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Abstract: This paper focuses on the problem of event-triggered H∞ asynchronous filtering for
Markov jump nonlinear systems with varying delay and unknown probabilities. An event-triggered
scheduling scheme is adopted to decrease the transmission rate of measured outputs. The devised
filter is mode dependent and asynchronous with the original system, which is represented by a hidden
Markov model (HMM). Both the probability information involved in the original system and the
filter are assumed to be only partly available. Under this framework, via employing the Lyapunov–
Krasovskii functional and matrix inequality transformation techniques, a sufficient condition is
given and the filter is further devised to ensure that the resulting filtering error dynamic system is
stochastically stable with a desired H∞ disturbance attenuation performance. Lastly, the validity of
the presented filter design scheme is verified through a numerical example.

Keywords: event-triggered scheduling; Markov jump nonlinear systems(MJNSs); error threshold;
partly unknown probabilities; asynchronous filtering

1. Introduction

Markov jump systems (MJSs), as a kind of significant hybrid stochastic systems, have
attracted immense attention in recent decades owing to their wide range of applications in
aerospace, electric power systems, communication, economic, traffic and other areas [1–4].
Scholars have put a lot of effort into research on MJSs since they were first proposed by
Krasovskii and Lidskii [5] in the 1960s, and many results for MJSs have been released
in the literature (see [6–13] and the references therein). Additionally, it is a fact that the
nonlinearity in MJSs, which makes the system more complex, is ubiquitous in many real-
world applications. Therefore, the research on Markov jump nonlinear systems (MJNSs)
has great theoretical significance and practical application value and has been widely
examined [14–18]. Among this research, neural network (NN) [16–18] is one of the most
popular approaches to deal with nonlinearity. For instance, the exponential stability
problem was discussed for multiple-delayed Markov jump NNs (MJNNs) in [16].

Moreover, the filtering or estimation is a very essential issue in the field of cybernetics
and has received strong interest from scholars [19], mainly for the reason that it is often a
difficult job to obtain the accurate values of system states in engineering practice, and thus,
a high-quality filter is essential for state estimation. The problem of filtering or estimation
for MJSs has been investigated in [12–14,20–25]. To mention a few such studies, the H∞
filtering and the dissipative asynchronous filtering for periodic MJSs were investigated
in [12,13], respectively. The state estimation problem for a class of MJNSs was explored
in [14], which put forward a moving horizon estimation algorithm, and the optimal estimate
was obtained by minimizing a quadratic estimation cost function.

On the other hand, due to the increasing complexity of networks, communication
constraint is also a serious problem for networked control systems (NCSs), which have
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been extensively used in real systems in recent years [26]. To the best of our knowledge,
the event-triggered (ET) scheduling scheme is a useful and emerging approach to deal with
this trouble and has become one of the current research hotspots [27–30]. Event-triggered
scheduling means that the information transmission of nodes in the system determine
whether to execute or not according to the preset event-triggered conditions. Based on this
scheme, the measured outputs are transmitted only when the ET condition holds. Com-
pared with the traditional periodic transmission scheme, it has the advantages of reducing
redundant communication and saving energy, and so on. In recent years, some useful
results for MJSs on this topic have been reported [20–22,31–33]. Specially, the filtering or
estimation problem was addressed in [20–22,33]. For example, the event-based state estima-
tion problem was explored for MJSs considering quantization and stochastic nonlinearity
simultaneously in [20], in which both the ET and quantization schemes were introduced
into the model of MJSs, then an estimator was devised to ensure that the filtering error
system was randomly bounded and satisfied a desired H∞ performance. The event-based
dissipative filtering issue was studied for delayed MJSs [22], by means of the Lyapunov
and Wirtinger inequality techniques, the stochastic stability with strict dissipativity of the
error system and the co-design design scheme of the ET matrices and filter parameters
were presented.

In NCSs, the plant, filter or controller are always geographically scattered and con-
nected through communication network, which will inevitably cause some issues,
e.g., network-induced delay and data dropout, and lead to incomplete data transmis-
sion among different nodes, thus causing asynchronous problems in MJSs [25]. However,
in many of the existing works, this problem is ignored by assuming that the filter/controller
is mode independent [34,35] or synchronous [36,37] with the original system. Mode in-
dependence implies that there is no use of available mode information, which will bring
about more conservatism, and the assumption of synchronization means that the modes of
the filter/controller are completely consistent with those of the plant, which is too rigor-
ous. Due to realizing the irrationality of these assumptions, recently, scholars have paid
increasing attention to the investigation of asynchronous techniques [23–25,38]. In [23,24],
the asynchronous phenomenon was described as a piecewise homogeneous Markov pro-
cess. In [13,25,38], a hidden Markov model (HMM) was proposed to address the asyn-
chronous issue, which related the filter/controller to the plant with a conditional probability
matrix (CPM). Based on this, the asynchronous filtering problem for MJNNs in [25] and the
asynchronous control problem for MJSs in [38] were investigated, respectively.

Based on the foregoing discussions, we know that some important results have been
released about ET scheduling schemes or asynchronous techniques in MJSs. These works
have important theoretical and practical significance. Nevertheless, there are few results
concerning the ET asynchronous filtering/control for MJSs or MJNSs, which is one of the
motivations for our work. In addition, it should be noted that the above asynchronous
results are restricted due to the assumption that both the probability information of the
original system and the filter are considered to be fully accessible. However, it is difficult
or costly to fulfill in many engineering applications. However, some results on the partly
unknown transition probabilities (TPs) case [39,40] have been reported recently, in which it
is assumed that the modes of the plant and the filter/controller are synchronous, and the
unknown entries only exist in the transition probability matrix (TPM), so they are not
suitable for asynchronous cases. For instance, in the HMM-based asynchronous case, there
may be unknown entries in both TPM and CPM, which is more complex and challenging.
This is another motivation for our work.

