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Abstract: Coffee pulp is a by-product generated from coffee bean production. This waste is a potential
source of bioactive compounds, which can be recovered for use as an ingredient for many products.
However, this by-product is typically dumped in landfills or made into compost. Ultrasound-assisted
extraction (UAE) and microwave-assisted extraction (MAE) were employed to recover bioactive
compounds from coffee pulp waste. Results showed that time and instrument power significantly
affected the recovery yield in both UAE and MAE. The temperature was also a significant factor in
UAE. The optimal MAE conditions were a radiation time of 70 min, a power of 700 W, and a 50%
(v/v) ethanol solvent to sample ratio of 100:5 (mL/g), approximately 47 mg of phenolic compounds,
36 mg of flavonoid, 8 mg of chlorogenic acid, and 6 mg of caffeine could be recovered from 1 g of the
material. The optimal UAE condition were an ultrasonic time of 35 min, a temperature of 60 ◦C, and a
power of 250 W; however, bioactive compounds and antioxidant capacity constituted around one half
of MAE. Therefore, MAE is recommended as the extraction technique for the bioactive compound
and antioxidant recovery from the coffee pulp.

Keywords: ultrasound-assisted extraction; microwave-assisted extraction; coffee pulp; Coffea canephora;
Robusta; bioactive compounds

1. Introduction

Coffee is one of the most commonly consumed beverages around the world due to its
organoleptic properties and stimulant effect [1–3]. Coffee was originally found in Africa,
with the first coffee plants cultivated in Ethiopia [4]. There are over 100 coffee species
known; however, only two main species, Coffea Arabica L. (Arabica) and Coffea canephora
(Robusta), are grown commercially and produced in large scales [1].

Coffea Arabica L. commonly known as Arabica, makes up approximately 60% of the
world coffee production. It was firstly discovered in southwest Ethiopia, and the crop then
spread to Yemen at the beginning of 18th century [5]. Arabica preferably grows in a cool
climate and high altitudes in equatorial areas [6]. In contrast, Coffea canephora (commonly
known as Robusta) can grow to be strong and verdant in the warm and humid weather
of tropical countries [6]. Robusta accounts for approximately 40% of the world’s coffee
production. It was initially identified in central Africa, but is now also grown in Asia and
America [5].

Coffee pulp, also known as the mesocarp of coffee beans, is the main residue produced
during coffee production, and constitutes up to 40% by weight of coffee cherries. However,
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the coffee pulp by-product has not been utilized effectively [7], and is typically dumped in
landfills, which causes a significant environmental pollution and toxic effects for people
living nearby the waste effluent [8,9]. This by-product is rich in nutritive compounds, such
as protein and carbohydrates, and phytochemicals, such as phenolic compounds, tannins,
and caffeine [10].

The biochemical benefits of coffee have been investigated for many years, with the
stimulative effects of caffeine on the human brain and nervous system drawing particular
attention. Besides caffeine, chlorogenic acids [11], proanthocyanins [12], and other phenolic
compounds contained in coffee pulp and coffee beans can support the immune system and
help the human body to fight against numerous diseases related to the accumulation of
oxygen-reactive species [13].

Extraction is an essential step in recovering high yields of bioactive compounds
for further applications [14]. Extraction methods can be categorized as conventional or
advanced techniques. Conventional methods, for example solvent and steam extraction, are
simple to set up, but they are often high cost due to labor, time, solvent consumption, loss of
targeted compounds, and low extraction yields [7]. In contrast, advanced techniques, such
as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), require
more sophisticated equipment, but can overcome these barriers [15]. MAE and UAE have
been widely applied for the recovery of bioactive compounds from plant materials [16,17].
UAE is carried out based on cavitation bubbles generated by ultrasonic waves, which break
down cells to release bioactive compounds [18], while MAE operates using electromagnetic
microwave radiation that generates temperature and pressure to stimulate the bioactive
compounds to dissolve into the solvent [19,20]. Compared with other advanced technique,
such as supercritical and subcritical fluid extraction, which operate under high pressure,
UAE and MAE only require a milder condition operation [15,21].

