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Abstract: Portable X-ray fluorescence (pXRF) spectrometers provide simple, rapid, nondestructive,
and cost-effective analysis of the metal contents in soils. The current method for improving pXRF
measurement accuracy is soil sample preparation, which inevitably consumes significant amounts of
time. To eliminate the influence of sample preparation on PXRF measurements, this study evaluates
the performance of pXRF measurements in the prediction of eight heavy metals’ contents through
machine learning algorithm linear regression (LR) and multivariate adaptive regression spline (MARS)
models. Soil samples were collected from five industrial sites and separated into high-value and
low-value datasets with pXRF measurements above or below the background values. The results
showed that for Cu and Cr, the MARS models were better than the LR models at prediction (the
MARS-R2 values were 0.88 and 0.78; the MARS-RPD values were 2.89 and 2.11). For the pXRF
low-value dataset, the multivariate MARS models improved the pXRF measurement accuracy, with
the R2 values improved from 0.032 to 0.39 and the RPD values increased by 0.02 to 0.37. For the
pXRF high-value dataset, the univariate MARS models predicted the content of Cu and Cr with less
calculation. Our study reveals that machine learning methods can better predict the Cu and Cr of
large samples from multiple contaminated sites.

Keywords: site investigation; in situ pXRF; multivariate adaptive regression splines (MARS); heavy
metals; rapid field screening

1. Introduction

Heavy metals are indestructible and non-biodegradable. They can occur in living
organisms through biomagnification and bioaccumulation and present in high amounts in
the environment, which leads to potential risks for human health and the environment [1–4].
Heavy metals can cause adverse effects on humans through the inhalation of respirable
dust particles, the ingestion of foods from living organisms exposed to heavy metals, and
dermal absorption [1–4].

Portable X-ray fluorescence (pXRF) spectrometers can provide simple, rapid, nonde-
structive, and cost-effective analysis of the metal contents in soils and have been widely
used to assess environmental risks, predict soil properties, and evaluate soil fertility, among
other uses [5–9]. According to the Chinese Standard Technical Guidelines for the Investiga-
tion on Soil Contamination of Land for Construction [10], the heavy metal rapid detector
is recommended for the qualitative and quantitative analysis of heavy metals in soils in
situ. The pXRF instrument can help to guide the selection of samples to be analyzed in the
laboratory and make investigative and remediative decisions [11,12].
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The pXRF instrument realizes the qualitative and quantitative analysis of soil prop-
erties through X-ray fluorescence intensities. Normally, X-ray fluorescence intensities are
used to evaluate elemental concentrations, mostly using fundamental parameters (FP),
empirical coefficients methods, or Compton peak ratios [13], based on the assumptions of
sample homogeneity, plain surface, negligible particle size effects, and a priori knowledge
of the sample matrix composition [14]. Therefore, some factors, such as physical matrix
effects (e.g.,: particle size, homogeneity, surface conditions), moisture content, and chem-
ical matrix effects (e.g.: the presence of iron reduces Cu but enhances Cr measurements)
influence the accuracy of the measurements [13,15]. The current method for improving
pXRF measurement accuracy is the preparation of soil samples, including screening, grind-
ing, drying, etc. [13,16–18]. Method 6200 [13] recommends that for the obtainment of
high-quality data, samples should be dried for 2 to 4 h in a convection or toaster oven
at a temperature not greater than 150 ◦C, and then ground with a mortar and pestle and
passed through a 60-mesh sieve to achieve a uniform particle size. Sample grinding should
continue until at least 90 percent of the original sample passes through the sieve.

In practice, in most site investigations, the pXRF instrument directly measures heavy
metal contents without sample preparation. To eliminate the influence of sample prepa-
ration on pXRF measurements, models have been used to correct pXRF measurements
through the correlation between pXRF measurements and laboratory concentrations. Linear
regression (LR) models are commonly used to evaluate the accuracy of pXRF measure-
ments [12,16,17]. Caporale et al. defined metal-based linear models predicting laboratory
concentrations from pXRF measurements for two case studies (agricultural and industrial
sites) [19]. Their linear regressions revealed strong variability among their studied met-
als, providing good correlations only for Cu, Pb, and Zn at both sites [19]. For most of
the metals, each metal-regression line significantly differed between the two case studies,
indicating the site-dependence of the regression fits [19]. Chen et al. built a general model-
ing method and process based on the relationship between pXRF measurements and site
parameters (organic matter and water content) to construct pXRF correction models, which
could improve each site’s measurement accuracy [20]. The error in heavy metal pXRF
measurements decreased from 22.9–75.7% to 9.6–26.9% and showed that models can be
used to improve pXRF measurements for Pb, Zn, Fe, and Mn [20]. The results also indicated
it is difficult to develop a model that is suitable for every site, because of the particularity
of different sites [20]. In addition to site-specific models, some models were built on a large
scale. Adler et al. adopted the machine learning method multiple linear regression (MLR),
multivariate adaptive regression spline (MARS), and random forest (RF) to create national
prediction models for Cu, Zn, and Cd concentrations in agricultural soil [21]. Predictive
models using pXRF measurements were created and found to be applicable at the farm
and national scales, and the results showed that the MLR model had good performance for
predicting Zn, while the MARS model had better performance in the prediction of Cu and
Cd in small-scale farmland [21].

