Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies
Abstract
:1. Introduction
2. The Main Factors Affecting Ion Selectivity
2.1. Ionic Properties of Ions to Be Selectively Removed
2.2. Operation Parameters
2.2.1. Applied Voltage
2.2.2. Solution Flow Rate
2.2.3. pH
2.3. Construction of CDI Reactor
2.3.1. Electrode Materials
2.3.2. Cell Architectures
3. Possible Application Areas of CDI
3.1. Desalination
3.2. Water Softening
Target Ions | Competing Ions | The Order of Electrosorption | Methods/Electrode Material | Ref. |
---|---|---|---|---|
Ca2+ | Na+ | Ca2+ > Na+ | Applying a calcium selective nanocomposite coating | [42] |
Ca2+ | Na+ | Ca2+ > Na+ | Ca-alginate as coating material on a negative electrode | [77] |
Ca2+, Mg2+ | Na+ | Ca2+ > Mg2+ > Na+ | CNTs/Ca-Selective zeolite composite electrodes | [81] |
Ca2+ | Na+ | Ca2+ > Na+ | Parameter control | [78] |
Ca2+, Mg2+ | Na+ | Ca2+ > Mg2+ > Na+ | Activated carbon cloth and composites electrodes | [80] |
3.3. Heavy Metal Removal and Recovery
3.4. Nutrient Removal and Recovery
4. Conclusions and Future Perspectives
- (I)
- For different target ions, the ionic properties need to be paid attention first, and the hydration radius and valence of the ions often have an important impact on the selective adsorption of CDI.
- (II)
- Choosing appropriate operating parameters will also effectively improve the ion selectivity of CDI.
- (III)
- From the initial carbon-based materials to Faraday electrode materials, the development of electrode materials is one of the key factors to achieve CDI ion selectivity. In addition, under certain operating conditions and electrode materials, the selective removal performance can be enhanced by optimizing the cell architectures.
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, X.; Zuo, K.; Zhang, X.; Zhang, C.; Liang, P. Selective ion separation by capacitive deionization (CDI) based technologies: A state-of-the-art review. Environ. Sci. Water Res. Technol. 2020, 6, 243–257. [Google Scholar] [CrossRef]
- Pang, T.; Shen, J. Visualizing the landscape and evolution of capacitive deionization by scientometric analysis. Desalination 2022, 527, 115562. [Google Scholar] [CrossRef]
- Blair, J.; Murphy, G. Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area. Saline Watter Convers. Am. Chem. Soc. 1960, 27, 206–223. [Google Scholar]
- Arnold, B.B.; Murphy, G.W. Studies on electrochemistry of carbon and chemically modified carbon surfaces. J. Phys. Chem. 1961, 65, 135–138. [Google Scholar] [CrossRef]
- Caudle, D.D. Electrochemical demineralization of water with carbon electrodes. Sci. Rep. 1966, 4, 7397. [Google Scholar]
- Porada, S.; Zhao, R.; Wal, A.V.D.; Presser, V.; Biesheuvel, P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.-U.; Lim, J.; Boo, C.; Hong, S. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency. Desalination 2021, 502, 114930. [Google Scholar] [CrossRef]
- Tang, W.; Kovalsky, P.; He, D.; Waite, T.D. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res. 2015, 84, 342–349. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Jamaly, S.; Darwish, N.N.; Ahmed, I.; Hasan, S.W. A short review on reverse osmosis pretreatment technologies. Desalination 2014, 354, 30–38. [Google Scholar] [CrossRef]
- Sadrzadeh, M.; Mohammadi, T. Sea water desalination using electrodialysis. Desalination 2008, 221, 440–447. [Google Scholar] [CrossRef]
- Hou, C.-H.; Huang, C.-Y. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 2013, 314, 124–129. [Google Scholar] [CrossRef]
- Li, H.; Zou, L.; Pan, L.; Sun, Z. Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Sep. Purif. Technol. 2010, 75, 8–14. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Wu, C.; Wang, Y.; Li, W. A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization. Desalination 2015, 369, 46–50. [Google Scholar] [CrossRef]
- Nightingale, E.R. Phenomenological theory of ion solvation effective radii of hydrated ions. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Gabelich, C.J.; Tran, T.D.; Suffet, I.H. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 2002, 36, 3010–3019. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, L.K.; Li, H.B.; Zhang, Y.P.; Zhang, Z.J.; Chen, Y.W.; Sun, Z. Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Film. 2009, 517, 1616–1619. [Google Scholar] [CrossRef]