This paper will concentrate on the issue of ET asynchronous filter design for discrete-
time MJNSs based on a NN model with varying delay and unknown probabilities. An ET
scheduling scheme is introduced to decrease the transmission rate of measured outputs.
The modes of the devised filter are dependent on and asynchronous with those of the origi-
nal system, represented by an HMM. It is assumed that both the probability information
involved in the original system and the filter are only partly available. By utilizing the
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Lyapunov–Krasovskii functional (LKF) and matrix inequality transformation techniques,
an asynchronous filter is devised to ensure the stochastic stability and a desired H∞ perfor-
mance of the error system. The slack matrix technique and Projection lemma are introduced
to facilitate the filter design. Lastly, a numerical example is offered to demonstrate the
validity of the obtained results. The major contributions of this work are stated as follows:

(1) A more practical scenario is considered, which includes not only the varying
delay, partly unknown probabilities and nonlinearity of the original system, but also the
network-induced communication constraint and asynchronous problem.

(2) The ET asynchronous filtering problem based on HMM is first explored for discrete-
time delayed MJNNs, in which both the TPM of the original system and the CPM of the
filter are assumed to be only partly accessible.

(3) The filtering scheme proposed in this paper has strong versatility since the asyn-
chronous strategy based on HMM contains two special cases: mode independence and
synchronization, and the case with partly unknown probabilities considered in this paper
covers both fully known and fully unknown cases.

2. Preliminaries

In this work, the physical plant, which is a discrete-time MJNN with varying delay, is
addressed as below:

S0 :



x(k + 1) = A(αk)x(k) + Ad(αk)x(k− d(k))
+E(αk)g(x(k)) + Ed(αk)g(x(k− d(k)))
+B(αk)w(k)

y(k) = C1(αk)x(k) + Cd(αk)x(k− d(k))
+D1(αk)w(k)

z(k) = C2(αk)x(k) + D2(αk)w(k)
x(k0) = χ(k0), k0 = −τ2,−τ2 + 1, · · · ,−1, 0

(1)

where x(k) ∈ Rn is the system state with the initial value χ(k0), y(k) ∈ Rp is the output
signal, z(k) ∈ Rq is the target value to be estimated, and w(k) ∈ Rr is referring to the
disturbance with w(k) ∈ l2[0, ∞). g(x(k)) ∈ Rn denotes a nonlinear function. d(k) ∈ N+

means the system delay with lower bound τ1 and upper bound τ2 . A(αk), Ad(αk), E(αk),
Ed(αk), B(αk), C1(αk), Cd(αk), D1(αk), C2(αk) and D2(αk) are known constant matrices with
proper dimensions. αk refers to a Markov chain which regulates the jumps of system(S0) in
a set of modes S1= {1, 2, · · · , s1} with a TPM Φ= {φij}, and its TP φij is defined as

Pr {αk+1 = j|αk = i} = φij (2)

in which φij ≥ 0 and
s1
∑

j=1
φij=1 for ∀i, j ∈ S1 .

Next, a filter will be devised for estimating z(k) according to measured outputs. Nev-
ertheless, due to the introduction of an ET scheduler, the output signal will be transmitted
only when the ET condition holds(see Figure 1). While the deviation between the current
measured output and the last transmission signal is bigger than its relative error, the output
signal will be transmitted (i.e., ρ(k) = 1), otherwise it will not be transmitted (i.e., ρ(k) = 0).
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Figure 1. Block diagram of ET asynchronous filtering

Therefore, at the sampling instant k, if the ET condition holds, the filter will receive
the latest measured output, otherwise it will keep the last transmission value by zero
order holder (ZOH). Based on this scheme, the input of the filter during the period k is
addressed as:

ỹi(k) =
{

yi(k) |ỹi(k− 1)− yi(k)| > δi|yi(k)|
ỹi(k− 1) |ỹi(k− 1)− yi(k)| ≤ δi|yi(k)|

(3)

where i = 1, 2, · · · , p ; δi ∈ [0, 1] is the error threshold.
Setting H(k) = diag{∇1(k),∇2(k), · · · ,∇p(k)}, ∇i(k) ∈ [−δi, δi], i = 1, 2, · · · , p ,

then in accordance with (3) , we can obtain

ỹ(k) = (I + H(k))y(k) (4)

Remark 1. Thanks to the introduction of the ET scheduler into MJNSs, the measured outputs need
not be transmitted in each sampling period, thus achieving the aim of reducing the data transmission
rate. In the following, we introduce a communication performance index of MTR = n̄sent/ntotal ,
which denotes the mean transmission rate ( n̄sent and ntotal denote the average number of measured
output y(k) transmitted with and without the ET scheduler in the simulation time, respectively.).
The smaller MTR means better communication performance.

Based on the ET outputs (4), we will adopt a mode-dependent filter to estimate z(k) :

Sf :
{

x f (k + 1) = A f (βk)x(k) + B f (βk)ỹ(k)
z f (k) = C f (βk)x(k) + D f (βk)ỹ(k)

(5)

where x f (k) ∈ Rn refers to the filter state, z f (k) ∈ Rq denotes the estimated value of z(k).
A f (βk), B f (βk), C f (βk) and D f (βk) are parameters of the filter to be obtained, which are
dependent on the filter mode βk, βk ∈ S2= {1, 2, · · · , s2}.