In general, although sample preparations could improve pXRF measurement accuracy,
they inevitably consume significant amounts of time and preclude the rapid selection
of samples to be analyzed in the laboratory. Models have been used to correct pXRF
measurements, but they were mainly site-specific models. Studies of predictive models
for multiple industrial sites are still limited. Machine learning methods were successfully
used in national agricultural soils in Sweden [21]. However, unlike agricultural soils,
large variability in the spatial distribution and content of metals is generally recognized in
the anthropogenically polluted soils of industrial sites [22]. Therefore, machine learning
methods, including LR and non-linear MARS models, were explored to predict eight heavy
metals (Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb) in soil samples from five industrial sites.
Laboratory concentrations were used to evaluate the predictive performance. In this study,
the objectives were to (a) build prediction models of each heavy metal for samples from
multiple industrial sites, (b) compare the performance of LR and MARS models for each
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heavy metal, and (c) examine the models’ performance when predicting heavy metals
above or below the natural background values (BVs).

2. Materials and Methods
2.1. Soil Sampling and pXRF Rapid Measurement

The study is based on five site investigations; the industrial sites were formerly used as
fertilizer factories, pesticide factories, or steel plants. Soil samples were collected according
to the standard of Technical Specification for Soil Environmental Monitoring [23] and,
subsequently, the pXRF was used to analyze the contents of heavy metals. After removing
the gravel and other debris in soil samples, samples were put into transparent polyvinyl
chloride (PVC) plastic bags, tamped, and flattened to ensure their thicknesses were at least
15 mm; they were then tested by pXRF in soil mode for at least 60 s.

In this study, the pXRF instruments included Explorer 9000 (Jiangsu Skyray Instrument
Co., Ltd., Kunshan, China), X-MET7000 (Oxford Instruments, Shanghai, China), VANTA-
VLW (Olympus, Center Valley, PA, USA), DP-4050 (Olympus, Center Valley, PA, USA), and
VANTA-VCA (Olympus, Center Valley, PA, USA). The pXRF instrument used in each site
was different; total five types of pXRF instrument were used, and the limits of detection for
each heavy metal are shown in Table 1. All operators were well trained, and the procedure
followed the manufacturer’s instructions and the recommendations of Method 6200 [13].
Therefore, the influences of pXRF instruments were neglected and not discussed.

Table 1. Limits of detection (LODs) of each pXRF instrument (mg/kg).

Metals Explore 9000 X-MET7000 VANTA-VLW DP-4050 VANTA-VCA

Cr 7.68 5 20 4–10 20
Ni 4.65 5 20 5–15 4
Cu 8.5 5 20 4–8 3
Zn 1.8 5 5 1–3 2
As 3.6 5 3 1–3 1
Cd 2.2 5 10 2–3 5
Hg 0.8 5 9 1–4 2
Pb 2.5 5 1 2–4 3

2.2. Laboratory Analyses

Soil samples were sent to laboratories to analyze Cr, Cu, Pb, As, Ni, Cd, Zn, and Hg
concentrations. The analytical methods of each heavy metal are shown in Supplementary
Table S1. The soil samples were air-dried, ground, and passed through a 100-mesh sieve,
and then Cr, Ni, Cu, Zn, Cd, and Pb in soil samples were extracted by HCl-HNO3-HF-
HClO4 electric heating plate digestion. The Hg and As were extracted by aqua regia water
bath digestion.

2.3. Data Preprocessing Method

Before performing the regression analysis, outliers were removed based on the box-and-
whiskers plot [24] and calculated in Python 3.7, according to the following upstream criteria:

(a) undetected (NA) data in the pXRF measured data or laboratory analyzed data of soil
samples were removed;

(b) calculate for each variable (metal) the ratio (X)XRF/(X)LAB, where (X)XRF is the metal
concentration obtained by pXRF and (X)LAB by laboratory analysis;

(c) calculate the first quartile (Q1) and third quartile (Q3) of these ratios;
(d) outliers were the ratios greater than Q3 + 1.5 × (Q3 − Q1) or lower than Q1 − 1.5 ×

(Q3 − Q1), and then were deleted from datasets.