No previous studies have established the optimal MAE and UAE extractions con-
ditions, nor compared these two advanced techniques, in the recovery of bioactive com-
pounds and antioxidant capacity from coffee pulp. Therefore, it was hypothesized that
different MAE and UAE conditions would significantly affect recovery yields of bioactive
compounds and antioxidant capacity, and that there was a significant difference in effec-
tiveness between the two techniques. Therefore, this study aims to investigate the effects
of UAE and MAE conditions to identify the most effective condition for the recovery of
bioactive compounds and antioxidant capacity from coffee pulp, as well as to compare
the effectiveness of MAE and UAE to determine the best extraction technique for future
applications and valorization of coffee pulp.

2. Materials and Methods
2.1. Coffee Pulp

Robusta wet coffee pulp was collected from Thang Loi Company, Krong Pak District,
Dak Lak province, Viet Nam. The pulp was collected after wet coffee processing, and
was quickly frozen at −20 ◦C to minimize degradation. Before drying, the frozen pulp
was thawed overnight at room temperature. The pulp was then dried at 90 ◦C for 6 h
30 min under a vacuum pressure of 3.75 mmHg using a vacuum dryer (Memmert VO200,
Schwabach, Germany). An electric blender (Philips Blender Mill; Guangdong, China) was
used to grind it into a fine powder before it was passed through a 1.4 mm Endecotts sieve
(London, UK). Finally, the dried ground samples were stored at −18 ◦C in tightly sealed
bags for further use.

2.2. Chemicals of Experiments

All chemicals used were of at least analytical grade. Folin–Ciocalteu’s reagent,
methanol, ethanol, acetone, sodium nitrite, hydrochloric acid, formic acid, sodium thio-
sulphate, aluminium chloride, and iron (III) chloride were obtained from Merck. 2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl
(DPPH), 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ), trolox, and gallic acid were obtained from
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Castle Hill (Sydney, Australia). Anhydrous sodium carbonate and sodium hydroxide were
purchased from Labco Chemicals, Australia. (+)-catechine, chlorogenic acid, and caffeine
were purchased from Sigma-Aldrich Pty Ltd (Castle Hill, NSW, Australia).

2.3. Experimental Design

The one-factor-at-a-time method was applied to investigate the effects of ultrasonic
conditions (time, temperature, and power) and the impact of the commercial microwave
extraction conditions (radiation time and power) on the extraction efficiency of bioactive
compounds and antioxidant capacity from the dried coffee pulp. The solvent used for
extraction was 50% (v/v) aqueous ethanol solution, which was the most effective solvent for
the extraction of bioactive compounds from the dried coffee pulp in our preliminary studies.
The most effective sample to solvent ratio of 100:5 (mL/g) determined from these studies
was also applied for the two techniques. Following extraction, the extract was immediately
cooled on ice, then filtered using a Whatman No. 1 filter paper. The supernatant was then
stored at 4 ◦C for further analysis within 24 h.

2.3.1. Ultrasound-Assisted Extraction (UAE)

To determine the impact of ultrasonic time, the ground dried coffee pulp was extracted
in at ultrasonic power of 200 W for a time ranging from 5–65 min using an ultrasonic bath
(Soniclean 220 V, 50 Hz, 250 W, Soniclean Pty, Ltd., Dudley Park, SA, Australia).

To investigate the effect of temperature, the most effective time (35 min) was then
applied for extraction of dried coffee pulp at an ultrasonic power of 200 W for various
temperatures (30, 40, 50, 60 ◦C).

Finally, to determine the effect of ultrasonic power, the optimal time (35 min) and
temperature (60 ◦C is the maximum operation temperature of the machine) were used for
extraction of dried coffee pulp for ultrasonic power ranging from 150–250 W.

2.3.2. Microwave-Assisted Extraction (MAE)

In this study, an ETHOS X extraction system (Metrohm Australia, Gladesville, NSW,
Australia) was used, comprising a 5 L closed vessel attached with a reflux unit to control
the pressure by condensing the vaporized solvent [22].

To determine the impact of radiation time, the dried coffee pulp was extracted with a
radiation power of 500 W for radiation times ranging from 10 to 80 min.

To identify the effect of the radiation power, the optimal radiation time of 70 min was
applied for extraction of dried coffee pulp for powers ranging from 300–900 W.

2.4. Determination of Bioactive Compounds

The total phenolic content (TPC), total flavonoid content (TFC), and two major bioac-
tive compounds in coffee—caffeine and chlorogenic acid—were measured following previ-
ously reported methods.