- Li, Y.; Stewart, T.C.; Tang, H.L. A comparative study on electrosorptive rates of metal ions in capacitive deionization. J. Water Process Eng. 2018, 26, 257–263. [Google Scholar] [CrossRef]
- Mossad, M.; Zou, L. A study of the capacitive deionisation performance under various operational conditions. J. Hazard. Mater. 2012, 213, 491–497. [Google Scholar] [CrossRef]
- Xu, P.; Drewes, J.E.; Heil, D.; Wang, G. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 2008, 42, 2605–2617. [Google Scholar] [CrossRef]
- Ying, T.Y.; Yang, K.L.; Yiacoumi, S.; Tsouris, C. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J. Colloid Interface Sci. 2002, 250, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Kovalsky, P.; Cao, B.; Waite, T.D. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Res. 2016, 99, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Fan, C.-S.; Hou, C.-H. Electro-Enhanced removal of copper ions from aqueous solutions by capacitive deionization. J. Hazard. Mater. 2014, 278, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Dykstra, J.E.; Porada, S.; Van Der Wal, A.; Yoon, J.; Biesheuvel, P.M. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. J. Colloid Interface Sci. 2015, 446, 317–326. [Google Scholar] [CrossRef]
- Wang, L.; Lin, S.H. Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening. Environ. Sci. Technol. 2019, 53, 5797–5804. [Google Scholar] [CrossRef]
- Pastushok, O.; Zhao, F.; Ramasamy, D.L.; Sillanpaa, M. Nitrate removal and recovery by capacitive deionization (CDI). Chem. Eng. J. 2019, 375, 121943. [Google Scholar] [CrossRef]
- Huyskens, C.; Helsen, J.; De Haan, A.B. Capacitive deionization for water treatment: Screening of key performance parameters and comparison of performance for different ions. Desalination 2013, 328, 8–16. [Google Scholar] [CrossRef]
- Choi, J.; Lee, H.; Hong, S. Capacitive deionization (CDI) integrated with monovalentcation selective membrane for producing divalent cation-rich solution. Desalination 2016, 400, 38–46. [Google Scholar] [CrossRef]
- Hefter, G.T. Acidity constant of hydrofluoric acid. J. Solut. Chem. 1984, 13, 457–470. [Google Scholar] [CrossRef]
- Pang, T.; Marken, F.; Zhang, D.; Shen, J. Investigating the role of dissolved inorganic and organic carbon in fluoride removal by membrane capacitive deionization. Desalination 2022, 528, 115618. [Google Scholar] [CrossRef]
- Zhu, E.; Hong, X.; Ye, Z.; Hui, K.S.; Hui, K.N. Influence of various experimental parameters on the capacitive removal of phosphate from aqueous solutions using LDHs/AC composite electrodes. Sep. Purif. Technol. 2019, 215, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Morris, G.; Qi, D. Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination 2008, 225, 329–340. [Google Scholar] [CrossRef]
- Jung, H.-H.; Hwang, S.-W.; Hyun, S.-H.; Lee, K.-H.; Kim, G.-T. Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination 2007, 216, 377–385. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, C.; Pan, L.; Xu, X.; Sun, Z.; Chua, D.H.C. Carbon aerogels electrode with reduced graphene oxide additive for capacitive deionization with enhanced performance. Inorg. Chem. Front. 2014, 1, 249–255. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Huang, Z.-H.; Cui, T.; Gui, X.; Kang, F.; Wang, K.; Wu, D. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. J. Mater. Chem. 2011, 21, 18295–18299. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Doong, R.-A. Activation of hierarchically ordered mesoporous carbons for enhanced capacitive deionization application. Synth. Met. 2015, 205, 48–57. [Google Scholar] [CrossRef]
- Oren, Y. Capacitive delonization (CDI) for desalination and water treatment—Past, present and future (a review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Wei, W.; Yu, C.; Zhao, Q.; Qian, X.; Li, G.; Wan, Y. Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst. Appl. Catal. B Environ. 2014, 146, 151–161. [Google Scholar] [CrossRef]
- Hawks, S.A.; Ceron, M.R.; Oyarzun, D.I.; Tuan Anh, P.; Zhan, C.; Loeb, C.K.; Mew, D.; Deinhart, A.; Wood, B.C.; Santiago, J.G.; et al. Using Ultramicroporous Carbon for the Selective Removal of Nitrate with Capacitive Deionization. Environ. Sci. Technol. 2019, 53, 10863–10870. [Google Scholar] [CrossRef]