2.4. Statistical Method

Descriptive statistics (including mean, standard deviation, and coefficient of variation)
were calculated in Python 3.7.
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Pearson correlation coefficients between the pXRF measurements and the laboratory
concentrations were calculated in SPSS 20.0.0. The Pearson correlation indicates the linearity
between two parameters, and it is generally believed that the coefficient between 0.8–1.0
shows a highly related correlation; 0.6–0.8 shows a strong related correlation; 0.4–0.6
indicates a moderate related correlation; 0.2–0.4 shows a weak related correlation; and
0.0–0.2 shows a very weak related correlation or no related correlation [25].

The geo-accumulation index (Igeo) is widely used to estimate the magnitude of anthro-
pogenic activities [19]. Igeo was originally proposed by Müller [26] and can be calculated
as follows:

Igeo = log2

(
Cn

1.5Bn

)
(1)

where Cn is the metal content determined by laboratory (mg/kg) and Bn is the background
concentration (mg/kg); 1.5 was considered as natural fluctuations due to a very small
anthropogenic influence. According to Müller [27], categories based on Igeo were estab-
lished as follows: unpolluted (Igeo ≤ 0), unpolluted-to-moderately-polluted (0 < Igeo ≤ 1),
moderately polluted (1 < Igeo ≤ 2), moderately-to-heavily-polluted (2 < Igeo ≤ 3), heavily
polluted (3 < Igeo ≤ 4), heavily-to-extremely-polluted (4 < Igeo ≤ 5), and extremely polluted
(Igeo > 5).

2.5. Prediction Model
2.5.1. Model Introduction
Linear Regression

As one of the most basic machine learning methods, the LR model is widely used
in various fields. The linear regression model is a statistical analysis method and used
to determine the quantitative relationship between two or more variables in regression
analysis. The optimal parameters of the model are calculated by the least square method.

Multivariate Adaptive Regression Spline Model

The MARS model is a spline regression method that can adaptively process high-
dimensional data; it was proposed by the statistician Jerome Friedman in 1991 [28]. It
is a nonparametric statistical method based on a divide-and-conquer strategy in which
the training data sets are partitioned into separate piecewise linear segments (splines)
of differing gradients (slope). MARS makes no assumptions about the underlying func-
tional relationships between dependent and independent variables. In general, the splines
are connected smoothly together, and these piecewise curves (polynomials), also known
as basis functions, result in a flexible model that can handle both linear and nonlinear
behavior [29,30].

Univariate and Multivariate Models

In this study, univariate LR and MARS and multivariate MARS models were adopted.
The univariate model used pXRF measurements of one heavy metal as the predictor and
realized prediction of its corresponding heavy metal content in soil samples. By contrast,
the multivariate model used pXRF measurements of eight heavy metals as the predictors.
The MARS model was used to build the multivariate model, since it allowed missing values
in the predictors while the LR model did not.

2.5.2. Model Prediction and Validation Process

The model process is presented in Figure 1. Leave-one-out cross-validation (LOOCV)
was adopted to evaluate the model’s performance [7,31]. If the size of the dataset was N,
then N-1 pieces of data were used for training, and the remaining pieces were used for
validation. Each time, one datum was used as validation until all samples were validated,
at which point, a total of N times was calculated. LOOCV is suitable for small datasets and
can prevent over-fitting and evaluate the model’s generalization ability.
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The linear model was in Scikit-learn 0.22.1 from Python 3.7, and the MARS model was
from Py-earth 0.1.0. The LOOCV was from LeaveOneOut in Scikit-learn 0.22.1.

2.5.3. Model Evaluation

Three parameters evaluated the predictive accuracy of the model: the determination
coefficient (R2), the prediction of the root mean squared error (RMSE), and the ratio of
percent deviation (RPD). The value of R2 reflected the stability of the model establishment
and verification. The closer the R2 value to 1, the better the model. If the R2 value was
more significant than 0.7, it was generally considered that the model was good [32]. The
smaller the RMSE, the more stable the model’s performance. RPD was the ratio of the
standard deviation of the validation data to the RMSE of the predictive result, which could
be used to judge the model’s predictive ability. When RPD < 1.4, the model could not
realize prediction; when 1.4 ≤ RPD < 2.0, the model had regular predictive performance
and could be used to perform rough predictions; when RPD ≥ 2.0, the model had excellent
predictive ability [33].

