
����������
�������

Citation: Abbas, A.; Shafqat, R.;

Jeelani, M.B.; Alharthi, N.H.

Convective Heat and Mass Transfer

in Third-Grade Fluid with

Darcy–Forchheimer Relation in the

Presence of Thermal-Diffusion and

Diffusion-Thermo Effects over an

Exponentially Inclined Stretching

Sheet Surrounded by a Porous

Medium: A CFD Study. Processes

2022, 10, 776. https://doi.org/

10.3390/pr10040776

Academic Editor: Blaž Likozar

Received: 31 March 2022

Accepted: 13 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Convective Heat and Mass Transfer in Third-Grade Fluid with
Darcy–Forchheimer Relation in the Presence of
Thermal-Diffusion and Diffusion-Thermo Effects over an
Exponentially Inclined Stretching Sheet Surrounded by a
Porous Medium: A CFD Study
Amir Abbas 1,*, Ramsha Shafqat 1 , Mdi Begum Jeelani 2,* and Nadiyah Hussain Alharthi 2

1 Department of Mathematics and Statistics, Faculty of Science, The University of Lahore, Sargodha-Campus,
Sargodha 40100, Pakistan; ramshawarriach@gmail.com

2 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University,
Riyadh 13314, Saudi Arabia; nhalharthi@imamu.edu.sa

* Correspondence: cfdamirabbas4693@gmail.com (A.A.); mbshaikh@imamu.edu.sa (M.B.J.)

Abstract: The current study aims to investigate the thermal-diffusion and diffusion-thermo effects
on heat and mass transfer in third-grade fluid with Darcy–Forchheimer relation impact over an
exponentially inclined stretching sheet embedded in a porous medium. The proposed mechanism
in terms non-linear and coupled partial differential equations is reduced to set of ordinary differen-
tial equations by employing an appropriate similarity variable formulation. The reduced form of
equations is solved by using the MATLAB built-in numerical solver bvp4c. The numerical results
for unknown physical properties such as velocity profile, temperature field, and mass concentration
along with their gradients such as the skin friction, the rate of heat transfer, and the rate of mass
transfer at angle of inclination α = π/6 are obtained under the impact of material parameters that
appear in the flow model. The solutions are displayed in forms of graphs as well as tables and are
discussed with physical reasoning. From the demonstration of the graphical results, it is inferred
that thermal-diffusion parameter Sr velocity, temperature, and concentration profiles are augmented.
For the increasing magnitude of the diffusion-thermo parameter D f the fluid velocity and fluid
temperature rise but the opposite trend in mass concentration is noted. The current results are
compared with the available results in the existing literature, and there is good agreement between
them that shows the validation of the present study.

Keywords: thermal-diffusion; diffusion-thermo; third-grade fluid; Darcy–Forchheimer relation;
stretching sheet; porous medium

1. Introduction

The complicated physical behavior of non-Newtonian fluids, as well as their widespread
use in industrial, medical, and military applications, has attracted the attention of re-
searchers. Non-Newtonian fluids have been studied using a variety of models. These
models can be divided into three categories of fluids: (i) grade fluids, (ii) Maxwell fluids,
and (iii) integral fluids. The study of grade fluids has received a lot of interest in recent
years. The third-grade fluid model is one of the most comprehensive fluid models, display-
ing all shear thinning and shear thickening fluid properties. Researchers paid attention to
such fluid models due to much application in engineering and industry such as in food
processing, papermaking, and lubricating, etc.