2.4.1. Total Phenolic Content

The total phenolic content (TPC) was analyzed according to the method described
by Vuong et al. (2013). In brief, 1 mL of diluted coffee pulp extract was added into 5 mL
of Folin–Ciocalteu solution 10% (v/v), then was left at an ambient temperature for 8 min.
Then, 4 mL of Na2CO3 7.5% (w/v) was added into the sample and shaken thoroughly,
before being kept for 1 h in a dark room. The absorbance was read at 765 nm using a
UV spectrophotometer (Cary 60 Bio, UV-Vis, Penang, Malaysia). Gallic acid was used
for calibration via a standard curve, and the results were presented as mg of gallic acid
equivalents per g of dried sample (mg GAE/g DW).

2.4.2. Total Flavonoid Content

The total flavonoid content (TFC) was calculated according to the method described
by Vuong et al. (2013). In brief, 2 mL of deionized H2O was added into 0.5 mL of dried
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coffee pulp extract, followed by 0.15 mL of 5% (w/v) NaNO2. The mixture was then kept at
an ambient temperature for 6 min. Then, 0.15 mL of 10% (w/v) AlCl3, 2 mL of 4% (w/v)
NaOH and 0.7 mL of H2O were added, shaken thoroughly, and stored at RT for 15 min.
Sample absorbance was then measured at 510 nm using a UV-Vis spectrophotometer (Cary
60 Bio, UV-Vis, Penang, Malaysia). Catechin was used for calibrating via a standard curve,
and the results were expressed as mg of catechin equivalents per g of dried sample (mg
CE/g DW).

2.4.3. Determination of Caffeine and Chlorogenic Acid

Caffeine and chlorogenic acid were analyzed using a high-performance liquid chro-
matography (HPLC) system (Shimadzu, Rydalmere, NSW, Australia), as described in our
previous study [12]. The quantification of caffeine and chlorogenic acid was based on
external caffeine and chlorogenic standard curves, and was expressed as mg per g of dried
sample (mg/g DW).

2.5. Determination of Antioxidant Capacity

In total, three antioxidant assays were applied to determine the oxidative inhibition
capacities of the extracts: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)
assay, 2,2-diphenyl-1-picryl-hydracyl (DPPH) assay, and ferric reducing antioxidant power
(FRAP) assay.

Trolox was used to generate external standard curves for the assays, and the re-
sults were expressed as mg of trolox equivalents per g of sample dry weight (mg TE/g
dried sample).

2.5.1. ABTS Assay

An ABTS assay was applied as described by Vuong et al. (2013) [23].

2.5.2. DPPH Assay

A DDPH assay was measured as described by Thaipong et al. (2006), with some minor
changes. Briefly, a working solution of DPPH and methanol was prepared to achieve an
absorbance of 1.1 at 515 nm of wavelength. A DPPH assay was performed by adding
0.15 mL of the extracted sample with 2.85 mL of the above working solution, and was
then held for 3 h in a dark room. Finally, the mixture was measured at 515 nm using a
spectrophotometer (Cary 60 Bio UV-Vis Brand, Penang, Malaysia) [24].

2.5.3. FRAP Assay

The FRAP assay was performed as described by Benzie and Strain (1996) [25].

2.6. Statistical Analysis

All experiments were conducted in triplicate, and data were analyzed via ANOVA
in JMP Pro 14.2 software. The Tukey–Kramer HSD was used for multiple comparison
of means with a significance of 5% (p value < 0.05). Data are presented as means ±
standard deviations.

3. Results and Discussion
3.1. Impact of UAE Extraction Parameters on Recovery Yields of Bioactives and Antioxidant
Properties from Coffee Pulp
3.1.1. Effect of Ultrasonic Time