In this paper, filter(Sf) is mode dependent, and its mode βk is influenced by the
mode αk of system(S0) via a CPM Ω= {σim}, where the conditional probability(CP) σim is
given by

Pr {βk = m|αk = i} = σim (6)

which denotes the probability that filter(Sf) is in the m-th mode while the plant works in

the i-th mode. Obviously, σim ≥ 0 and
s2
∑

m=1
σim=1 for ∀i ∈ S1, m ∈ S2.

Remark 2. Notice that the devised filter acts asynchronously with the original system as their
jumping processes are controlled by different Markov parameters, βk and αk, respectively. However,
the parameter βk is affected by αk through the CP (6). Thus, the set (αk, βk, Φ, Ω) is addressed as
an HMM, linking filter(Sf) and system(S0) tightly with a CPM which can reflect the asynchronous
degree between them. We should mention that the devised asynchronous filter under this scheme is
more general because it includes the synchronous and mode-independent cases [38].
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Considering the complexity of practical systems, in this paper, we assume that the
entries of TPM Φ and CPM Ω are partly inaccessible; namely, Φ and Ω may take the forms
as follows:

Φ=

 φ11 ? ?
? ? φ23
? φ32 ?

, Ω=

 σ11 ? ?
? ? σ23
? σ32 ?

 (7)

in which “?” refers to the unknown elements. For ∀i ∈ S1 , define S1=S i
1K + S i

1U and
S2=S i

2K +S i
2U , where {

S i
1K =

{
j : φij is known

}
S i

1U =
{

j : φij is unknown
}{

S i
2K = {m : σim is known}

S i
2U = {m : σim is unknown}

(8)

Remark 3. In recent years, there have been some research results on the HMM-based asynchronous
filtering/control of MJSs, e.g., [25,38], in which all TPs in TPM and CPs in CPM are assumed to be
known. Nevertheless, it is very arduous or costly to obtain all the information about TPM or CPM.
Hence, a more complex and challenging case where both TPM and CPM are only partly accessible
will be explored in this paper. It is worth pointing out that our result under this framework is more
general because it contains two special cases: (1) the fully known case, i.e., S i

1U = ∅ or S i
2U = ∅,

which is the most studied case at present; (2) the fully unknown case, i.e., S i
1K = ∅ or S i

2K = ∅ .

For brevity of notation, in the following, parameters αk, αk+1 and βk are simplified to i,

j and m of the subscript, for example, A(αk)
∆
= Ai , A f (βk)

∆
= A f m .

Selecting the augmented vector x̃(k) = [ xT(k) xT
f (k) ]T and the estimated error

ẽ(k) = z(k)− z f (k), and synthesizing (1), (4) and (5), we derive the filtering error dynamic
system as follows:

Se :


x̃(k + 1) = Ãim x̃(k) + Ãdimx(k− d(k))

+B̃imw(k) + Ī[Eig(x(k))
+Edig(x(k− d(k)))]

ẽ(k) = C̃im x̃(k) + C̃dimx(k− d(k))
+D̃imw(k)

(9)

where Ãim =

[
Ai 0

B f m(I + H(k))C1i A f m

]
, Ãdim =

[
Adi

B f m(I + H(k))Cdi

]
,

B̃im =

[
Bi

B f m(I + H(k))D1i

]
, Ī =

[
I
0

]
, C̃im =

[
C2i − D f m(I + H(k))C1i −C f m

]
,

C̃dm =
[
−D f m(I + H(k))Cdi

]
, D̃im =

[
D2i − D f m(I + H(k))D1i

]
.

Next, we will provide some important definitions, assumptions and lemmas that
promote the work of this paper.

Definition 1 ([41]). The filtering error system(Se) with w(k) = 0 is said to be stochastically stable
if the following condition is satisfied for the arbitrary initial condition (x̃(0), α0)

E

{
∞

∑
k=0
‖x̃(k)‖2|x̃(0), α0

}
< ∞ (10)

Definition 2 ([41]). The filtering error system(Se) with w(k) ∈ l2[0, ∞) is said to have an H∞
disturbance attenuation performance γ, if under the zero initial condition, the error ẽ(k) fulfills the
condition as follows:
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∞

∑
k=0

E
{
‖ẽ(k)‖2

}
< γ2

∞

∑
k=0
‖w(k)‖2 (11)

where γ is a positive scalar.

Assumption 1 ([42]). The continuous nonlinear function gi(•) in system(S0) is supposed to be
bounded, and satisfies the following condition

li ≤
gi(x)

x ≤ hi x 6= 0, x ∈ R

where li and hi are constants, i = 1, 2, · · · , n.

Lemma 1 ([42]). Based on Assumption 1, there is a symmetric matrix N > 0, satisfying

[
x(k)

g(x(k))

]T[ Y1N −Y2N
∗ N

][
x(k)

g(x(k))

]
< 0

where Y1=diag{l1h1, l2h2, · · · , lnhn}, Y2=diag{(l1+h1)/2, (l2+h2)/2, · · · , (ln+hn)/2} .

Lemma 2 (Projection lemma [43]). For given matrices X, U and V, there exists a matrix Y
such that

X + UTYV + VTYTU < 0

is satisfied, if and only if the inequalities listed below are true

UT
⊥XU⊥ < 0, VT

⊥XV⊥ < 0

where U⊥ and U, V⊥ and V are orthogonal complements, respectively.