3. Results
3.1. Descriptive Statistics of pXRF-Measured Data and Laboratory-Analyzed Data

The descriptive statistics and coefficients of variations (CVs) of the pXRF measurement
and laboratory concentration of each heavy metal are presented in Table 2. The heavy
metals As, Pb, and Cu had large sample sizes (2721, 2502, and 2232, respectively). The
average concentrations of Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb measured by pXRF were
102.95, 23.59, 47.18, 82.30, 10.81, 2.31, 0.38, and 27.20 mg/kg, respectively, which were
smaller than the average laboratory concentrations of 121.61, 32.83, 57.93, 125.21, 11.87,
0.11, 0.13, and 36.14 mg/kg, respectively.

The CVs of the pXRF measurements were comparable to those of the laboratory con-
centration of each heavy metal. The CVs of the pXRF measurements and laboratory concen-
trations of Cr, Cu, Zn, Cd, Hg, and Pb were greater than 1, which indicated higher variation,
and that these heavy metals were greatly affected by anthropogenic influences [31]. Apart
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from Cd, no significant difference in metal concentration between the pXRF-measured
data and the laboratory-measured data was observed for other metals, indicating that in
situ pXRF can be reliably used to investigate the concentrations of heavy metals. For Cd,
the statistical characteristics of the concentrations between the pXRF-measured data and
the laboratory-measured data were different. These results may be explained by the low
detection limits of the pXRF instrument (2 mg/kg).

Table 2. Statistical characteristics of pXRF and laboratory-analyzed results (mg/kg).

Heavy Metal pXRF-Cr pXRF-Ni pXRF-Cu pXRF-Zn pXRF-As pXRF-Cd pXRF-Hg pXRF-Pb

Counts 1363 2108 2232 1607 2721 1105 546 2502
Mean 102.95 23.59 47.18 82.30 10.81 2.31 0.38 27.20

Std 429.14 15.26 266.02 119.42 9.56 2.58 1.46 34.89
Min 2.07 0.46 0.25 1.77 0.030 0.00030 0.00050 0.034
25% 41 15 17 53.87 5 0.28 0.021 14.11
50% 56.06 20.98 24 66 8 1 0.045 21
75% 75.71 28 32 80.84 15 4 0.091 27
Max 10845 232.14 7905 3044 201.58 13 25.62 670.80
CV 4.17 0.65 5.64 1.45 0.88 1.12 3.82 1.28

Heavy Metal Lab-Cr Lab-Ni Lab-Cu Lab-Zn Lab-As Lab-Cd Lab-Hg Lab-Pb

Counts 1363 2108 2232 1607 2721 1105 546 2502
Mean 121.61 32.83 57.93 125.21 11.87 0.11 0.13 36.14

Std 365.00 10.60 242.94 262.44 7.38 0.15 0.66 59.73
Min 13.93 4.21 4 29 1.01 0.010 0.0030 7.30
25% 53.50 24.50 22 55 8.60 0.060 0.016 20
50% 68 33.50 28 66 10.80 0.090 0.027 24
75% 89 40 35 83 13.90 0.12 0.062 29.90
Max 7400 168.55 5000 5720 196.27 3.08 13.26 1380
CV 3.00 0.32 4.19 2.10 0.62 1.30 4.90 1.65

3.2. Univariate LR and MARS Model Predictive Results
Predictive Results of Soil Samples from the Whole pXRF-Measured Dataset

The pXRF measurements of each heavy metal were used to predict the contents an-
alyzed in the laboratory through the univariate LR and MARS model, according to the
modeling process in Section 2.5.2. The predicted contents against the laboratory concentra-
tions are shown in Figure 2.