Sahoo and Do [1] numerically examined the mechanism of heat transfer in third-grade
fluid flow along the surface of a linear stretching sheet with the effects of slip condition.
Javanmard et al. [2] focused their attention on the process of fully developed flow of
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third-grade fluid in a pipe under the impact of applied magnetic field and convective
boundary conditions. The boundary layer flow of fluid of grade three is discussed in detail
by Pakdemirli [3]. The process of heat transfer in fluid of third grade over a linear stretching
sheet with partial slip condition is explored by Sahoo [4]. Jawanmard et al. [5] encountered
the heat transfer analysis of third-grade fluid in two coaxial pipes with aradius under the
influence of magnetic field. Zhang et al. [6] investigated the electro-magnetohydrodynamic
third-grade fluid flow and heat transfer by using the Darcy–Brinkman–Forchheimer model.
Combined effects of heat generation/absorption, thermal radiation, magnetic field, and
Newtonian conditions on third-grade nanofluid flow over a slendering stretching sheet
have been considered by Qayyum et al. [7]. Qayyum et al. [8] considered the effects
of chemical reaction, heat generation/absorption, and magnetic field on the third-grade
nanofluid flow over a non-linear stretching sheet with convective boundary conditions.
Imtiaz et al. [9] examined the impact of Cattaneo–Christove heat flux along with chemical
reaction influence on third-grade fluid. Hayat et al. [10] discussed the model of third-grade
fluid flow along the surface of a rotating disk with the combined impact of activation
energy and non-linear chemical reaction with nanomaterial.

In the above paragraphs, the studies on the non-Newtonian third-grade fluids were
documented. Now, we highlight the work concentrating the Darcy–Forcheimer relation in
porous medium within Newtonian and non-Newtonian fluids. The importance of flows
saturating porous space in engineering and commercial applications such as oil reservoirs,
resin transfer models, porous insulation, packed beds, geothermal energy, fossil fuel beds,
and nuclear waste disposal has aroused academics’ interest. Permeable media with Darcy’s
relation, in which the pressure gradient and volume average velocity are directly related,
have received a lot of attention in the literature. Forchheimer [11] incorporated the factor of
square velocity in the expression of Darcy’s velocity to investigate the features of inertia and
boundary. Muskat and Wyckoff [12] named this the Forchheimer term that always holds
for problems regarding high Reynolds numbers. Physically, higher filtration flow rates
can deliver quadratic drag for permeable space in the velocity expression [13]. The Darcy–
Forcheimer model coupled with natural, forced, and mixed heat transfer in non-Newtonian
power law fluid has attracted the attention of Shenoy [14]. The effects of generalized
Fourier’s law coupled with three-dimensional nanofluidic convective flows under the
impact of Hall current with Darcy–Forchheimer law effects have been studied by Raja
et al. [15]. Pan [16] used the mixed element method to solve the Darcy–Forchheimer model.
Ramzan et al. [17] proposed the model of Williamson nanofluid equipped with generalized
Fourier’s and Fick’s laws with Darcy–Forchheimer relation influence in stratified medium.
Mahdi et al. [18] examined the convective heat transfer in nanofluid flow saturated with
porous medium.

The heat transfer caused by concentration (mass) gradient is called the diffusion-
thermo effect (Dufour effect). On the other hand, mass transfer caused by the temperature
gradient is called the thermal-diffusion (Soret) effect. Research on these topics has been the
focus of researchers due to significant application in different areas of science. Kafoussias
and Williams [19] highlighted the effects of thermal-diffusion and diffusion thermo on
free, forced and mixed convection flow and mass transfer with variable viscosity. Abd-El
Aziz [20] determined the numerical solutions of thermal-diffusion and diffusion-thermo
effects on magnetohydrodynamic convective three-dimensional flows over a porous plate
with radiation effects. Hayat et al. [21] investigated the axially symmetric flow of second-
grade fluid with thermal-diffusion and diffusion effects. Srinivas et al. [22] studied the
process of fluid flow between two expanding and contracting walls in the presence of
thermal-diffusion and diffusion-thermo effects. Afify [23] documented the study accom-
plishing the magnetohydrodynamic fluid flow and heat transfer with the combined effects
of suction/injection, thermal-diffusion and diffusion-thermo effects over a stretching sur-
face. The combined effects of variables viscosity, suction/injection, thermal-diffusion and
diffusion-thermo effects over an accelerating surface have been considered by Seddeek [24].
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The thermal-diffusion and diffusion-thermo effects on Erying–Powell nanofluid fluid flow
with gyrotactic microorganisms was examined by Eldabe et al. [25].