Based on the above, the objective of this paper is to develop a feasible ET asynchronous
filter(S f ) for discrete-time delayed MJNSs (S0) with unknown probabilities, such that the
error system (Se) is stochastically stable and has a desired H∞ performance γ.

3. Main Results

We will first provide a sufficient condition about the stochastic stability with an H∞
performance γ of the error system (Se) in this section, then present a design scheme of a
solvable filter.

For brevity, we first introduce the following notations:

Āim =

[
Ai 0

B f mC1i A f m

]
, Ādim =

[
Adi

B f mCdi

]
, B̄im =

[
Bi

B f mD1i

]
, C̄im =

[
C2i − D f mC1i −C f m

]
,

C̄dim =
[
−D f mCdi

]
, D̄im =

[
D2i − D f mD1i

]
, η1(k) =

[
x̃T(k) gT(x(k)) xT(k− d(k)) gT(x(k− d(k)))

]T ,

η(k) =
[

ηT
1 (k) wT(k)

]T , Λ=diag{δ1, δ2, · · · , δp}, Q =

[
Q11 Q12
∗ Q22

]
, τ=τ2 − τ1 + 1.

By use of LKF and H∞ theory, we can obtain the following conclusions.

Theorem 1. For a prescribed γ > 0, the filtering error dynamic system(Se) based on Assumption 1
is stochastically stable with the H∞ performance γ, if there are matrices A f m, B f m, C f m, D f m,
Pi > 0, Fim > 0, and Q > 0, and diagonal matrices N1 > 0, N2 > 0, and Wim > 0, such that the
following two conditions are fulfilled for ∀i ∈ S1, m ∈ S i

2U

FK
i +(1− σK

i )Fim < Pi (12)
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and for ∀i ∈ S1, j ∈ S i
1U , m ∈ S2

Πim =

 Π1
im Um ZT

i ΛWim
∗ −Wim 0
∗ ∗ −Wim

 < 0 (13)

where FK
i = ∑

m∈S i
2K

σimFim, σK
i = ∑

m∈S i
2K

σim, P̄i=PK
i +(1− φK

i )Pij, PK
i = ∑

j∈S i
1K

φijPj, φK
i =

∑
j∈S i

1K

φij, Π1
im=


Π11

i Π12
im Π13

im Π14
im

∗ τQ̄−Π22 − F̄im 0 0
∗ ∗ −Q−Π33 0
∗ ∗ ∗ −γ2 I

, Π11
i =

[
−P̄−1

i 0
0 −I

]
,

Π12
im=

[
Āim ĪEi
C̄im 0

]
, Π13

im=

[
Ādim ĪEdi
C̄dim 0

]
, Π14

im=

[
B̄im
D̄im

]
, Q̄=

[
ĪQ11 ĪT ĪQ12
∗ Q22

]
,

F̄im=

[
Fim 0
0 0

]
, Π22=

[
ĪY1N1 ĪT − ĪY2N1
∗ N1

]
, Π33=

[
Y1N2 −Y2N2
∗ N2

]
, Um =[ [

0 BT
f m

]
−DT

f m 0 0 0 0 0
]T

, Zi =
[

0 0
[

C1i 0
]

0 Cdi 0 D1i
]
.

Proof. First, we will derive some useful results according to (12) and (13). Equation (12)
ensures that

s2

∑
m=1

σimFim − Pi < 0 (14)

holds, because when σK
i < 1,

s2
∑

m=1
σimFim − Pi = FK

i +(1− σK
i ) ∑

m∈S i
2U

σim
1−σK

i
Fim − Pi

= ∑
m∈S i

2U

σim
1−σK

i

{
FK

i +(1− σK
i )Fim − Pi

} (15)

and when σK
i =1, obviously, (12) is equivalent to (14).

In terms of the Schur complement, (13) is equivalent to

Π1
im + UmW−1

im UT
m + ZT

i ΛWimΛZi < 0 (16)

which obtains
Π2

im
∆
= Π1

im + Um H(k)Zi + ZT
i HT(k)UT

m < 0 (17)

and it is easy to derive that

Π2
im=


Π11

i Π̄12
im Π̄13

im Π̄14
im

∗ τQ̄−Π22 − F̄im 0 0
∗ ∗ −Q−Π33 0
∗ ∗ ∗ −γ2 I

 < 0 (18)

where Π̄12
im =

[
Ãim ĪEi
C̃im 0

]
, Π̄13

im =

[
Ãdim ĪEdi
C̃dim 0

]
, Π̄14

im =

[
B̃im
D̃im

]
.

Then, based on the Schur complement and the analysis similar to (14) and (15), we can
derive from (18) that {

Π3
im

∆
= υ + µT

im P̃iµim < F̃im

Π4
im

∆
= ξ − ςT

imΠ̃11
i ςim < F̂im

(19)
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where µim =
[

Ãim ĪEi Ãdim ĪEdi
]
, υ =

[
τQ̄−Π22 0
∗ −Q−Π33

]
,

Π̃11
i =

[
−P̃i 0

0 −I

]
, ξ = diag{υ,−γ2 I}, ςim =

[
Π̄12

im Π̄13
im Π̄14

im
]
, P̃i =

s1
∑

j=1
φijPj,

F̃im = diag{F̄im, 0}, F̂im= diag{F̄im, 0, 0}.
Next, a mode-dependent LKF is introduced as follows:

V(k) =
2

∑
l=1

Vl(k) (20)

where V1(k) = x̃T(k)Pαk x̃(k), V2(k) =
−τ1+1

∑
b=−τ2+1

k−1
∑

a=k−1+b

[
x(a)

g(x(a))

]T

Q
[

x(a)
g(x(a))

]
.