The R2 and RPD values of the MARS models for predicting Cr (0.88, 2.89) and Cu (0.77,
2.11) were larger than those of the LR models for Cr (0.8, 2.22) and Cu (0.73, 1.94), which
indicated that the MARS models were better than the LR models at predicting Cu and Cr.
For the other six heavy metals, the R2 values of the LR and MARS models were smaller
than 0.7, and their RPD values were smaller than 1.4, indicating that the LR and MARS
models could not be used for predicting them. The fitness of the LR model for predicting
Cr and Cu, and that of the MARS model for predicting Cu, were consistent with other
research [12,20,21].
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Figure 2. Concentrations of heavy metals predicted from each pXRF measurement using LR and
MARS models against laboratory concentrations of the whole dataset. The red dashed line is the 1:1
line, the black line is the regression line, and the points are semi-transparent to show point density.
(a–h) Prediction results of LR models. (i–p) Prediction results of MARS model.3.2.2. Predictive results
of samples in pXRF high-value and low-value datasets.
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Considering the need to accurately select high concentrations of heavy metal samples
to be analyzed in the laboratory and the fact that contaminated industrial sites were primar-
ily impacted by human activities, the first level in the Environmental Quality Standards
for Soils [34] was used as the BV to divide the pXRF dataset into two parts (Table 3). The
samples of pXRF measurements larger than the BV were classified into the pXRF high-value
dataset, and the samples of the pXRF measurements that were lower than the BV were
classified into the pXRF low-value dataset. Their corresponding laboratory-analyzed data
were also divided into two datasets. The detailed statistical characteristics of the pXRF low-
value and high-value datasets are shown in Supplementary Tables S2 and S3. The models
were trained to predict heavy metal concentrations for samples in the pXRF high-value
and the pXRF low-value datasets separately, and the predicted results are presented in
Figures 3 and 4.

Table 3. Natural background value of each heavy metal and the concentration range of the
two datasets.

Heavy Metal
BVs

(mg/kg)

pXRF Low-Value Dataset pXRF High-Value Dataset

Sample
Size

pXRF Range
(mg/kg)

Lab Range
(mg/kg)

Sample
Size

pXRF Range
(mg/kg)

Lab Range
(mg/kg)

Cr 90 1144 2.08–89.05 13.93–337 219 90.01–10845 48–7400
Ni 40 1949 0.47–39.86 4.21–104 159 40.51–106 20–74
Cu 35 1843 0.25–34.84 4–1350 389 35.08–7905 17–5000
Zn 100 1367 1.78–99.56 29–1680 240 100.61–3044 56–5720
As 15 2071 0.038–14.84 1.01–86.30 650 15.01–201.58 5.85–196.27
Cd 0.2 151 0.00030–0.20 0.010–0.76 954 0.20–13.00 0.017–3.09
Hg 0.15 456 0.00050–0.15 0.0030–5.99 90 0.15–25.62 0.011–13.27
Pb 35 2202 0.034–34.78 7.30–1040 300 35.56–670.80 20–1380

The results of the pXRF low-value dataset showed that the R2 and RPD values of the
LR and MARS models were smaller than 0.1 and 1.4, which indicated that the models
could not predict the concentrations of each heavy metal through the pXRF measurements
(Figure 3).

For the pXRF high-value dataset (Figure 4), the R2 and RPD values of the MARS
models for predicting Cr (0.88, 2.84) and Cu (0.79, 2.18) were larger than those of the LR
models for Cr (0.8, 2.22) and Cu (0.75, 2.00), which indicated that the MARS models were
better than the LR models at predicting Cu and Cr. However, neither the LR model nor the
MARS model were suitable for predicting the concentrations of the other six heavy metals
for the samples in the pXRF high-value dataset.

In Figure 4a,b,i,j, when the laboratory concentrations of Cu and Cr were smaller than
2000 mg/kg, the LR model had more accurate predictive results than the MARS model,
since the black points in the LR model were closer to the 1:1 line (the closer the points were
to the 1:1 line, the more the predicted results equaled to the lab concentrations). When
the laboratory concentrations were greater than 2000 mg/kg, the MARS model had more
accurate predictive results than the LR model, and the predicted points were closer to the
1:1 line in the MARS model than in the LR model. The same results were also found for the
samples from the whole dataset when predicting Cu and Cr (Figure 2).
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Figure 3. Concentrations of heavy metals predicted from each pXRF measurement using LR and
MARS models against laboratory values of samples in the pXRF low-value dataset. The red dashed
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Processes 2022, 10, 536 10 of 17Processes 2022, 10, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. Concentrations of heavy metals predicted from each pXRF measurement using LR and 
MARS models against laboratory values of samples in the pXRF high-value dataset. The red dashed 
line is the 1:1 line, the black line is the regression line, and the points are semi-transparent to show 
point density. (a–h) Prediction results of LR models. (i–p) Prediction results of MARS model. 

  

（a） （c）

（d） （e） （f）

（g） （h）

（b）

（i） （j） （k）

（l） （m） （n）

（o） （p）

LR model

MARS model

Figure 4. Concentrations of heavy metals predicted from each pXRF measurement using LR and
MARS models against laboratory values of samples in the pXRF high-value dataset. The red dashed
line is the 1:1 line, the black line is the regression line, and the points are semi-transparent to show
point density. (a–h) Prediction results of LR models. (i–p) Prediction results of MARS model.
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3.3. Multivariate MARS Model Predictive Results
3.3.1. Predictive Results of Samples in the pXRF Low-Value Dataset

Unlike the univariate MARS model, which used the pXRF measurement of one heavy
metal as the predictor, the multivariate MARS model used the pXRF measurements of other
seven heavy metals as the predictors. We explored whether the increase in the predictors
could improve the predicted results. The results of the multivariate MARS models for
predicting the contents of Cr, Cu, Pb, As, Ni, Cd, Zn, and Hg in the samples from the pXRF
low-value dataset are shown in Table 4.