In the above paragraphs, the literature was confined to examination of the non-
Newtonian fluids, with different flow features and fluid characteristics on different geome-
tries. Studies based on the stretching sheet are highlighted in this paragraph. The study of
laminar boundary layer flow over a stretching sheet has gained a lot of attention in the past
because of its applications in industries such as materials made by extrusion, the boundary
layer along a liquid film in condensation, and heat-treated materials travelling between a
feed roll and a wind-up roll or on a conveyor belt that pose the characteristics of a moving
continuous surface. The numerical study of the different processes with different flow over
the exponentially stretching sheet is explored in [26–29]. Kumar et al. [30] investigated heat
and mass transportation on exponentially angled stretching sheets imbedded in porous
media using Soret, Dufour, magnetic field, slip effects, Joule heating, and chemical reaction.
Magyari and Keller [31] examined heat and mass transfer in the boundary layers over an
exponentially stretching continuous sheet. Different studies considering the Newtonian
and non-Newtonian fluids with diverse flow features over different geometries have been
presented in [32–38]. The study of their grade fluid over an exponentially stretching is
discussed in [39,40].

Being motivated by the above-mentioned physical significance of the third-grade fluid,
Darcy–Forchheimer relation, porous medium, thermal-diffusion and diffusion-thermo
effects in the existing literature, the gap in the study of combined effects of thermal-
diffusion and diffusion-thermo with Darcy–Forchheimer relation impact on heat and mass
transfer in third-grade fluid over an exponentially inclined stretching sheet embedded in a
porous medium has been filled. The mathematical model of the boundary layer flow of
third-grade fluid and heat transfer is developed and solved with an appropriate method.
The whole model, along with its solution procedure and solutions of the physical properties
of interest, is demonstrated in the following sections.

2. Mathematical Modeling

Consider steady, incompressible two-dimensional and viscous boundary layer flow
the third-grade fluid with the Darcy–Forchheimer relation with thermal-diffusion and
diffusion-thermo effects over an inclined exponentially stretching sheet embedded in a
porous medium. The velocity components (u, v) along (x, y) are aligned and the schematic
diagram for flow configuration is shown in Figure 1. By following the equation in [1,30],
the governing equations are given as below:

∂u
∂x

+
∂v
∂y

= 0 (1)

u ∂u
∂x + v ∂u

∂y = ν ∂2u
∂y2 + α1

ρ

(
u ∂3u

∂x∂y2 +
∂u
∂x

∂2u
∂y2 + 3 ∂u

∂y
∂2v
∂y2 + ν ∂3u

∂y3

)
+ 2 α2

ρ
∂u
∂y

∂2v
∂y2

+6 β3
ρ

(
∂u
∂y

)
∂2u
∂y2

2
+ gβT(T − T∞)cosα + gβC(C− C∞)cosα− νu

K∗ − Fu2
(2)

u
∂T
∂x

+ v
∂T
∂y

= αm
∂2T
∂y2 +

DmkT
CsCP

∂2C
∂y2 (3)

u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 +

DmkT
Tm

∂2T
∂y2 (4)
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Figure 1. Flow configuration.

Subject to the boundary conditions are

u = Uw, v = 0, T = Tw(x), C = Cw(x) at y = 0
u→ 0 T → T∞ , C → C∞ as y→ ∞.