Then, we calculate ∇V(k) along the locus of the error system (Se) and take the expec-
tation. It is easy to find that E{∇V(k)} = E{∇V1(k)}+ E{∇V2(k)}.

E{∇V1(k)} = E{V1(k + 1)−V1(k)|x̃(k), αk = i}
= E

{
x̃T(k + 1)Pj x̃(k + 1)− x̃T(k)Pi x̃(k)

}
= E

{
s2
∑

m=1

s1
∑

j=1
σimφij x̃T(k + 1)Pj x̃(k + 1)−x̃T(k)Pi x̃(k)

}
= E

{ s2
∑

m=1
σim x̃T(k + 1)P̃i x̃(k + 1)−x̃T(k)Pi x̃(k)

}
= E

{ s2
∑

m=1
σimηT(k)

[
µT

im
B̃T

im

]
P̃i
[

µim B̃im
]
η(k)−x̃T(k)Pi x̃(k)

}
(21)

E{∇V2(k)} = E{V2(k + 1)−V2(k)}

= E

{
τ

[
x(k)

g(x(k))

]T

Q
[

x(k)
g(x(k))

]
−

k−τ1
∑

a=k−τ2

[
x(a)

g(x(a))

]T

Q
[

x(a)
g(x(a))

]}

≤ E

{[
x̃(k)

g(x(k))

]T

τQ̄
[

x̃(k)
g(x(k))

]
−[

x(k− d(k))
g(x(k− d(k)))

]T

Q
[

x(k− d(k))
g(x(k− d(k)))

]}
(22)

According to Lemma 1, there are diagonal matrices N1 > 0, N2 > 0 such that
(23) and (24) are satisfied [

x̃(k)
g(x(k))

]T

Π22
[

x̃(k)
g(x(k))

]
≤ 0 (23)

[
x(k− d(k))

g(x(k− d(k)))

]T

Π33
[

x(k− d(k))
g(x(k− d(k)))

]
≤ 0 (24)

Synthesizing (22)–(24), we get that

E{∇V2(k)} ≤ E
{

ηT
1 (k)υη1(k)

}
(25)
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Next, we will verify that (Se) with w(k) = 0 is stochastically stable, and that

E{∇V(k)} = E{∇V1(k)}+ E{∇V2(k)}

≤ E
{ s2

∑
m=1

σimηT
1 (k)Π

3
imη1(k)− x̃T(k)Pi x̃(k)

}
< E

{
ηT

1 (k)(
s2
∑

m=1
σim F̃im)η1(k)− x̃T(k)Pi x̃(k)

}
= E

{
x̃T(k)

( s2
∑

m=1
σimFim − Pi

)
x̃(k)

}
≤ εE

{
x̃T(k)x̃(k)

}
(26)

where “<” is based on (19), ε = λmax
i∈S1

(
s2
∑

m=1
σimFim − Pi) .

Notice that ε < 0 due to (12) and (14); then,

E{
∞
∑
0
∇V(k)} = E{V(∞)−V(0)} ≤ εE

{
∞
∑
0

x̃T(k)x̃(k)
}

(27)

therefore,

E

{
∞

∑
0

x̃T(k)x̃(k)

}
< ∞ (28)

which conforms to Definition 1, so we have verified the stochastic stability for (Se) with
w(k) = 0.

Next, we will verify that (Se) with w(k) ∈ l2[0, ∞) has an H∞ performance γ. Define
the performance index as

J =
∞
∑

k=0
E
{

ẽT(k)ẽ(k)− γ2wT(k)w(k)
}

=
∞
∑

k=0
E
{

ẽT(k)ẽ(k)− γ2wT(k)w(k) +∇V(k)
}

+E{V(0)} − E{V(∞)}

(29)

Owing to the zero initial value, we obtain that V(0) = 0, whereas V(∞) ≥ 0 , thus

J ≤
∞
∑

k=0
E
{

ẽT(k)ẽ(k)− γ2wT(k)w(k) +∇V(k)
}

=
∞
∑

k=0
E
{ s2

∑
m=1

σimηT(k)Π4
imη(k)− x̃T(k)Pi x̃(k)

}
<

∞
∑

k=0
E
{ s2

∑
m=1

σimηT(k)F̂imη(k)− x̃T(k)Pi x̃(k)
}

=
∞
∑

k=0
E
{

x̃T(k)
( s2

∑
m=1

σimFim − Pi

)
x̃(k)

}
< 0

(30)

in which the two “<” are obtained on the basis of (19) and (14), respectively. Then, from (11)
and (30), we can readily conclude that the error system (Se) has an H∞ performance γ.
Thus, the proof is accomplished.

Remark 4. The purpose of introducing the extra matrix Fim in Theorem 1 is to simplify matrix
inequalities. However, in order to solve the parameters of the filter, the nonlinearity in (13) needs to
be further processed so as to transform the matrix inequalities into linear matrix inequalities (LMIs).

