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Abstract: Borehole instability problems are commonly encountered while drilling highly deviated
and horizontal shale gas wells within the shale formations associated with high-dip bedding planes.
An integrated rock mechanical study is described in this paper to evaluate the risk of the borehole
instability problems in this area. First, a set of uniaxial compressive tests are carried out to measure
the strength of the bedding shales on cores with different angles between the load direction and the
bedding planes. A critical strength criterion is then proposed based on the test results. Next, the
stress state of the borehole with arbitrary inclination and azimuth is determined through coordinate
transformations. Finally, through combining the strength criterion and the stress state of the borehole,
the risk of borehole instability is investigated for deviated and horizontal wells in shale formations
with different bedding dips (0–90◦) and dip directions (45◦ and 90◦ to the direction of minimum
horizontal stress σh). The results show the dependence of borehole instability on the orientation of
bedding planes of the formation as well as inclination and azimuth of the well. The most desirable
borehole trajectory from the viewpoint of borehole stability is at the direction normal to the bedding
planes. For a horizontal well specifically, if the bedding direction is perpendicular to the direction of
σh, the risk of instability is relatively high for most drilling directions except drilling along the dip
direction of the bedding planes. However, if there is a moderate acute angle (e.g., 45◦) between the
dip direction and the direction of σh, the risk of instability is relatively low for most drilling directions
unless drilling along the direction of σh.

Keywords: borehole instability; bedding shales; high-angle wells; rock mechanics

1. Introduction

Two key technologies that enable economic development of shale gas are hydraulic
fracturing and horizontal drilling [1–4] (Fisher et al., 2004; Watson et al., 2008; Wiley et al.,
2004; Wu, 2015). In the shale gas formations, the pay zones of shale gas are mainly within
the marine Paleozoic shale formations. Due to the Himalayan Movement from the late
Paleogene to Quaternary, several orogenic belts were formed around the upper Yangtze
area, including the Longmen, Qinling, Xuefeng, and Dianqian orogenic belts. Influenced
by these orogenic belts, high-dip bedding planes in shale formations have developed
substantially in this area. Borehole instability problems continuously occur while drilling
highly deviated or horizontal wells in these bedding shales, which further lead to problems
of hole enlargements and reaming difficulties. Furthermore, the spalled rock debris due to
borehole instability can block the annulus and result in a remarkable pressure buildup in the
bottom hole. Lost circulation problems are also experienced as a result of this undesirable
pressure buildup. With fluid loss into the formation, the height of the fluid column in the
annulus may decrease which causes further borehole instability problems [5,6] (Feng et al.,
2016; Feng and Gray, 2016). A vicious circle of borehole instability and lost circulation
may continue and eventually lead to very high operational cost and even loss of the
entire borehole.
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The existing studies on borehole instability in bedding shale formations are mainly
focused on characterization of strength anisotropy and investigation of the strength criteria
for these formations [7–9] (Gao et al., 2014; McLamore and Gray, 1967; Okland and Cook,
1998). However, most of these studies are for conventional drilling in shales with low-dip
bedding, usually with dip angles less than 45◦, and aim to optimize the drilling trajectory.
Unfortunately, they are not suitable for analysis of borehole stability in shales with high-dip
bedding planes, e.g., with dip angles larger than 45◦ or even close to 90◦. Currently, there
is still a lack of an adequate predictive model for borehole instability of highly deviated
and horizontal wells in high-dip bedding shales. Therefore, the objective of this paper is to
describe an integrated rock mechanical study for this problem.