(5)

Equation (1) represents the equation of continuity, Equation (2) represents boundary
layer form of momentum equation for third-grade fluid, Equation (3) represents the energy
equation compatible for the current flow features, Equation (4) represents the mass con-
centration, and Equation (5) represents the boundary conditions imposed on the current
phenomenon. In Equation (5), the flow is induced due to exponential stretching of the sheet
and is fixed at an angle of inclination α = π/6.The sheet is heated at temperate Tw and exact
the surface mass concentration is Cw. Away from the surface the velocity approaches zero
and temperature of the fluid and concentration in the fluid approach free stream tempera-
ture and mass concentration. Here, Uw = Uoex/L, Tw = T∞ + Coex/L, Cw = C∞ + Coex/L,
are the stretching velocity, wall temperature, and wall concentration, respectively. The
symbols Uo, To, and Co are reference velocity, temperature, and concentration, respec-
tively. Here, (u, v) are the velocity components along (x, y) directions, respectively. The
notations (α1, α2, β3), Ko, F = Cb√

Ko
are material moduli, permeability of the porous

medium, coefficient of inertia with Cb the drag coefficient, respectively. The designa-
tions ρ, CP, µ, ν, αm, k, Dm, TmCs, and kT are the density ofthe fluid, specific heat at
constant pressure, dynamic viscosity, kinematic viscosity, thermal diffusivity, mass diffu-
sivity, thermal conductivity, means fluid temperature, concentration susceptibility, and
thermal-diffusion ratio, respectively. The symbols (T, C), (T∞, C∞) are the temperature
and concentration within the boundary layer and in the free stream region, respectively.

3. Solution Methodology

In this section, we elaborate the entire solution procedure to solve the governing
Equations (1)–(4) along with boundary conditions (5).
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3.1. Similarity Formulation

The Equations (1)–(5) are non-linear and coupled partial differential equations. First,
we reduce these equations into set of ordinary differential equations by using the following
similarity variables used by [30].

u = Uoe
x
L , v =

√
νUo
2L ( f (η) + η f ′(η))e

x
L , T = T∞ + Coθe

x
L , C = C∞ + Coφe

x
L ,

η =
√

Uo
2Lν yex/L

(6)

By utilizing the above-mentioned similarity variable in Equation (6), Equation (1) is
satisfied automatically, and the Equations (2)–(4) with boundary condition Equation (5)
takes the following form.

f ′′′ + f f ′′ − 2 f ′
2
+ 2Ri(θ + Nφ)cosα + K

(
6 f ′ f ′′′ − f f (iv) − 2η f ′′ f ′′′ − 9 f

′′2
)

−L
(

3 f
′′2
+ η f ′′ f ′′′

)
+ 3βRe f

′′2
f ′′′ − K∗ f ′ −M f ′ − Fr f ′

2
= 0

(7)

f ′θ − f θ′ =
1

Pr
θ′′ + D f φ′′ (8)

f ′φ− f φ′ =
1

SC
φ′′ + Srθ′′ (9)

Boundary conditions

f = 0, f ′ = 1, θ(0) = 1, φ(0) = 1 as η → 0
f ′ → 1, f ′′ → 0, θ → 0, φ→ 0 as η → ∞.

(10)

Here, the parameters Sr = DmkT To
νCoTm

, D f = DmkTCo
νCSCPTo

, Ri = Gr
Re2 , N = βCCo

βT To
, K =

α1Uoe
x
L

2ρνL , L = α2Uoe
x
L

ρνL , β = β3Uoe
x
L

ρνL , K∗ = 2νL
KoUoe

x
L

, Fr = Cb Le
x
L√

Ko
, Pr = ν

αm
, Sc = ν

Dm
, are thermal-

diffusion parameter, diffusion-thermo parameter, Richardson number, buoyancy ratio
parameter, the non-dimensional viscoelastic parameter, cross-viscous parameter, thethird-
grade fluid parameter, permeability parameter, local inertial coefficient, Prandtl number,
and Schmidt number, respectively. Prime notation denotes differentiation w.r.t to the
similarity variable η.

Here, f ′(η) denotes dimensionless velocity, θ(η) designates the dimensionless temper-
ature, and φ(η) denotes the mass concentration.