Table 4. Validation statistics for predictive results of heavy metals of sample in the pXRF low-value
dataset and Cr and Cu of sample in pXRF high-value dataset using univariate and multivariate
MARS model.

Heavy
Metals

Univariate MARS Multivariate MARS

R2 RMSE RPD R2 RMSE RPD

pXRF Low-Value Dataset

Cu 0.12 10.84 1.06 0.51 8.04 1.43
Cr 0.12 23.05 1.07 0.44 18.32 1.34
Ni 0.14 9.32 1.08 0.44 7.53 1.34
As 0.13 3.91 1.07 0.32 3.47 1.21
Pb 0.12 6.96 1.07 0.23 6.51 1.14
Hg −0.0044 0.03 1.00 0.14 0.034 1.08
Zn 0.098 14.07 1.05 0.13 13.85 1.07
Cd −0.013 0.06 1.00 −0.35 0.063 0.86

pXRF High-Value Dataset

Cr 0.87 306.14 2.80 0.88 294.28 2.92
Cu 0.79 255.50 2.18 0.71 301.34 1.84

Comparing the results between the univariate MARS and multivariate MARS models,
the R2 values improved from 0.032 to 0.39, the RPD values increased by 0.02 to 0.37, and
the RMSE decreased by 0.22 to 4.73. The results showed that the predictive performance of
the multivariate MARS models significantly improved for the heavy metals, except for Cd.

The multivariate MARS model had the best predictive ability for Cu (R2 and RPD
values were 0.51, 1.43, respectively). Compared with the univariate predictive result of Cu
(R2 and RPD values were 0.12, 1.06, respectively), the R2 and RPD values of the multivariate
MARS model increased by 0.39 and 0.37. However, for the other heavy metals, the RPD
values were less than 1.4, indicating that the predictive abilities of the multivariate models
for the other heavy metals were still limited.

3.3.2. Predictive Results of Samples in the pXRF High-Value Dataset

Given that the results that the predictive performance of the univariate MARS model
for the Cr and Cu in the samples from the pXRF high-value dataset were good, Cr and
Cu were selected to be predicted by the multivariate MARS models, and the results are
presented in Table 4. The results showed that the predicted abilities of the univariate and
multivariate MARS model for Cr were similar (the R2 and RPD values were 0.87 and 2.80
and 0.88 and 2.92, respectively). For Cu, the univariate MARS model was better than the
multivariate MARS model at prediction (the R2 and RPD values were 0.79, 2.18, and 0.71,
1.84, respectively).

Overall, the multivariate MARS model was a slight improvement on the predictive
performance for Cr and Cu of the univariate MARS model.
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4. Discussion
4.1. Influences of pXRF’s Accuracy on Model’s Predictive Results

The high accuracy of the pXRF instrument when measuring heavy metals resulted in
strong linearity between the pXRF measurements and laboratory concentrations. For the
univariate models, the linear correlations between the PXRF measurements and laboratory
concentrations were related to the predicted performance of the models, especially the
LR models. This study predicted Cu and Cr from corresponding pXRF measurements,
while the models could not predict the other heavy metals. The Pearson correlation
coefficients showed the linearity between the pXRF measurements and the corresponding
laboratory concentrations, which were 0.9 and 0.88 for Cu and Cr, respectively (Figure 5).
The coefficients of Cu and Cr were larger than those of the other heavy metals, which
were smaller than 0.8 (Figure 5) and could explain the excellent predictive performance of
the models.
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The accuracy of the pXRF instrument for different heavy metals was not universal.
The excellent linearity between the pXRF measurement and the laboratory concentrations
of Cu coincided with the research of Kilbride et al. and Potts et al. [12,35]. Kilbride et al.
measured Cu with a range from 3 to 5140 mg/kg, which was a similar range to that used in
the current study (4–5000 mg/kg), and found a good accuracy of pXRF for Cu [12]. Potts
et al. found that pXRF was not sufficiently sensitive for the determination of Cu with
concatenations lower than 200 mg/kg [35]. Therefore, a wide range of Cu in our study
could be accurately measured by pXRF. Some research also found a strong linear correlation
between PXRF measurement and laboratory concentrations of As [12,16], while the results
for As in the present study did not echo those of previous studies. Tian et al. found a weak
correlation between the pXRF and laboratory data of As that might have been attributable
to the narrow range of concentrations [36]. The range of As in our research was relatively
narrow compared with those of Cu or Cr, which might be the reason for the poor linearity
of As compared to Cu and Cr. Another reason through which to explain the poor linearity
of As might be the presence of Pb. Some research indicated that the presence of high
concentrations of Pb could compromise the pXRF’s precision for As [37,38], since Pb and As
x-rays would cause spectral interferences and impact each other during measurement [13].