Next, we will devise the filter with the techniques of slack matrix and Projection
lemma and obtain Theorem 2.
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Theorem 2. The filtering error dynamic system (Se) based on Assumption 1 is stochastically stable
with an H∞ performance γ , if there are matrices Ã f m, B̃ f m, C̃ f m, D̃ f m, and Gm, a scalar γ̃ > 0,
diagonal matrices N1 > 0, N2 > 0, and Wim > 0, and the following matrices

Pi =

[
P1

i P2
i

∗ P3
i

]
> 0, Fim =

[
F1

im F2
im

∗ F3
im

]
> 0, Q =

[
Q11 Q12
∗ Q22

]
> 0,

such that the following two conditions are fulfilled for ∀i ∈ S1, m ∈ S i
2U

FK
i +(1− σK

i )Fim < Pi (31)

and for ∀i ∈ S1, j ∈ S i
1U , m ∈ S2

ΞT
i

_

ΠimΞi < 0,
^

Πim < 0 (32)

where

_

Πim =

 P̄i −
_

Gm
_

Π
12
im

∗
^

Πim

,
_

Gm =

[
0 Gm
∗ Gm + GT

m

]
,
^

Πim =


^

Π
1
im

^

Um (
^

Zi)
T

ΛWim
∗ −Wim 0
∗ ∗ −Wim

 ,

_

Π
12
im =

[
0 B̃ f mC1i Ã f m 0 B̃ f mCdi 0 B̃ f mD1i B̃ f m 0
0 B̃ f mC1i Ã f m 0 B̃ f mCdi 0 B̃ f mD1i B̃ f m 0

]
,

^

Π
1
im =


−I

^

Π
12
im 0 D2i − D̃ f mD1i

∗
^

Π
22
im 0 0

∗ ∗ −Q−Π33 0
∗ ∗ ∗ −γ̃I

 ,
^

Π
12
im =

[
C2i − D̃ f mC1i −C̃ f m 0

]
,

^

Π
22
im =

 τQ11 −Y1N1 − F1
im −F2

im τQ12+Y2N1
∗ −F3

im 0
∗ ∗ τQ22 − N1

 ,
^

Um =
[
−D̃T

f m 0 0 0 0 0 0
]T

,

^

Zi =
[

0 C1i 0 0 Cdi 0 D1i
]

, Ξ̄i =
[

0 0 Ai 0 Ei Adi Edi Bi 0 0
]
,

Ξi =
[

Ξ̄T
i I(6n+2p+q+r)

]T
, γ̃ = γ2.

In addition, if (31) and (32) are solvable, the filter matrices of (5) can be gained by{
A f m = (Gm)

−1 Ã f m, B f m = (Gm)
−1B̃ f m

C f m = C̃ f m, D f m = D̃ f m
(33)

Proof. In order to verify Theorem 2, (13) is rewritten as

Πim =

[
−(P̄i)

−1 Ψ1
im

∗ Ψ2
im

]
< 0 (34)

By comparing (13) and (34), it is easy to obtain Ψ1
im and Ψ2

im, which is omitted here
to save space. To handle the nonlinearity (P̄i)

−1 in (34), an invertible slack matrix Gim is
introduced as follows:

Gim
∆
=

[
G1

im Gm
G2

im Gm

]
(35)

where G1
im , G2

im , Gm are n-dimensional square matrices. Then, (34) is pre-multiplied and
post-multiplied by diag{Gim, I} and its transpose; hence, one has[

−Gim(P̄i)
−1GT

im GimΨ1
im

∗ Ψ2
im

]
< 0 (36)
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On the other hand, according to the fact that (P̄i −Gim)(P̄i)
−1(P̄i − Gim)

T ≥ 0 , we can
readily obtain that

P̄i − Gim − GT
im ≥ −Gim(P̄i)

−1GT
im (37)

Combining (13), (36) and (37), we know that the following condition

Π̃im
∆
=

[
P̄i − Gim − GT

im GimΨ1
im

∗ Ψ2
im

]
< 0 (38)

is sufficient for (13). Moreover, we define{
Ã f m

∆
= Gm A f m, B̃ f m

∆
= GmB f m

C̃ f m
∆
= C f m, D̃ f m

∆
= D f m

(39)

and substitute them into (38).
Then, we define

Θi =
[
−In Ξ̄i

]
, Γ =

[
I2n 0(2n)×(5n+2p+q+r)

]
, Γ⊥ =

[
0(2n)×(5n+2p+q+r)

I(5n+2p+q+r)

]
,

Ḡim =

[
G1

im
G2

im

]
We can readily derive that Ξi and Θi, Γ⊥ and Γ are orthogonal complements, respectively.
Then, Π̃im is decomposed into the following form

Π̃im =
_

Πim+ΓTḠimΘi + ΘT
i ḠT

imΓ (40)

In accordance with lemma 2 (i.e., Projection lemma), Π̃im < 0 is equivalent to

ΞT
i

_

ΠimΞi < 0, ΓT
⊥

_

ΠimΓ⊥ < 0 (41)

which is obviously equivalent to (32). Furthermore, it can be inferred from (38) that Gim and
Gm are both nonsingular, so we can deduce (33) from (39). Thus, we have accomplished
the proof.

Remark 5. In Theorem 2, a filter design scheme is provided such that the error system (Se) is
stochastically stable with an H∞ performance γ. γ means the H∞ performance level, a smaller γ
indicates a better performance. The optimal performance γ∗ =

√
γ̃min can be yielded by solving

the problem of convex optimization as follows:

{
min γ̃
s.t. (31), (32)

(42)

Remark 6. The number of LMIs Nl in Theorem 2 is

Nl =
s1

∑
i=1

max
{

1,
∣∣∣S i

2U

∣∣∣}+s2 ·
s1

∑
i=1

max
{

1,
∣∣∣S i

1U

∣∣∣}+ s1 · s2 (43)

where
∣∣S i

1U

∣∣ and
∣∣S i

2U
∣∣ represent the number of elements in the set S i

1U and S i
2U , respectively.