3.2. Solution Technique

It is not possible to find an exact solution for the highly non-linear coupled ordinary
differential equation. The numerical solutions of Equations (7)–(9) along with boundary
conditions (10) for different values of the governing parameters are obtained, namely,
Richardson number Ri, buoyancy ratio parameter N, third-grade fluid parameter β, vis-
coelastic parameter K, cross-viscous parameter L, permeability parameter K∗, local inertial
coefficient Fr, thermal-diffusion parameter Sr, diffusion-thermo parameter D f , Prandtl
number Pr, and Schmidt number Sc. The numerical solutions of the proposed model are
solved by utilizing MALAB built-in Numerical Solver bvp4c. In the computation, η∞ =
10.0 is taken and the axis according to the clear figure visibility. Numerical Solver bvp4c is a
finite difference code that implements the three-stage Lobatoo formula. This is a collocation
formula and the collocation polynomial is a C1-continuous solution that has fourth-order
accuracy uniformly in the interval of integration. Mesh selection and error control are
based on the residual of the continuous solution. The collocation technique uses a mesh of
the points to divide the interval of integration into subintervals. The solver determines a
numerical solution by solving a global system of algebraic equations resulting from the
boundary conditions and the collocation condition imposed on all the subintervals. The
solver estimates the error of the numerical solution in each subinterval. If the solution does
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not satisfy the tolerance criteria, the solver adapts the mesh and repeats the process. There
is a need to provide the points of the initial mesh, as well as an initial approximation of
the solution at the mesh points. The Equations (7)–(10) are converted into a system of first
order ordinary differential equations and then are put into the bvp4c numerical solver code
for the final solutions. We set

f = y(1), f ′ = y(2), f ′′ = y(3), f ′′′ = y(4), θ = y(5), θ′ = y(6), φ = y(7), φ′ = y(8), (11)

f (iv) = yy1 = (1/K× y(1))× (2× Ri× (N × y(7) + y(5))× cos α + y(4) + y(1)
×y(3)− 2× y(2)2 + K
×
(

6× y(2)× y(4)− 2× η × y(3)× y(4)− 9× y(3)2
)
− L

×
(

3× y(3)2 + η × y(2)× y(4)
)
+ 3× β× Re× y(3)2 × y(4)

−y(2)× (K∗ + M + y(2) + Fr× y(2))))

(12)

θ′′ = yy2 = (Pr× (y(2)× y(5)− y(1)× y(6))− D× Sc× (y(2)× y(7)− y(1)× y(8)))/(1 + D× Sr) (13)

φ′′ = Sc×(y(2)× y(7)− y(1)× y(8))− Sr× (Pr× (y(2)× y(5)− y(1)× y(6))− D× Sc× (y(2)×
y(7)− y(1)× y(8)))/(1 + D× Sr)

(14)

Boundary conditions

yo(1) = 0, yo(2) = 1, yo(5) = 1, yo(7) = 1, yin f (2) = 0, yin f (3) = 0, yin f (5) = 0, yin f (7) = 0 (15)

The numerical solutions for the unknown material properties such as velocity field
f ′(η), temperature field θ(η), and mass concentration φ(η) are calculated at an angle of
inclination α = π

6 , presented in graphical form and discussed with physical reasoning. The
gradients of the quantities outlined above, such as the skin friction f ′′ (0), the heat transfer
rate θ′(0), the mass transfer rate φ′(0) exactly at the surface of the geometry are determined
and tabulated. The forthcoming section is presents the analysis with a detailed discussion
of the graphed and tabulated physical quantities of interest.

4. Results and Discussion

In the current section, the physical behavior of the material properties of interest
is discussed for elevating the pertinent parameters that appear in the flow equations.
The values of η∞, the numerical infinity values, are kept large enough and are retained
as η∞ = 10.0. Actually, this value is dependent on the physical parameters of the phe-
nomenon and its value η∞ = 10.0 is adequate to simulate η = ∞ for all cases presented
in Figures 2–19. Under this condition, it was possible to explore the numerical influence
of Richardson number Ri, buoyancy ratio parameter N, viscoelastic parameter K, cross-
viscous parameter L, third-grade fluid parameter β, permeability parameter K∗, local
inertial coefficient Fr, thermo-diffusion parameter Sr, diffusion-thermo parameter D f ,
Prandtl number Pr, and Schmidt number Sc on velocity field f ′(η), temperature field θ(η),
and mass concentration φ(η).
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Figure 3. Consequences of β on θ(η).
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Figure 13. Consequences of Pr on φ(η).
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Figure 14. Consequences of D f on f ′(η).
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4.1. Influence of Flow Parameters on Velocity Profile f ′(η), Temperature Profile θ(η), and Mass
Concentration φ(η)