Overall, ultrasonic time significantly influenced the recovery yields of TPC, TFC,
caffeine, chlorogenic acid, and antioxidant capacity of the coffee pulp (p < 0.05) (Table 1).
The recovery yields of TPC, TFC, caffeine, chlorogenic acid, and antioxidant capacity
generally increased with the ultrasonic time. After 15 min of infusion for ABTS, DPPH, and
caffeine, 25 min for TPC, and 35 min for TFC, these yield attainments were plateaued, while
an increase in CGA was still observed after 45 min. A boost of recovery yields of bioactive
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components and antioxidant capacities was recognized with longer ultrasonic time, and this
was also reported in previous studies [23,26]. This can be explained by the following: when
the samples are treated by ultrasound, an acoustic cavitation is created. This phenomenon
forms micro-bubbles, which then increase in size while being oscillated, before collapsing
vigorously inside samples cells. This cavitation generates shock waves carrying energy and
pressure, which can break cell membranes and release biological components [27]. However,
prolonged extraction can lead to increasing oxidation of bioactive constituents [28]. This
accounts for the slight drop observed in phenolic compounds and antioxidant capacity
after 55 min of sonication. Although all parameters increased for both 45 and 55 min, with
the exception of FRAP (which decreased slightly), the increases were still within the error
range for the 35 min extraction. The longer extraction would lead to a higher cost due
to time consumption, while only a marginal increase was observed in bioactive capacity.
Therefore, 35 min was identified as the most suitable ultrasonic extraction time for bioactive
compound recovery, and was used for further investigation of other parameters.

Table 1. Effect of ultrasonic time on recovery of bioactive compounds and antioxidant from
coffee pulp.

Time
(min)

TPC
(mg GAE/g

DW)

TFC
(mg CE/g

DW)

CGA
(mg/g DW)

Caffeine
(mg/g DW)

ABTS
(mg TE/g

DW)

DPPH
(mg TE/g

DW)

FRAP
(mg TE/g

DW)

5 6.26 ± 0.35 c 4.53 ± 0.25 c 1.31 ± 0.10 b 1.87 ± 0.09 a 13.35 ± 0.76 a 1.33 ± 0.08 c 9.50 ±0.90 a

15 8.70 ± 0.34 b 6.47 ± 0.16 b 1.70 ± 0.15 ab 2.25 ± 0.035 b 14.89 ± 0.41 b 1.74 ± 0.06 b 9.69 ± 0.99 a

25 9.14 ± 0.82 ab 6.54 ± 0.93 b 1.72 ± 0.49 ab 2.31 ± 0.10 b 15.19 ± 0.49 b 1.78 ± 0.21 ab 9.73 ± 0.36 a

35 9.72 ± 0.15 ab 6.91 ± 0.20 ab 1.67 ± 0.11 ab 2.47 ± 0.21 b 15.21 ± 0.28 b 1.87 ± 0.07 ab 10.28 ± 0.89 a

45 9.74 ± 0.19 ab 7.25 ± 0.36 ab 1.77 ± 0.33 a 2.53 ± 0.18 b 15.64 ± 0.02 b 1.84 ± 0.04 ab 10.33 ± 0.52 a

55 9.88 ± 0.15 a 8.09 ± 0.76 a 1.78 ± 0.12 a 2.54 ± 0.11 b 15.69 ± 0.09 b 2.04 ± 0.12 a 10.17 ± 0.25 a

65 9.44 ± 0.38 ab 7.59 ± 0.40 ab 1.73 ± 0.06 ab 2.42 ± 0.08 b 15.48 ± 0.40 b 1.9 ± 0.07 ab 9.75 ± 0.21 a

TPC: total phenolic content, TFC: total flavonoid content. ABTS radical scavenging capacity; DPPH radical
scavenging capacity; FRAP: ferric reducing antioxidant power. Data are expressed as means± standard deviations
(n = 3). Means with different superscript letters in the same column differ significantly at p < 0.05.

3.1.2. Effect of Temperature

The results presented in Table 2 show that temperature substantially altered the
recovery yields of bioactive compounds and their antioxidant capacities. The recovery
yield of caffeine and CGA were not affected by temperature (p > 0.05). The recovery
yields of TPC, TFC, and antioxidant activities were notably higher as the temperature
increased, with recovery yields highest at 60 ◦C. Spigno et al. (2007) also found that higher
temperature applied during extraction could result in a higher recovery yield of phenolic
compounds. This occurs because higher temperature can better disrupt cell membranes,
releasing more bioactive compounds into the solvent [29]. Moreover, at higher irradiated
temperature, phytochemicals are more easily dissolved and diffused from the solid matrix
into the solvent phase, thereby improving the extraction yield [30]. From the obtained
results, a temperature of 60 ◦C (the maximum heating level of the instrument) was found to
be most suitable for all bioactive compounds and antioxidant capacity, and this temperature
would be used for later experiments.
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Table 2. Effect of temperature on recovery of bioactive compounds and antioxidant from coffee pulp.