2. Rock Mechanical Testing and Strength Criterion for Bedding Shales
2.1. Rock Mechanical Testing

Relatively parallel bedding planes are prevalently developed in the shale formations.
Figure 1 shows the bedding planes in an outcrop of the Longmaxi shale formation, which
is one of the main gas-bearing formations in this area. From the microscopic perspective,
oriented bedding planes are also observed as shown in the SEM image in Figure 2. Figure 3
is a schematic illustration of the dip, dip direction, and normal direction used to describe
the orientation of the bedding plane.
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Due to the existence of these bedding planes, the shales have a strong anisotropic
nature and their mechanical properties can be very different from the relatively isotropic
rocks [10] (Yuan, 2012). Furthermore, the strength of the bedding planes is usually lower
than that of the shale matrix, therefore these weak planes often fail first while drilling
through the shale formations and trigger borehole instability problems. Due to these
particular features of bedding shales, it is necessary to carry out rock mechanical testing to
identify their strength anisotropy, obtain input data for prediction of borehole instability,
and understand the mechanisms of the instability problems [9] (Okland and Cook, 1998).
Therefore, a rock mechanical testing investigation was first initiated in this study.
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Figure 3. Illustration of dip, dip direction, and normal direction of a bedding plane.

Shale core samples from the Longmaxi formation (where the pore pressure of the
reservoir is 32 MPa, and the temperature of the reservoir is 88 ◦C), with obvious bedding
planes, were used for rock mechanical tests. The cores were cut at angle κ from 0◦ to 90◦ to
the normal direction of the bedding planes (i.e., 0◦ and 90◦ mean the axis of the core sample
is normal and parallel to the bedding plane, respectively) as shown in Figure 4. A micro
coring bit with an inner dimeter of 2.54 cm was used to drill core samples. During the
coring process, kerosene was used as the coolant to cool the bit and constant bit weight was
used to avoid rupture of the sample. After coring, the two ends of the core samples were cut
and sanded flat and parallel to each other. Figure 5 shows some well-processed shale core
samples. Uniaxial compressive tests were carried out on each sample. Displacement loading
control was utilized during the tests with loading rates of 0.001 mm/s and 0.1 mm/min
before and after the failure of the samples, respectively.
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Figure 5. Processed core samples for the rock mechanical tests.

The extensive distribution of bedding planes and small natural fractures in the rock
constrain the preparation of core samples; as a result, most of the core samples have a
length/diameter ratio l/D less than 2.0. The measured uniaxial compressive strength (UCS)
is shown with the square points in Figure 6. The results indicate strong dependence of UCS
on the loading (axial) directions of the core samples relative to the bedding planes. The
UCS with a moderate angle (e.g., 45◦) between the loading direction and bedding planes is
much smaller than that with a loading direction nearly normal or parallel to the bedding
planes, as shown in Figure 6.
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Figure 6. Measured and fitting results of uniaxial compressive strength of the Longmaxi bedding shales.

It is believed that this measured strength is relatively larger due to the size effect
associated with small length/diameter ratio. Therefore, in order to eliminate the error due
to size effect [11], the adjustment formula (Equation (1)) was used in this study to adjust
the test results of samples with l/D < 2.0 to the standard condition with l/D = 2.0.

σc = σc0

[
0.778 + 0.222 · (l/D)−1

]
(1)

where l is the length of the shale core sample, cm; D is the diameter of the shale core
sample, cm; σc0 is the measured compressive strength of the core sample, MPa; and σc is
the adjusted compressive strength of the core sample, MPa.

2.2. Strength Criterion for Bedding Shales

Due to the anisotropic nature of bedding shales, the strength criteria traditionally used
for analyzing failure of relatively isotropic rocks are no longer adequate for evaluation of
borehole instability problems in bedding shales. The need for a sufficient strength criterion
is therefore paramount [8] (McLamore and Gray, 1967). In this study, the strength criterion
for anisotropic rocks with bedding planes proposed by Mclamore and Gray was applied.
On the basis of their criterion the strength of the bedding shales in the Longmaxi formation
can be evaluated using Equation (2) [12] (E Fjær, 2008), which was obtained by fitting the
testing results reported in Table 1 to the strength criterion. Excellent fitting results were
obtained as shown in Figure 6.

