, we compare with the different classifiers. The compared classifiers
contain K-NearestNeighbor (KNN), original SVM, and random forest (RF) [40]. Table 11
shows the configuration parameters and characteristics of the classifier models.

Table 12 demonstrates the evaluation index of the compare algorithsm. The BTLBO
obtains the best result than other compared classifiers in all index. The BTLBO outperforms
KNN, SVM, and RF by yielding an improvement of 3.45%, 2.94%, and 1.62% in F-score
index. To sum up, the optimization algorithms obtain the optimal parameter of the SVM.
The classification accuracy is higher than other compared classifiers.
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Table 10. The CPU time of the compared algorithms.

ETLBO PSO WOA HHO TLBO HSOA HTLBO

Iris 2.3973 1.8441 2.0285 2.1794 1.6764 2.637 2.4128
Wine 4.1247 3.1729 3.4902 3.7498 2.8844 4.5372 4.1315
Sonar 6.65 5.1154 5.6269 6.0454 4.6503 7.315 6.6542

Vehicle 4.1722 3.2094 3.5303 3.7929 2.9176 4.5894 4.1765
Balancescale 2.4302 1.8694 2.0563 2.2093 1.6994 2.6732 2.4462

CMC 3.0792 2.3686 2.6055 2.7993 2.1533 3.3872 3.0803
Cancer 1.5509 1.193 1.3123 1.41 1.0846 1.706 1.5669
Vowel 3.6988 2.8452 3.1298 3.3626 2.5866 4.0687 3.7183

Thyroid 3.6676 2.8212 3.1034 3.3342 2.5648 4.0344 3.6827
WDBC 6.4025 4.925 5.4175 5.8204 4.4772 7.0427 6.4075

HeartEW 4.5164 3.4741 3.8215 4.1058 3.1583 4.968 4.5271
Lymphography 6.4656 4.9735 5.4709 5.8778 4.5214 7.1122 6.4850

SonarEW 6.9375 5.3365 5.8702 6.3068 4.8514 7.6313 6.9569
IonosphereEW 7.552 5.8092 6.3901 6.8654 5.2811 8.3072 7.5664

Vote 5.5987 4.3067 4.7374 5.0898 3.9152 6.1586 5.6065
WaveformEW 3.3821 2.6016 2.8618 3.0746 2.3651 3.7203 3.3848

Table 11. Configuration parameters and characteristics of the classifier models.

Classifier Caret Method Value R Package Tuning Parameters Characteristics

KNN knn k-5
Unique classifier. The number of neighbors is

directly compared to the test data using the KNN
function in the Caret package.

SVM svmRadial E1071 Σ−7 × 10−2

c-1
Radial basic function outperformed linear SVM.

RF rf randomForest mtry-8
ntree-150

Overcomes the disadvantage of simple DT using
a large number of DT’s to classify by majority

vote. Use the randomForest function.

Table 12. The evaluation index of compared algorithms.

Classifier Ac Pc R F-Score

KNN 0.9275 0.9135 0.9123 0.9097
SVM 0.9241 0.9178 0.9167 0.9142
RF 0.9352 0.9189 0.9197 0.9261

BTLBO 0.9478 0.9455 0.9427 0.9411

5. Discussion

The proposed method has an optimal ability to solve the Tsallis-entropy-based feature
selection problem in the feature selection domain. The ETLBO selects the suitable parameter
of the Tsallis-entropy. At the same time, the proposed method reduces the number of
features successfully. The optimization algorithms have a robust optimal ability; however,
they do not adapt to solve the different optimized problems. So some adaptive strategies
are very effective for improving themselves.

The proposed method obtains better classification accuracy than the compared algo-
rithms in the classification field. The proposed method finds the proper parameter α of
the SVM classifier. The proposed method has a higher classification accuracy and strong
robustness than the compared algorithms. At the same time, the proposed method is better
than orther compared classifiers. So, the ETLBO algorithms can be used in the classification
task field.

The proposed method’s limitation is that the optimization algorithm needs iteration to
find the optimal solution, which is time-consuming. Improving the optimization capability
and reducing the number of iterations can solve this problem. Therefore, it is necessary to
search for powerful optimization algorithms and new strategies in future work.
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6. Conclusions

In this paper, an enhanced teaching-learning-based optimization is proposed. The
adaptive weight strategy and Kent chaotic map are used to enhance the TLBO. The ETLBO
optimizes the selected feature x, the parameter α of Tsallis entropy, and the parameter c of
SVM. The proposed method reduces the number of features through the UCI data experi-
ment and finds the critical features for classification. Finally, the classification accuracy of
the proposed method is better than compared algorithms.

We will design an effective and useful function to reduce the number of features in
future work. We will focus on solving the randomness of the TLBO and obtaining more
stability parameters of the fitness function. At the same time, we will also test the novel
strategies to boost the TLBO.
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