Temp (◦C)
TPC

(mg GAE/g
DW)

TFC
(mg CE/g

DW)

CGA
(mg/g DW)

Caffeine
(mg/g DW)

ABTS
(mg TE/g

DW)

DPPH
(mg TE/g

DW)

FRAP
(mg TE/g DW)

30 8.71 ± 0.93 a 7.75 ± 0.25 a 2.15 ± 0.32 a 2.94 ± 0.18 a 28.04 ± 0.85 a 2.78 ± 0.02 a 15.18 ± 0.95 a

40 10.48 ± 0.94 a 9.35 ± 0.51 a 2.24 ± 0.52 a 2.99 ± 0.07 a 31.09 ± 1.88 a 3.24 ± 0.03 a 18.72 ± 0.33 b

50 14.58 ± 1.32 b 11.29 ± 1.03 b 2.54 ± 0.36 a 3.20 ± 0.25 a 40.57 ± 3.19 b 4.33 ± 0.34 b 20.76 ± 1.31 bc

60 15.14 ± 0.23 b 13.15 ± 0.51 c 2.65 ± 0.06 a 2.89 ± 0.19 a 45.78 ± 1.36 b 4.68 ± 0.26 b 22.32 ± 0.63 c

TPC: total phenolic content, TFC: total flavonoid content. ABTS radical scavenging capacity; DPPH radical
scavenging capacity; FRAP: ferric reducing antioxidant power. Data are expressed as means± standard deviations
(n = 3). Means with different superscript letters in the same column differ significantly at p < 0.05.

3.1.3. Effect of Ultrasonic Power

Ultrasonic power was found to be a significant factor on all experimental responses
(p < 0.05) (Table 3), with the exception of CGA. The recovery yields of TPC, TFC, caffeine,
and antioxidant power increased at a higher level at an ultrasonic power of 250 W, as
compared to other lower powers (p < 0.05). It was expected that higher levels of machine
power would enhance extraction efficiency, and this caused an increase in the bubble cavi-
tation which better penetrated the cells within the coffee pulp [31]. However, the biological
components might be degraded by excessive heat caused by energy of the system [29].
Our results (Table 3) are similar to those previously reported for anthocyanins [32] and the
recovery of phenolic compounds from macadamia skin [33].

Table 3. Effect of ultrasonic power on recovery of bioactive compounds and antioxidant from
coffee pulp.

Power of
Machine (W)

TPC
(mg GAE/g

DW)

TFC
(mg CE/g

DW)

CGA
(mg/g DW)

Caffeine
(mg/g DW)

ABTS
(mg TE/g

DW)

DPPH
(mg TE/g

DW)

FRAP
(mg TE/g

DW)

150 14.81 ± 0.19 a 11.60 ± 0.41 a 2.64 ± 0.41 a 2.72 ± 0.23 a 41.92 ± 0.68 a 4.10 ± 0.07 a 24.12 ± 0.61 a

200 15.68 ± 0.85 a 12.32 ± 0.35 a 2.39 ± 0.29 a 2.73 ± 0.17 a 45.84 ± 0.64 b 4.88 ± 0.10 b 25.97 ± 0.47 a

250 20.86 ± 0.58 b 18.77 ± 1.07 b 2.31 ± 0.13 a 3.32 ± 0.26 b 57.65 ± 1.16 c 5.20 ± 0.14 c 35.85 ± 1.80 b

TPC: total phenolic content, TFC: total flavonoid content. ABTS radical scavenging capacity; DPPH radical
scavenging capacity; FRAP: ferric reducing antioxidant power. Data are expressed as means± standard deviations
(n = 3). Means with different superscript letters in the same column differ significantly at p < 0.05.

Overall, the current study found that ultrasonic time, temperature, and power sig-
nificantly affected the recovery yields of bioactive compounds from coffee pulp and their
antioxidant capacity. The optimal UAE extraction conditions were identified as an ul-
trasonic time of 35 min, temperature of 60 ◦C, and power of 250 W (the maximum level
operation power of UAE).