(σ1 − σ3) =
τo(κ)− 2σ3 tan ϕ

tan ϕ−
√

tan2 ϕ + 1
(2)

τ0(κ) = A1 − B1[cos 2(χ− κ)]m, 0◦ ≤ κ ≤ θ
′

(3)

τ0(κ) = A2 − B2[cos 2(χ− κ)]n, θ
′
< κ ≤ 90◦ (4)
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where σ1, σ3 are the maximum and minimum principal stresses, respectively, MPa; ϕ is the
internal frictional angle, ◦; τ0(κ) is the cohesive strength which is a function of the angle
between the direction of σ1 and the normal direction of the bedding planes, MPa; A1, B1,
A2, B2, m, n, and θ’ are fitting parameters. Using the measured strength in Table 1, the
fitting parameters were determined as A1 = −17.5 MPa, B1 = −12.5 MPa, A2 = −14 MPa,
B2 = −9 MPa, χ = 50◦, m = 3, n = 3.

Table 1. Rock mechanical testing results of bedding shales.

Cut Angles of Core
κ/º

Core Length
l/mm

Core Diameter
D/mm

Length/Diameter
Ratio l/D

Measured UCS
σc0/MPa

Adjusted UCS
σc/MPa

0 51.36 25.07 2.13 69.15 65.93

15 41.23 25.11 1.64 58.68 52.58

30 33.95 25.08 1.43 39.54 33.28

45 35.83 25.11 1.43 23.83 20.42

60 40.28 25.09 1.61 32.77 29.16

75 46.35 25.09 1.85 48.78 45.23

90 32.93 25.13 1.36 64.68 53.83

When the cut angle is 45◦, the normal stress of the bedding plane is the smallest, and
the shear stress is the largest. At this time, slip dislocation is most likely to occur. Therefore,
when the angle = 45◦, UCS reaches the minimum value.

3. Borehole Stress Analysis

For analyzing borehole instability problems of deviated or horizontal wells, the stress
state around the borehole must be determined [13,14] (Frydman and da Fontoura, 2001;
Zhang, 2002). When the stress state on the borehole wall goes beyond the failure envelope
of the strength criterion (e.g., Equation (2) in this study), borehole instability will occur [10]
(Yuan et al., 2012). The threshold drilling mud pressure at the occurrence of borehole
instability is usually defined as collapse pressure, and the corresponding drilling mud
density is usually called equivalent drilling mud density which is a critical parameter for
well design and drilling mud optimization [6,15] (Feng et al., 2016; Li and Gray, 2015).

The stress state around the borehole can be determined through coordinate transfor-
mations [12,15–17] (Aadnoy, 1987; Fjar et al., 2008; Li and Gray, 2015; Zoback, 2010). A
Cartesian coordinate system (X, Y, Z) is first defined according to the directions of the
far-field stresses with the X-, Y-, and Z-axis coincident with the directions of maximum
horizontal stress σH , minimum horizontal stress σh, and the vertical overburden stress σV ,
respectively, as shown in Figure 7a. Next, the far-field stresses are transformed to a new
Cartesian coordinate (X’, Y’, Z’) with the Z’-axis coincident with the borehole axis and
the X’-axis coincident with the azimuth direction of the borehole, as shown in Figure 7b.
Finally, the stresses are transformed to a cylindrical coordinate system (r, θ, z) with the
z-axis coincident with the borehole axis as shown in Figure 7c. After these coordinate trans-
formations, the stress around the borehole can be determined. In the following sections,
coordinate systems (X, Y, Z), (X’, Y’, Z’), and (r, θ, z) are referred to as the field Cartesian co-
ordinate system, borehole Cartesian coordinate system, and borehole cylindrical coordinate
system, respectively.
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Before a borehole is drilled, the rock is at an initial equilibrium state under the far-field
stresses. The initial stress state in the borehole Cartesian coordinate system (X’, Y’, Z’) can
be determined as [12,17] (Fjar et al., 2008; Zoback, 2010):

σ = LSLT =

 σx′x′ σx′y′ σx′z′

σy′x′ σy′y′ σy′z′

σz′x′ σz′y′ σz′z′

 (5)

S =

 σH 0 0
0 σh 0
0 0 σV

 (6)