The low Pearson coefficients of Ni and Cd (0.37, 0.07) indicated the poor accuracy of
pXRF for Ni and Cd, which was also found by Kilbride et al. (2006). For Hg, most soil
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samples (75%) had laboratory concentrations smaller than 0.1 mg/kg (Table 2), which were
below the pXRF detection limit of 0.8 mg/kg (Table 1). Similarly, as with Cd, more than 75%
of the samples had laboratory concentrations below the pXRF detection limit of 2.2 mg/kg
(Tables 1 and 2). Therefore, poor accuracy of pXRF was found for Hg and Cd [17].

4.2. Influences of Concentration on Model’s Predictive Results

Much research has confirmed that wider ranges of concentrations result in strong
linearity between pXRF measurements and laboratory concentrations for Cu and Zn. The
smaller the metal concentration in the soil sample, the higher the difference between the
pXRF measurement and the laboratory concentration [36,39]. Li et al. also found that when
the concentrations of Cu and Cr were greater than the first standard in the Environmental
Quality Standards for Soils [34,40], which was used to separate the pXRF high-value
and low-value datasets, the accuracy of the pXRF instrument was high. Therefore, high
concentrations soil samples would result in better predictive model performance compared
with low-concentration samples. The current study also confirmed the different predictive
results between the pXRF high-value dataset and the pXRF low-value dataset. The R2 and
RPD univariate prediction model values for the samples from the pXRF high-value dataset
were larger than those of the samples from the pXRF low-value dataset (Figures 3 and 4).

Although the high-concentration samples had good predictive results, the univariate
predictive results between the samples from the whole dataset and the pXRF high-value
dataset were not significantly different. Although the sample size of the pXRF low-value
dataset was larger than that of the pXRF high-value dataset, the low-concentration data
had little influence on the prediction model. The high-concentration data, especially some
abnormally high-concentration data, were found in contaminated sites and usually came
from anthropologic activities. These data were minor but would enlarge the x-coordinate
and cluster small-value data to exert a small influence on the predictive results. Thus, the
univariate models made no obvious difference to the prediction of heavy metal contents
from the samples from the pXRF high-value and whole datasets.

The results showed that the univariate models had a similar predicted ability for the
samples from the pXRF high-value and whole datasets. Based on the need to investigate
high-concentration data in site investigations, and the fact that the soil samples with
concentrations above the BV were fewer than the soil samples with concentrations below
the Bs, pXRF could help select high-concentration data (above BVs) to train the models
with fewer calculations.

4.3. Comparation between LR and MARS Models

In this study, the MARS models showed less bias at high concentrations than the LR
models (Figures 2 and 4). Adler et al. also found the same result, that MARS models had the
least negative bias when predicting Cu and Cd at higher concentrations compared to MLR
and RF models [21]. The better predictive ability of the MARS model in high-concentration
ranges may be explained by the accuracy of the pXRF instrument and the advantage of
the MARS model as a nonlinear model. The higher the concentrations of heavy metals
in samples, the more accurate pXRF instrument [36,39]. Therefore, it could be inferred
that the linear relation between the pXRF-measured data and the laboratory-analyzed data
from the heavy metals differed between high- and low-concentration samples. The linear
relationship was stronger in the samples with high concentrations than it was in those
with low concentrations; therefore, the MARS model could build different linear models
at different concentration ranges. This could help explain why the MARS model could
perform better than the LR model by creating more than one linear model for predicting
the concentrations of Cu and Cr.

4.4. Comparison between Univariate and Multivariate Models

The multivariate MARS model was better than the univariate MARS model at predict-
ing the heavy metal concentrations for the samples in the pXRF low-value dataset (Table 4).
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However this result was not strongly expressed in the samples in the pXRF high-value
dataset (Table 4).