3.2. Impact of MAE Extraction Parameters on Recovery Yields of Bioactives and Antioxidant
Properties from Coffee Pulp
3.2.1. Effect of Radiation Time

The results (Table 4) show that radiation time significantly affected the recovery yields
of bioactive compounds and their antioxidant capacity (p < 005). The results showed that
there was no significant change in caffeine recovery over time, but the recovery yield of
TPC, TFC, CGA, and antioxidant capacity was highest when the radiation time ranged from
60 to 70 min. Our findings were consistent with previous studies on macadamia skin [34]
and lemon myrtle [35], which also found that a longer radiation time led to higher recovery
of bioactive compounds; however, too long a radiation time provided less recovery due to
degradation, since bioactive compounds are sensitive to heat [11,36,37], which was also
noted in these results after 80 min. Based on the current findings, radiation time of 70 min
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was found as the most suitable time, and was applied for further testing the impact of
radiation power.

Table 4. Effect of radiation time on recovery of bioactive compounds and antioxidant from
coffee pulp.

Time
(min)

TPC
(mg GAE/g

DW)

TFC
(mg CE/g DW)

CGA
(mg/g DW)

Caffeine
(mg/g DW)

ABTS
(mg TE/g DW)

DPPH
(mg TE/g DW)

FRAP
(mg TE/g DW)

10 25.48 ± 0.99 d 19.11 ± 0.83 d 5.66 ± 0.08 d 4.52 ± 0.07 a 59.53 ± 2.49 g 6.16 ± 0.50 b 36.96 ± 1.85 d

20 27.53 ± 1.26 cd 20.84 ± 1.69 cd 5.96 ± 0.18 cd 3.18 ± 2.75 a 63.18 ± 2.97 f 6.40 ± 0.54 b 39.58 ± 1.05 cd

30 29.03 ± 0.68 c 22.07 ± 0.43 c 5.49 ± 0.26 d 4.71 ± 0.49 a 65.17 ± 2.38 e 6.85 ± 0.28 b 43.49 ± 0.18 bc

40 30.17 ± 0.46 c 23.17 ± 0.61 c 6.59 ± 0.40 bc 4.84 ± 0.42 a 68.47 ± 1.7 d 7.01 ± 0.36 b 46.65 ± 0.20 b

50 38.73 ± 0.59 b 32.81 ± 0.75 ab 7.33 ± 0.23 ab 5.70 ± 0.33 a 78.11 ± 0.47 c 9.44 ± 0.29 a 63.44 ± 0.85 a

60 39.13 ± 0.16 b 34.30 ± 0.39 a 7.57 ± 0.32 a 5.77 ± 0.33 a 79.07 ± 0.52 b 9.83 ± 0.23 a 65.12 ± 0.33 a

70 43.38 ± 0.85 a 33.86 ± 0.83 ab 7.33 ± 0.27 ab 5.45 ± 0.22 a 82.34 ± 1.1 a 10.56 ± 0.21 a 65.55 ± 0.69 a

80 40.90 ± 1.67 ab 31.52 ± 1.42 b 6.92 ± 0.57 ab 5.38 ± 0.13 a 80.43 ± 0.36 ab 9.70 ± 0.73 a 60.91 ± 1.15 a

TPC: total phenolic content, TFC: total flavonoid content. ABTS radical scavenging capacity; DPPH radical
scavenging capacity; FRAP: ferric reducing antioxidant power. Data are expressed as means± standard deviations
(n = 3). Means with different superscript letters in the same column differ significantly at p < 0.05.

3.2.2. Effect of Radiation Power

The results (Table 5) show that the radiation power of the commercial ETHOS X
significantly affected recovery yields of TPC from the coffee pulp and their antioxidant
capacity, but did not significantly influence the recovery yields of TFC, caffeine, and CGA.
Recovery yields of TPC and the antioxidant capacity increased slightly when radiation
power increased to 700 W, then decreased when higher radiation power was applied. Our
findings are consistent with previous studies where gallic acid was obtained the highest
level at 630 W; a plateau was then observed when the power was increased [35]. However,
it should be noted that excessive radiation power could lead to a low recovery yield of
bioactive compounds due to the high heat that is generated, resulting in the degradation of
thermosensitive molecules [38]. The present study, therefore, recommends that the optimal
MAE conditions are a radiation time of 70 min and power of 700 W.

Table 5. Effect of radiation power on recovery of bioactive compounds and antioxidant from
coffee pulp.