Figure 2 shows the consequences of third-grade parameter β on f ′(η) when the rest of
the parameters are kept at their fixed values. Figure 2 illustrates that as β is enhanced, there
is intensification in velocity of the fluid. It is due to fact that as β rises, basically reference
velocity is maximized and viscosity of the fluid is reduced. Figure 3 shows the results for
temperature profile θ(η) for different values of β. It is viewed that, owing to the increase in
magnitude of β, the temperature field declines. The physical behavior of the concentration
profile φ(η) for different values of β is displayed in Figure 4. It is seen from the graphical
result that mass concentration decreases as β is enhanced. Figure 5 depicts the influence of
permeability parameter K∗ on velocity of the fluid. Figure 5 highlights that as K∗ is raised,
velocity of the fluid decreases. When K∗ increases, viscosity of the fluid essentially increases
and porosity of the medium decreases, due to which the fluid velocity slows down. The
numerical results for the temperature profile against increasing values of K∗ are shown in
Figure 6. The graph reveals that as K∗ is raised, temperature of the fluid rises rapidly. The
concentration profile behavior versus K∗ is presented in Figure 7. It is concluded that as K∗

is enlarged, the concentration profile boosts with reasonable difference. Figure 8 shows the
evaluation of the impact of local inertial coefficient Fr on velocity. The graph for velocity
of the fluid in Figure 8 shows that as Fr is intensified, a reduction in f ′(η) is noted. Due
to increase in drag coefficient and reduction in porosity of the medium, velocity declines.
The physical behavior of the temperature profile θ for different values of the local inertial
coefficient Fr is illustrated in Figure 9. It is seen that as Fr is raised, temperature field
increases. The numerical solutions for the mass concentration φ are plotted in Figure 10.
It is noted that as Fr is enhanced, the mass concentration is strengthened. It is due to
the reason that as Fr is enlarged, the inertial coefficient is essentially expanded, and the
porosity coefficient is reduced which causes the velocity to slow down and compels θ and
φ to boost up their values.

The effect of Prandtl number Pr on f ′(η) is demonstrated in Figure 11. The plot in
Figure 11 indicates that the decline in the value of f′(η) is seen as Pr is raised. The highest
magnitude for f ′ is obtained for Pr = 0.61 and the bottom value is secured for Pr = 10.0. Due
to the increase in Pr, viscosity of the fluid is enhanced which stops the fluid from moving
fast. Figure 12 shows the graphical solutions for temperature profiles. Figure 12 highlights
that a downfall in temperature is noted, owing to the rise in the values of Prandtl number
Pr. Figure 13 presents the numerical results for mass concentration for diverse values of
Pr. Results reveal that mass concentration increases for increasing magnitude of Pr. Very
interestingly, the behavior of the velocity and temperature profiles follows the science of
the Prandtl number, where, as Pr increases, the viscous force increases causing the decline
in velocity field. As Pr is enhanced, the heat transfer due the thermal diffusion is reduced;
hence, temperature of the fluid flow domain reduces due to low thermal conductance of
the fluid. The increase in the Pr is due to enhancement of the viscous force and reduction
in the thermal conductance of the fluid which slows down the velocity and temperature
profiles. The effect of diffusion-thermo parameter D f on the velocity profile is shown
in Figure 14. Figure 14 indicates that as D f is augmented, the velocity is strengthened.
Figure 15 displays the solutions for temperature distribution for several values of D f . It
is revealed that temperature of the fluid is intensified as D f is maximized. The mass
concentration is attenuated in Figure 16. From a physical point view, it is shown that as D f
is increased more heat flux occurs due to increasing temperature gradient that supports the
enhancement in the temperature. As energy is absorbed by the fluid this causes the velocity
to grow and increasing concentration gradients correspond to decreasing concentration in
the boundary layer. Figure 17 illustrates the control of thermal-diffusion parameter Sr on
f ′(η). It is concluding that as Sr is increased velocity increases. Figure 18 portrays the value
of temperature against different values of Sr. It is observed that as Sr rises, temperature of
the fluid increases. Figure 19 demonstrates the mass concentration behavior for increasing
values of Sr. It is noted that as Sr is increased, the mass concentration increases visibly. Due
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to the increase in Sr, more mass flux is observed due to which the velocity and temperature
of the fluid increase and mass concentration increases as well.