- Singh, K.; Li, G.; Lee, J.; Zuilhof, H.; Mehdi, B.L.; Zornitta, R.L.; De Smet, C.P.M.L. Divalent Ion Selectivity in Capacitive Deionization with Vanadium Hexacyanoferrate: Experiments and Quantum-Chemical Computations. Adv. Funct. Mater. 2021, 31, 2105203. [Google Scholar] [CrossRef]
- Kim, J.; Jain, A.; Zuo, K.; Verduzco, R.; Walker, S.; Elimelech, M.; Zhang, Z.; Zhang, X.; Li, Q. Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. Water Res. 2019, 160, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T.D. Faradaic reactions in capacitive deionization (CDI)—Problems and possibilities: A review. Water Res. 2018, 128, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, G.; Zhan, F.; Dong, Q.; Ren, Q.; Wang, J.; Qiu, J. Surface-Treated carbon electrodes with modified potential of zero charge for capacitive deionization. Water Res. 2016, 93, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Elisadiki, J.; King’ondu, C.K. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review. J. Electroanal. Chem. 2020, 878, 114588. [Google Scholar] [CrossRef]
- Leong, Z.Y.; Yang, H.Y. A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Appl. Mater. Interfaces 2019, 11, 13176–13184. [Google Scholar] [CrossRef]
- Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M.C.; Aslan, M.; Suss, M.E.; Presser, V. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 2016, 4, 18265–18271. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, S.; Yoon, J. Rocking Chair Desalination Battery Based on Prussian Blue Electrodes. ACS Omega 2017, 2, 1653–1659. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Wang, S.; Zhan, F.; Fu, Y.; Qiao, H.; Qiu, J. Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. Environ. Sci. Technol. Lett. 2018, 5, 98–102. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, Y.; Xiao, D.; Or, T.; Gao, R.; Li, Z.; Feng, M.; Shui, L.; Zhou, G.; Wang, X.; et al. Faradaic Electrodes Open a New Era for Capacitive Deionization. Adv. Sci. 2020, 7, 2002213. [Google Scholar] [CrossRef]
- Missoni, L.L.; Marchini, F.; Del Pozo, M.; Calvo, E.J. A LiMn2O4-Polypyrrole System for the Extraction of LiCl from Natural Brine. J. Electrochem. Soc. 2016, 163, A1898. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, H.; Shin, D.; Lee, J.; Yoon, J. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interface Sci. 2017, 506, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Guo, X.; Huang, X.; Liu, L.; Tallon, R.; Taylor, B.; Chen, J. Selective removal of lead ions through capacitive deionization: Role of ion-exchange membrane. Chem. Eng. J. 2019, 361, 1535–1542. [Google Scholar] [CrossRef]
- Bryjak, M.; Siekierka, A.; Kujawski, J.; Smolinska-Kempisty, K.; Kujawski, W. Capacitive Deionization for Selective Extraction of Lithium from Aqueous Solutions. J. Membr. Sep. Technol. 2015, 4, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.-I.; Park, H.-R.; Yeo, J.-G.; Yang, S.; Cho, C.H.; Han, M.H.; Kim, D.K. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy Environ. Sci. 2013, 6, 1471–1475. [Google Scholar] [CrossRef]
- Nativ, P.; Lahav, O.; Gendel, Y. Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes. Desalination 2018, 425, 123–129. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, C.; Yoon, J. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 2014, 7, 3683–3689. [Google Scholar] [CrossRef]
- Datar, S.D.; Mane, R.; Jha, N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. Water Env. Res 2022, 94, e10696. [Google Scholar] [CrossRef]
- Anderson, M.A.; Cudero, A.L.; Palma, J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta 2010, 55, 3845–3856. [Google Scholar] [CrossRef]
- Choi, J.; Dorji, P.; Shon, H.K.; Hong, S. Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency. Desalination 2019, 449, 118–130. [Google Scholar] [CrossRef]
- Xiong, Y.; Yu, F.; Ma, J. Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization. Acta Phys. -Chim. Sin. 2022, 38, 2006037. [Google Scholar] [CrossRef]
- Xu, X.; Tan, H.; Wang, Z.; Wang, C.; Pan, L.; Kaneti, Y.V.; Yang, T.; Yamauchi, Y. Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination. Environ. Sci. Nano 2019, 6, 981–989. [Google Scholar] [CrossRef]