L =

 cos α cos β cos α sin β − sin β
− sin β cos β 0

sin α cos β sin α cos β cos β

 (7)

where σ is the stress matrix in the borehole Cartesian coordinate system (X’, Y’, Z’); S is
the far-field stress matrix in the field Cartesian coordinate system (X, Y, Z); σH , σh, and
σV are the maximum horizontal stress, the minimum horizontal stress, and the vertical
overburden stress, respectively, MPa;σx′x′ , σx′y′ , σx′z′ , σy′x′ , σy′y′ , σy′z′ , σz′x′ , σz′y′ , and σz′z′

are the field stress components in the borehole Cartesian coordinate system, MPa; L is the
coordinate transformation matrix from the field Cartesian coordinate system (X, Y, Z) to
the borehole Cartesian coordinate system (X’, Y’, Z’); LT is the transpose of L; α and β are
the inclination and azimuth of the borehole, respectively, ◦.

After a borehole is drilled, it is more convenient to analyze the stress state around and
the failure of the borehole using the borehole cylindrical coordinate system (r, θ, z). The
stress state on the borehole wall can be obtained by superposing the stresses induced by
the field stress components in Equation (4) and drilling mud pressure Pw in the borehole. It
can be expressed as [18–20]:

σr = P− δφ(Pw − Pp) (8)

σθ = −Pw + σxx(1− 2 cos 2θ) + σyy(1 + 2 cos 2θ)− 4σxy sin 2θ + δ[
αp(1− 2ν)

2(1− ν)
− φ](Pw − Pp) (9)

σz = δ[
αp(1− 2ν)

1− ν
− φ](Pw − Pp) + σzz − ν[2(σxx − σyy) cos 2θ + 4σxy sin 2θ] (10)

σrθ = σzr = 0 (11)
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σθz = 2σyz cos θ − 2σxz sin θ (12)

where σr, σθ , σz are the radial, tangential, and axial stresses on the borehole wall in the
cylindrical coordinate system (r, θ, z), MPa; σrθ , σθz, σzr are the shear stress components in
the cylindrical coordinate system, MPa; Pw is borehole pressure, MPa; Pp is pore pressure in
the formation, MPa; δ is a nonlinear correction coefficient, dimensionless; ϕ is the porosity
of the rock, dimensionless; θ is the circumferential angle of the wellbore, ◦; αp is the effective
stress coefficient, dimensionless; ν is Poisson’s ratio, dimensionless.

Equation (7) implies that, at the borehole wall, σr is a principal stress, but σθ and σz
are not because the shear stress σθz on the θ-z plane is not zero. Through stress analysis,
the normal stress σ and shear stress τ on an oblique plane at angle γ to the z-axis can be
obtained as:

σ = σθ cos2 γ + 2σθz cos γ sin γ + σz sin2 γ (13)

τ =
1
2
(σz − σθ) sin 2γ + σθz cos 2γ. (14)

The other two principal stresses on the borehole wall can be determined by taking the
derivative of shear stress τ (Equation (9)) with respect to γ and setting it equal to zero. The
angles γ for the other two mutually orthogonal principal stresses are therefore determined
as [21]:

γ1 =
1
2

arctan
2σθz

σθ − σz
(15)

γ2 =
π

2
+

1
2

arctan
2σθz

σθ − σz
. (16)

Substituting Equation (10) into Equation (8), the other two principal stresses on the
borehole wall are obtained as:

σγ1 =
σz + σθ

2
+

√
(

σz − σθ

2
)

2
+ σ2

θz (17)

σγ2 =
σz + σθ

2
−

√
(

σz − σθ

2
)

2
+ σ2

θz. (18)

After the determination of the three principal stresses, the collapse pressure for highly
deviated and horizontal boreholes in bedding shale formations can be determined using the
strength criterion presented in Section 2. In the following section, a case study is performed
to investigate the risk of instability of deviated and horizontal boreholes with various
dip angles and dip directions of the bedding planes and with different inclinations and
azimuths of boreholes [22–24].

4. Case Study

As aforementioned, borehole instability problems of deviated and horizontal wells
in shale formations with high-dip bedding planes are not fully understood and require
further elucidation [25,26]. Therefore, a case study is presented in this section to illustrate
this problem.