From (43), we clearly find that as the number of unknown entries for TPM Φ and CPM Ω increases,
so does the number of LMIs required, thus aggravating the computational burden.

4. Numerical Example

This section will introduce a numerical example to verify the validity of the presented
method. A three-mode MJNN(S0) is considered with the parameters as follows, which are
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partly borrowed from [25]:

Mode 1 :

A1 =

[
0.2 0
0 0.2

]
, Ad1 =

[
0.05 0

0 0.05

]
, E1 =

[
0.3 −0.2
0.1 0.3

]
,

Ed1 =

[
0.1 −0.2
0.1 0.15

]
, B1 =

[
0.1
0.2

]
, C11 =

[
0.17 0.18

]
, Cd1 =

[
0.1 0.1

]
, D11 = 0.1,

C21 =
[

0.2 0.35
]
, D21 = 0.1.

Mode 2:

A2 =

[
0.1 0
0 0.3

]
, Ad2 =

[
0.1 0
0 −0.1

]
, E2 =

[
0.3 0.1
0 0.2

]
, Ed2 =

[
0.1 −0.2
0 0.1

]
,

B2 =

[
0.6
0.3

]
, C12 =

[
0.42 0.90

]
, Cd2 =

[
−0.1 −0.1

]
, D12 = 0.5,

C22 =
[

0.1 0.15
]
, D22 = 0.15.

Mode 3:

A3 =

[
0.2 0
0 0.4

]
, Ad3 =

[
0.05 0

0 −0.15

]
, E3 =

[
0.2 −0.1
0 0.1

]
, Ed3 =

[
0.1 −0.1
0.1 0.1

]
,

B3 =

[
0.4
0.2

]
, C13 =

[
0.12 0.5

]
, Cd3 =

[
−0.05 −0.1

]
, D13 = 0.3,

C23 =
[

0.2 0.2
]
, D23 = 0.2.

The nonlinear function is chosen as g(x) = tanh(x) with the bounds of l1 = l2 = 0 and
h1 = h2 = 1 ; the delay d(k) ∈ {1, 2, 3} is time-varying and random with τ = 3, and the
error threshold of the ET scheduler is δ = 0.3.

In the sequel, four different TPM Φi and CPM Ωi (i ∈ {1, 2, 3, 4}) will be considered.

Φ1=

 0.85 0.05 0.1
0.2 0.5 0.3
0.5 0.1 0.4

, Φ2=

 0.85 ? ?
0.2 0.5 0.3
0.5 0.1 0.4

, Φ3=

 0.85 ? ?
? ? 0.3

0.5 0.1 0.4

, Φ4=

 ? ? ?
? ? ?
? ? ?

.

Ω1=

 0.9 0.05 0.05
0.1 0.9 0
0.1 0.1 0.8

, Ω2=

 0.9 ? ?
0.1 0.9 0
0.1 0.1 0.8

, Ω3=

 0.9 ? ?
? ? 0

0.1 0.1 0.8

, Ω4=

 ? ? ?
? ? ?
? ? ?

.

Notice that Φ1 and Ω1 are fully known; Φ4 and Ω4 are fully unknown; Φ3 and Ω3

have more unknown elements than Φ2 and Ω2, respectively.
Firstly, in accordance with Theorem 2 and Remark 5, we can achieve the optimal H∞

performance for different combinations (Φi, Ωj), (i, j ∈ {1, 2, 3, 4}), listed in Table 1.
From Table 1, we can clearly observe that, for a given Φ (or Ω ), the optimal γ∗

increases gradually when varying Ω from Ω1 to Ω4 (or Φ from Φ1 to Φ4). In addition,
for (Φ, Ω) = (Φ1, Ω1), which denotes the fully known case, γ∗ is the smallest, which
means that the H∞ performance is the best. On the contrary, for (Φ, Ω) = (Φ4, Ω4), which
represents the fully unknown case, γ∗ is the largest, i.e., the H∞ performance is the worst.
Therefore, we can conclude that the less probability information of TPM Φ or CPM Ω
is available, the worse the H∞ performance is. What is more interesting is that for each
case of Ω = Ω4, we find that the designed filter parameters are the same, e.g., when
(Φ, Ω) = (Φ2, Ω4), the solved filter parameters are as follows:

A f m =

[
0.2266 −0.9508
0.0551 0.7867

]
, B f m =

[
−1.0299
−0.2585

]
, C f m =

[
−0.0912 −0.1673

]
, D f m = 0.1963.

for m = 1, 2, 3, which indicates that the filter is mode independent when Ω is fully unknown.
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Table 1. Optimal H∞ performance for different Φ and Ω with unknown elements.

γ∗ CPM Ω

Ω1 Ω2 Ω3 Ω4

TPM Φ

Φ1 0.5437 0.5524 0.6300 0.6386
Φ2 0.5498 0.5588 0.6393 0.6489
Φ3 0.5806 0.5884 0.6733 0.6784
Φ4 0.6319 0.6379 0.7440 0.7441

Furthermore, when (Φ, Ω) = (Φ3, Ω3), the designed filter parameters can be obtained
as follows:

Filter 1 :

A f 1 =

[
−0.1645 −1.3380
0.1701 0.9285

]
, B f 1 =

[
−1.5449
−0.0437

]
, C f 1 =

[
−0.0896 −0.1532

]
,

D f 1 = 0.1879.