Power of
Machine

(W)

TPC
(mg GAE/g

DW)

TFC
(mg CE/g DW

CGA
(mg/g DW)

Caffeine
(mg/g DW)

ABTS
(mg TE/g DW)

FRAP
(mg TE/g DW)

DPPH
(mg TE/g DW)

300 44.15 ± 0.06 ab 34.50 ± 1.25 a 7.62 ± 0.59 a 5.76 ± 0.19 a 105.48 ± 1.54 b 83.61 ± 0.83 a 10.37 ± 0.16 ab

400 45.49 ± 1.35 ab 35.82 ± 1.96 a 7.58 ± 0.88 a 5.36 ± 0.59 a 116.08 ± 2.32 a 84.65 ± 1.73 a 10.54 ± 0.29 ab

500 45.02 ± 0.82 ab 35.49 ± 0.97 a 7.33 ± 0.27 a 5.45 ± 0.22 a 107.56 ± 1.50 b 84.13 ± 2.46 a 10.65 ± 0.29 ab

600 45.61 ± 1.67 ab 36.79 ± 1.42 a 8.12 ± 0.49 a 5.88 ± 0.12 a 109.27 ± 2.68 ab 84.63 ± 1.05 a 11.02 ± 0.46 a

700 46.72 ± 1.86 a 36.44 ± 1.54 a 7.87 ± 0.54 a 5.74 ± 0.29 a 109.55 ± 0.64 ab 84.73 ± 0.88 a 11.02 ± 0.21 a

800 43.03 ± 1.14 b 36.00 ± 1.02 a 8.09 ± 0.35 a 5.39 ± 0.69 a 86.73 ± 4.22 c 72.37 ± 0.33 b 9.81 ± 0.09 b

900 42.79 ± 1.27 b 34.42 ± 1.85 a 7.29 ± 1.40 a 5.29 ± 1.44 a 84.81 ± 2.57 c 71.26 ± 3.10 b 10.00 ± 0.52 b

TPC: total phenolic content, TFC: total flavonoid content. ABTS radical scavenging capacity; DPPH radical
scavenging capacity; FRAP: ferric reducing antioxidant power. Data are expressed as means± standard deviations
(n = 3). Means with different superscript letters in the same column differ significantly at p < 0.05.

3.3. Comparison of UAE and MAE on the Recovery of Bioactive Compounds and Antioxidant
Capacity from Coffee Pulp

The results presented in Figure 1 show that MAE was more effective for recovering
bioactive compounds from coffee pulp with increased antioxidant capacity. Over 55% of
TPC can be recovered using MAE, as compared to UAE. Similarly, MAE can recover 48% of
TFC, 70% of CGA, and 42% of caffeine higher than those recovered by UAE (Figure 1A).
The results in Figure 1B also reveal more antioxidant capacity for the MAE extract than
UAE. MAE extract had antioxidant capacity of over 47% of ABTS, 57% of FRAP, and 52%
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of DPPH. These are higher than those obtained by UAE. Our findings are supported by a
previous study, which found that MAE was more effective in the recovery of blueberry leaf
bioactive compounds than UAE [39]. As there are limitations to the current approach to
finding the optimal conditions for each extraction techniques due to the likely interaction
between variables, it is recommended that further optimization should be carried out
on MAE.
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Figure 1. Comparison of MAE and UAE for recovery yields of bioactive compounds (A) and
antioxidant capacity (B). Data are means ± standard deviations (n = 3). Columns for each group not
sharing similar letters are significantly different at p < 0.05.

4. Conclusions

The extraction conditions of two advanced techniques, UAE and MAE, significantly
impacted the recovery of bioactive compounds and antioxidant capacity from coffee pulp.
For both UAE and MAE, in order to achieve high recovery yields of bioactive compounds
and antioxidant capacity from coffee pulp waste, variables such as extraction time, temper-
ature, and power were investigated and optimized. The findings indicate that the optimal
UAE conditions were an ultrasonic time of 35 min, temperature of 60 ◦C, and power of
250 W, while a radiation time of 70 min and power of 700 W should be used for MAE.
The results showed that MAE was more effective in recovering bioactive compounds and
antioxidant capacity from coffee pulp than UAE, with extraction yields of TPC, TFC, CGA,
and caffeine and antioxidant capacity by MAE found to be almost double compared to
UAE. MAE was, therefore, recommended for further optimization and application for
recovery of bioactive compounds and antioxidant capacity from the coffee pulp.
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