A bedding shale formation with a depth of 2200 m is considered in this study. The
internal friction angle ϕ of this shale formation is determined to be 33◦. The cohesive
strength τ0(κ) is a function of bedding dip and given by Equation (3) in Section 2. The
internal friction angle and cohesive strength should be determined through rock mechanical
testing for each individual shale formation with different bedding planes. The maximum
horizontal stress σH , minimum horizontal stress σh, and overburden stress σV of this
formation are 52 MPa, 46 MPa, and 42 MPa, respectively. The direction of the minimum
horizontal stress is at N60◦ E. In compressive tectonic regimes, the dip direction of the
bedding planes is usually at an angle less than or equal to 90◦ to the direction of the
minimum horizontal stress. In this case study, two cases with bedding dip directions
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of N150◦ E and N15◦ E (i.e., 90◦ and 45◦ to the direction of minimum horizontal stress)
are considered.

For the case of a shale formation with bedding dip direction of N150◦ E (perpendic-
ular to the direction of minimum horizontal stress), collapse pressures of boreholes with
arbitrary inclination and azimuth and different bedding dips are calculated and plotted in
Figure 8. Different plots show the results with different dip angles (0◦, 20◦, 30◦, 50◦, 70◦,
and 90◦, respectively) of the bedding planes. For each plot, the azimuth of the borehole
is shown in the circumferential direction of the plot from 0◦ to 360◦, with 0◦ and 180◦

corresponding to north and south, respectively. Therefore, the direction of the minimum
horizontal stress and the dip direction of the bedding planes are at 60◦ and 150◦ on the
plots, respectively. The radial distance from the center to the outer boundary of the plots
represents the inclinations of the borehole from 0◦ (vertical borehole) to 90◦ (horizontal
borehole). In these plots, red means relatively high collapse pressure and hence high risk of
borehole instability in the corresponding conditions, while blue means relatively low risk
of instability [27,28].
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Figure 8 indicates that, with the increase in the dip angle of the bedding planes, the
safe (blue) region of the well trajectory changes and remains relatively small. This means
the risk of borehole instability is high for most drilling trajectories when the dip direction
of the bedding planes is perpendicular to the direction of minimum horizontal stress.
Furthermore, through a close examination of the plots in Figure 8, it is found that well
trajectories in the blue region are always approximately normal to the bedding planes.
Therefore, it can be concluded that, from the viewpoint of borehole stability, the most
desirable drilling direction in bedding shale formations is normal to the bedding planes.

For horizontal boreholes particularly, with the same bedding dip direction of N150◦ E,
Figure 9 shows their collapse pressure for different azimuths of the borehole and dip
angles of the bedding planes. It can be seen that the collapse pressure for most regions is
relatively high, indicating a high risk of borehole instability for drilling horizontal wells
in this bedding shale formation. When drilling perpendicularly to the dip direction of
the bedding planes, collapse pressure and thus risk of borehole instability are relatively
high and increase with the increase in the dip angle of the bedding planes. However,
for a borehole parallel to the dip direction of the bedding planes, the collapse pressure is
relatively small, especially for formations with high dip angles. Therefore, the most optimal
drilling direction of a horizontal well for avoiding borehole instability problems is drilling
along the dip direction of the bedding planes.
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is at 60◦).

Similarly, collapse pressures of a shale formation with a bedding dip direction of
N15◦ E (45◦ to the direction of minimum horizontal stress) for different borehole incli-
nations, borehole azimuths, and bedding dip angles are also calculated and plotted in
Figure 10. The safe (blue) region moves with the change in dip angle. However, this safe
region remains much larger than that in the above case. This means the risk of borehole
instability is relatively low for most drilling trajectories when the dip direction of the
bedding planes is at a moderate acute angle to the direction of the minimum horizontal
stress. From the viewpoint of borehole stability, the most desirable borehole trajectory in
this case is also at the direction normal to the bedding planes.
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With the same bedding dip direction of N15◦ E, Figure 11 shows the collapse pressure
of a horizontal borehole with different azimuths of the borehole and dip angles of the
bedding planes. The collapse pressure for most regions is relatively low, implying a
relatively low risk of borehole instability. High risk of instability only exists while drilling
at the direction of the minimum horizontal stress. As in the above case, the most optimal
direction for drilling horizontal wells is also along the dip direction of the bedding planes.
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bedding planes (dip direction of bedding plane is at 15◦; direction of the minimum horizontal stress
is at 60◦).