The soil samples from the pXRF low-value dataset had heavy metal contents mea-
sured by pXRF lower than the BV and were assumed not to have been interrupted by
other pollution sources. The Igeo of each heavy metal sample was calculated from their
laboratory concentrations and BVs, which indicated the magnitude of anthropogenic in-
fluences (Figure 6). For the pXRF low-value dataset, the Igeo results confirmed that these
heavy metals were not polluted by human activities and came from the same natural source
(Figure 6a). The pXRF measurements of the heavy that they received metals were below
the BV, and the Igeo results for all the metals were negative, indicating no anthropogenic
discharge contributions. Hence, the heavy metals in the samples from the pXRF low-value
dataset came from the same natural source. According to the research about heavy metals’
source apportionment, heavy metals with similar sources are highly correlated [41–43]. The
correlation of each heavy metal would contribute to the good predictive performance of
multivariate models compared with the univariate model.
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In the pXRF low-value dataset, the Pearson correlation coefficients between the pXRF
measurements of Pb with laboratory concentrations of Cr and Cu were larger than 0.6
(Figure 7a), which was larger than the coefficients between the pXRF measurement with
laboratory a concentration of Cr (0.35) and the pXRF measurement with a laboratory
concentration of Cu (0.33). For Hg, the coefficient between the pXRF measurement of
Cu and the laboratory concentration of Hg (0.57) was higher than the coefficient between
the the pXRF measurement and the laboratory concentration of Hg (0.31). Therefore,
adding the pXRF measurement of other heavy metals could improve the multivariate
model’s performance.

In the pXRF high-value dataset, the samples had concentrations of heavy metal larger
than the BV and were collected from different industry sites, which meant that these
samples may have been polluted by different pollution sources. For the pXRF high-value
dataset, a positive Igeo was observed for Cr, Cu, Zn, and Pb, and the Igeo for Zn was the
largest, which showed moderate pollution (Figure 6b). The Igeo for Cr, Cu, and Pb showed
unpolluted to moderately-polluted levels, and Ni, As, Cd, and Hg were observed with no
anthropogenic influences. These results indicated that the pXRF instrument could roughly
identify the anthropogenic pollution for Cr, Cu, Zn, and Pb. For Ni and As, the pXRF
instrument performed poorly at identifying anthropogenic influences. For Cd and Hg,
since most of them had concentrations below the detection limit, the pXRF results were
not convincing. Caporale et al. found that the laboratory content was much closer to the
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content measured by pXRF when the source of the soil metal pollution was partially or
completely from anthropogenic contamination [19]. This coincided with the finding in the
current research that the coefficients between the pXRF measurements and the laboratory
concentrations of Cu and Cr were larger than the other six heavy metals (Figure 7b). By
contrast, Zn and Pb showed relatively low coefficients, which meant that the accuracy of
pXRF at detecting them was poor compared to Cu and Cr (Figure 7b).
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In the pXRF high-value dataset, the correlation coefficients between the pXRF mea-
surements and the laboratory concentrations of Cr and Cu were the highest (Figure 7).
There was no heavy metal with pXRF measurement significantly correlated to the labo-
ratory concentrations of Cr and Cu. The different pollution sources explained why the
correlated relationship between different heavy metals was not strong. Therefore, the
pXRF measurement of other heavy metals was weekly correlated to the laboratory con-
tent of the heavy metal, and adding their pXRF measurements could hardly improve the
model’s performance.

5. Conclusions

This study demonstrates that machine learning methods realized the prediction of Cu
and Cr contents from pXRF measurements of soil samples from multiple contaminated
sites. For Cu and Cr, the MARS model was better than the LR model at predicting the
contents. The predicted results of samples in the pXRF high-value and pXRF low-value
datasets showed that the univariate and multivariate MARS models performed well.

In general, the different predictive models could be chosen for different purposes. To
obtain accurate predictions for high-concentration soil samples, high-concentration soil
samples (pXRF measurements above BVs) were used to train the univariate MARS models
with fewer calculations. To obtain accurate predictions for low-concentrations soil samples,
multivariate MARS models could be used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10030536/s1, Table S1: The standards of the analyzed method
for selected metals in the laboratory; Table S2: Statistics characteristics of pXRF and Lab analyzed
result of samples from pXRF low-value dataset; Table S3: Statistics characteristics of pXRF and Lab
analyzed result of samples from pXRF high-value dataset; Table S4: Validation statistics for predictive
results of heavy metals using LR model and MARS model; Table S5: Validation statistics for predictive
results of heavy metals of samples in the pXRF low-value dataset using univariate LR model and
MARS model; Table S6: Validation statistics for predictive results of heavy metals of sample in pXRF
high-value dataset using univariate LR model and MARS model.
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