Filter 2:

A f 2 =

[
0.0037 −0.8974
0.0714 0.6686

]
, B f 2 =

[
−1.2739
−0.2034

]
, C f 2 =

[
−0.0901 −0.1549

]
,

D f 2 = 0.1867.

Filter 3:

A f 3 =

[
0.3964 −0.0578
−0.0550 0.2278

]
, B f 3 =

[
0.7787
−1.8741

]
, C f 3 =

[
−0.0792 −0.1296

]
,

D f 3 = 0.2777.

We further assume that the initial values of filter (S f ) and system (S0) are x f (0) =[
0 0

]T and x(k0) =
[

0.2 −0.2
]T , k0 = −3,−2,−1, 0, α0 = 1 , and the external dis-

turbance is w(k) = 0.9k sin(k). Based on the above parameters, a simulation is made with
the presented ET asynchronous filtering scheme. The mode jumps of the original plant and
the filter are plotted in Figure 2 to show the asynchronization between them.

Figure 2. Mode jumps of the original plant and the filter.

The response curves of z(k) and z f (k), and ẽ(k) = z(k) − z f (k) are shown in
Figures 3 and 4, from which we observe that the filtering error system is stochastically
stable. In addition, we obtain MTR = 0.84 via calculation with the threshold δ = 0.3,
which implies that the ET scheduler can effectively decrease the data-transmission rate of
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measured outputs. Therefore, it can be observed that the effect of the devised ET filter in
Theorem 2 is fine.

Figure 3. The response curves of z(k) and z f (k).

Figure 4. The curve of estimation error ẽ(k).

In our research, the asynchronous issue is characterized as a HMM, the core of which
is the CPM, reflecting the asynchronous degree between filter (S f ) and system (S0). Next,
four different CPM Ωi (i ∈ {a, b, c, d}) are chosen to exhibit the influence of asynchronous
features on the H∞ performance of the error system (Se):

Ωa =

 1 0 0
0 1 0
0 0 1

, Ωb =

 1 0 0
0 1 0

0.1 0.1 0.8

, Ωc =

 1 0 0
0.1 0.9 0
0.1 0.1 0.8

, Ωd = Ω1.

which represent four different cases: synchronization, weak asynchronization, strong
asynchronization and full asynchronization. In addition, in order to compare the results
of the fully known TPs case and the partly unknown TPs case, we choose TPM Φ as Φ1

and Φ3, respectively. By solving the convex optimization in (42) with the LMI toolbox of
Matlab,we use the mincx function to calculate the corresponding optimal γ∗, as shown in
Table 2. We can easily see from Table 2 that, for a given Φ, with the increase in asynchronous
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degree between filter (S f ) and system (S0), γ∗ becomes larger, which implies the decline of
the H∞ performance.

Finally, we will investigate the influence of the ET feature on the H∞ performance
and communication performance with the varying threshold of δ in the ET scheduler. We
keep the other parameters fixed, and only vary the threshold parameter δ. The evolution
curves of the corresponding H∞ performance γ∗ and communication performance MTR
for the cases of (Φ1, Ω1) and (Φ3, Ω3) are shown in Figure 5. We can easily find that as
the parameter δ increases, γ∗ becomes larger, which implies that the H∞ performance
decreases, whereas the MTR value shows a trend of getting smaller, which means that
the communication performance of measured outputs is becoming better. Considering
the trade-off between the H∞ performance and communication performance, thus we can
choose a compromise error threshold of the ET scheduler to achieve a more satisfactory
comprehensive performance in practical applications.

Table 2. Optimal H∞ performance for Ω with different asynchronous features.

γ∗ CPM Ω
Ωa Ωb Ωc Ωd

TPM Φ Φ1 0.4791 0.4912 0.5249 0.5437
Φ3 0.5104 0.5219 0.5644 0.5806

(a) When (Φ, Ω) = (Φ1, Ω1)

Figure 5. Cont.
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(b) When (Φ, Ω) = (Φ3, Ω3)

Figure 5. The H∞ performance and communication performance with varying δ.

5. Conclusions

In this paper, the study of the ET H∞ asynchronous filtering issue was explored for
MJNSs with varying delay and unknown probabilities. An ET scheduling strategy was
adopted to decrease the transmission rate of measured outputs, and the filter was mode
dependent and asynchronous with the original MJNS, represented by an HMM. Both the
TPM of the original system and the CPM of the filter were assumed to be only partly
accessible. Under this framework, based on Lyapunov stability and H∞ theory, a sufficient
condition was derived, in which the nonlinearity of the matrix inequalities was further dealt
with and a feasible filter was achieved with the techniques of slack matrix and Projection
lemma. Lastly, the relationship between the H∞ performance and the unknown elements of
TPM and CPM, the relationship between the H∞ performance and the asynchronous feature
of CPM, and the relationship among the H∞ performance, communication performance
and the ET threshold were discussed and exhibited through a numerical example. The
simulation results sufficiently validated the availability of our developed filtering scheme,
which will contribute to the further research involving this subject, e.g., control and fault
detection. This can also be extended to other dynamic systems, such as singular MJNSs
and 2-D MJNSs.
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Abbreviations
The following abbreviations are used in this manuscript:

HMM hidden Markov model
MJNSs Markov jump nonlinear systems
MJSs Markov jump systems
NN neural network
MJNNs Markov jump neural networks
NCSs networked control systems
ET event-triggered
CPM conditional probability matrix
TPs transition probabilities
TPM transition probability matrix
LKF Lyapunov–Krasovskii functional
ZOH zero-order holder
CP conditional probability
LMIs linear matrix inequalities
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