5. Conclusions

Bedding planes in shale formations are recognized as a key factor causing borehole
instability problems. In this paper, a rock mechanical study integrating rock strength testing
and mathematical modeling to understand and resolve the borehole instability problems
is described.

Uniaxial compressive strength of bedding shale samples from the Longmaxi formation
was measured with different angles between the principal stress and the bedding planes.
The results display higher rock strength when the principal stress is normal or parallel to the
bedding planes and relatively lower strength with moderate angles between the principal
stress and the bedding planes. Based on the testing results, a specific strength criterion was
proposed for the Longmaxi bedding shale formation. Through combining the stress state
around the borehole and the proposed strength criterion, the risk of borehole instability
was investigated for deviated and horizontal wells in bedding shales with different dips
and dip directions.

When the dip direction of the bedding plane is perpendicular to the direction of
the minimum horizontal stress, the risk of borehole instability is relatively high for most
drilling trajectories, while, with a moderate acute angle between them, the risk of instability
is relatively low for most drilling trajectories and high risk only exists when drilling along
the direction of minimum horizontal stress. For both cases, the most desirable borehole
trajectory is drilling normal to the bedding planes. Therefore, it is recommended to drill
wells as close to the normal direction of the bedding planes as possible to avoid borehole
instability problems, and successful implementations have been achieved.
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Nomenclature

A1 fitting parameter, MPa
A2 fitting parameter, MPa
B1 fitting parameter, MPa
B2 fitting parameter, MPa
D diameter of shale core sample, cm
L coordinate transformation matrix from the field Cartesian coordinate system

to the borehole Cartesian coordinate system
LT the transpose of L
l length of shale core sample, cm
m fitting parameter, dimensionless
n fitting parameter, dimensionless
Pp pore pressure in the formation, MPa
Pw borehole pressure, MPa
α inclination of borehole, ◦

αp effective stress coefficient, dimensionless
β azimuth of borehole, ◦

γ angel between an oblique plane and z-axis of the wellbore cylindrical coordinate
system, ◦

δ nonlinear correction coefficient, dimensionless
θ circumferential angle of the wellbore from the direction of the maximum

horizontal stress, ◦

θ
′

fitting parameters, ◦

κ angle between core axis and normal direction of bedding planes, ◦

ν Poisson’s ratio, dimensionless
σ normal stress at an oblique plane at angle γ to z-axis of the wellbore cylindrical

coordinate system, MPa
σ1 maximum principal stresses, MPa
σ3 minimum principal stresses, MPa
σc adjusted compressive strength of core sample, Mpa
σc0 measured compressive strength of core sample, Mpa
σH maximum horizontal stress, Mpa
σh minimum horizontal stress, Mpa
σV overburden stress, Mpa
σx′x′ , σx′y′ , σx′z′ , field stress components in the borehole Cartesian coordinate system, Mpa
σy′x′ , σy′y′ , σy′z′ ,
σz′x′ , σz′y′ , and σz′z′

σr, σθ , σz radial, tangential, and axial stresses on borehole wall in the wellbore cylindrical
coordinate system, MPa

σrθ , σθz, σzr shear stress components in the wellbore cylindrical coordinate system, MPa
σγ1, σγ2 two principal stresses on the wellbore wall, MPa
τ shear stress at an oblique plane at angle γ to z-axis of the wellbore cylindrical

coordinate system, MPa
τ0(κ) cohesive strength, MPa
ϕ internal frictional angle, ◦

ϕ porosity, dimensionless
χ fitting parameters, ◦
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