4.2. Influence of the Materials Parameters on f ′′ (0), θ′(0), and φ′(0)

Tables 1 and 2 show the comparison of the present numerical results for the rate of
heat transfer and the skin friction with the previously published results. From the close
observation of the numerical solutions, both the previously documented and current results,
we conclude that there is good agreement between them which indicates the validation
of the present study. Tables 3 and 4 show the numerical results of the skin friction, rate of
heat transfer, and rate of mass transfer under the influence of Richardson number Ri and
Schmidt number Sc, respectively. Table 3 displays the numerical solutions of f ′′ (0), θ′(0)
and φ′(0) under the effects of Ri. Results highlight that the skin friction reduces but rate
of heat transfer and rate of mass transfer increase gradually. Table 4 depicts the physical
effects of Schmidt number on f ′′ (0), θ′(0) and φ′(0). The solution indicates that as Sc is
augmented, the f ′′ (0) and θ′(0) increase but the reverse trend is noted in φ′(0).The results
presented in Tables 1–3 were calculated at the surface.

Table 1. Comparison of the −θ′(0) values for several values of Prandtl number for Newtonian fluid
when Ri = 0, N = 0, Sc = 0, β = 0, L = 0, K = 0, K∗ = 0, Fr = 0, Sr = 0, D f = 0.

Pr Magyari and Keller [31] Present Study

1.0 0.9547 0.9551

3 1.8691 1.8121

5 2.5001 2.5577

10 3.6604 3.6868

Table 2. Comparison of the f ′′ (0) values for Newtonian fluid when Ri = 0, N = 0, Sc = 0, 0,
β = 0, L = 0, K = 0, K∗ = 0, Fr = 0, Sr = 0, D f = 0, Pr = 0.

Mukhopadhyay et al. [39] Hayat et al. [40] Present Study

−1.281812 −1.2818 −1.2819

Table 3. Consequences of Ri on (a) f ′′ (0) (b) θ′(0) (c) φ′(0) when N = 0.5, β = 0.1, K = 0.1,
L = 0.1, α = π/6, K∗ = 8.0, Fr = 5.0, Pr = 2.0, Sc = 1.0, D f = 0.1, Sr = 0.1.

Ri f”(0) −θ′(0) −φ′(0)

0.1 2.08746 1.16064 0.62817

3.0 1.67881 1.31154 0.76902

7.0 1.17803 1.42548 0.86850

10.0 0.83114 1.48769 0.92125

Table 4. Consequences of Sc on (a) f ′′ (0) (b) θ′(0) (c) φ′(0) when Ri = 5.0; N = 0.5, β = 0.1,
K = 0.1, L = 0.1, α = π/6, K∗ = 8.0, Fr = 5.0, Pr = 2.0, D f = 0.1, Sr = 0.1.

Sc f”(0) −θ′(0) −φ′(0)

1.0 1.42189 1.37481 0.82479

3.0 1.47903 1.27574 1.73512

7.0 1.53384 1.16031 2.88998

10.0 1.55589 1.09747 3.54354
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5. Conclusions

The current study was devoted to investigating the thermal-diffusion and diffusion-
thermo effects on heat and mass transfer in third-grade fluid with the impact of the Darcy–
Forchheimer relation over an exponentially inclined stretching sheet embedded in a porous
medium. The proposed phenomenon was given a mathematical form in terms of nonlinear
and coupled partial differential equations and then reduced to an ordinary differential
equation by utilizing an appropriate similarity transformation. For the numerical solutions
of the governing flow problem, a MATLAB built-in numerical solver bvp4c was used. The
numerical results of the material properties are portrayed in graphs and tables. The main
outcomes are summarized as below:

• The velocity profile f ′ increases as Sr, D f , and β increase and reductions in K∗, Fr,
and Pr are enlarged.

• The temperature field θ is increased as K∗, Fr, D f , and Sr are augmented but the
reverse behavior is viewed when increasing the values of β and Pr.

• The concentration profile φ is increased as K∗, Fr, and Sr are augmented but attenuated
as β, Pr, and D f are elevated.

• The skin friction f ′′ (0) is increased owing to the rise in values of Sc and the opposite
trend is noted with the increasing values of Ri.

• The rate of heat transfer θ′(0) is augmented as Ri rises but reduces with increasing
magnitudes of Sc.

• The mass transfer rate φ′(0) increases as Ri and Sc are augmented.
• The tabular results for f ′′ (0), θ′(0) and φ′(0) are computed exactly at the surface.
• All the numerical results at the inclined exponentially stretching plate fixed at the

angle of inclination of α = π/6 were computed.
• All the numerical results presented in graphs in Figures 2–19 satisfied the given

boundary conditions asymptotically; therefore, the numerical results given in tabular
form are accurate.

• The current results were compared with the available results in the existing litera-
ture for the special case, and there was good agreement between them showing the
validation of the present study.

• In future, the study will be extended to third-grade nanofluid and hybrid nanofluid
with the inclusion of different flow features and physical effects of the different fluid
characteristics over the exponentially inclined stretching sheet embedded in a porous
medium with different flow conditions.
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Nomenclature

Nomenclature CP
(

Jkg−1.K−1) Specific heat at constant pressure
T∞(K) Ambient temperature Sc Schmidt number
C∞ Ambient concentration Sr Thermal-diffusion parameter (Soret number)
α Angle of inclination K Viscoelastic parameter
N Buoyancy ratio parameter u, v Velocity components in x and y directions
C
(
kgm−3) Concentration in boundary layer Tw Wall temperature

K1 Chemical reaction coefficient Cw Wall concentration
R Chemical reaction parameter Greeks
F Coefficient of inertia θ Dimensionless temperature
x, y Coordinates φ Dimensionless mass concentration
L Cross-viscous parameter µ(Pa.s) Dynamic viscosity
x, y Coordinates σ Electrical conductivity
Cs Concentration susceptibility ρ

(
kgm−3) Fluid density

Cb Drag Coefficient ν
(
m2s−1) Kinematic viscosity

D f
Diffusion-thermo parameter
(Dufour number)

α1, α2, β3 Material moduli

T (K)
Fluid temperature in boundary
layer

αm
(
ms−1) Thermal diffusivity

g
(
ms−2) Gravitational acceleration kT Thermal-diffusion ratio

Gr Grashof number β Third-grade fluid parameter
Fr Local inertial coefficient κ

(
Wm−1.K−1) Thermal conductivity

Bo Magnetic field strength βT
(
K−1) Volumetric coefficient thermal expansion

M Magnetic field parameter βC
(
K−1) Volumetric coefficient concentration expansion

Dm
(
m2s−1) Mass diffusion coefficient Subscripts

Tm Mean temperature of fluid ∞ Ambient conditions
Ko Porous medium permeability w Wall conditions
K∗ Permeability parameter
Pr Prandtl number
Re Reynolds number
Ri Richardson number
C f Skin friction
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