- Xu, X.; Sun, Z.; Chua, D.H.; Pan, L. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci. Rep. 2015, 5, 11225. [Google Scholar] [CrossRef] [PubMed]
- Pasta, M.; Wessells, C.D.; Cui, Y.; La Mantia, F. A Desalination Battery. Nano Lett. 2012, 12, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, Y.; Guo, L.; Sun, L.; Wang, Y.; Yang, H.Y. Dual-Ions electrochemical deionization: A desalination generator. Energy Environ. Sci. 2017, 10, 2081–2089. [Google Scholar] [CrossRef]
- Min, X.; Zhu, M.; He, Y.; Wang, Y.; Deng, H.; Wang, S.; Jin, L.; Wang, H.; Zhang, L.; Chai, L. Selective removal of Cl− and F− from complex solution via electrochemistry deionization with bismuth/reduced graphene oxide composite electrode. Chemosphere 2020, 251, 126319. [Google Scholar] [CrossRef]
- Zuo, K.; Kim, J.; Jain, A.; Wang, T.; Verduzco, R.; Long, M.; Li, Q. Novel Composite Electrodes for Selective Removal of Sulfate by the Capacitive Deionization Process. Environ. Sci. Technol. 2018, 52, 9486–9494. [Google Scholar] [CrossRef]
- Chen, X.H.; Deng, W.Y.; Miao, L.W.; Gao, M.; Ao, T.Q.; Chen, W.Q.; Ueyama, T.; Dai, Q.Z. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization. Environ. Technol. 2021; Online ahead of print. [Google Scholar] [CrossRef]
- Tang, W.W.; He, D.; Zhang, C.Y.; Waite, T.D. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Res. 2017, 121, 302–310. [Google Scholar] [CrossRef]
- Tang, W.W.; Kovalsky, P.; Cao, B.C.; He, D.; Waite, T.D. Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI). Environ. Sci. Technol. 2016, 50, 10570–10579. [Google Scholar] [CrossRef]
- Gaikwad, M.S.; Balomajumder, C. Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study. Sep. Purif. Technol. 2017, 186, 272–281. [Google Scholar] [CrossRef]
- Park, G.; Hong, S.P.; Lee, C.; Lee, J.; Yoon, J. Selective fluoride removal in capacitive deionization by reduced graphene oxide/hydroxyapatite composite electrode. J. Colloid Interface Sci. 2021, 581, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Shapira, B.; Avraham, E.; Soffer, A.; Aurbach, D. Bromide Ions Specific Removal and Recovery by Electrochemical Desalination. Environ. Sci. Technol. 2018, 52, 6275–6281. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Duan, F.; Su, C.L.; Li, Y.P.; Cao, H.B. Removal of chloride ions using a bismuth electrode in capacitive deionization (CDI). Environ. Sci. Water Res. Technol. 2020, 6, 373–382. [Google Scholar] [CrossRef]
- Chang, J.; Li, Y.; Duan, F.; Su, C.; Li, Y.; Cao, H. Selective removal of chloride ions by bismuth electrode in capacitive deionization. Sep. Purif. Technol. 2020, 240, 116600. [Google Scholar] [CrossRef]
- Gabrielli, C.; Maurin, G.; Francy-Chausson, H.; Thery, P.; Tran, T.T.M.; Tlili, M. Electrochemical water softening: Principle and application. Desalination 2006, 201, 150–163. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, J.; Kim, S.-R.; Kang, J.; Kim, S.; Kim, C.; Yoon, J. Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control. Desalination 2016, 392, 46–53. [Google Scholar] [CrossRef]
- Zhao, R.; Van Soestbergen, M.; Rijnaarts, H.H.M.; Van Der Wal, A.; Bazant, M.Z.; Biesheuvel, P.M. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 2012, 384, 38–44. [Google Scholar] [CrossRef]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Seo, S.-J.; Jeon, H.; Lee, J.K.; Kim, G.-Y.; Park, D.; Nojima, H.; Lee, J.; Moon, S.-H. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 2010, 44, 2267–2275. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; Cheng, Z.; Xu, J.; Wang, R.; Gang, X. Preparing CNTs/Ca-Selective zeolite composite electrode to remove calcium ions by capacitive deionization. Desalination 2013, 326, 109–114. [Google Scholar] [CrossRef]
- Jose, A.; Ray, J.G. Toxic heavy metals in human blood in relation to certain food and environmental samples in Kerala, South India. Environ. Sci. Pollut. Res. Int. 2018, 25, 7946–7953. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Lu, L.; Cai, Z.; Ren, Z.J. Individual and competitive removal of heavy metals using capacitive deionization. J. Hazard. Mater. 2016, 302, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Biodynamic understanding of mercury accumulation in marine and freshwater fish. Adv. Environ. Res. 2012, 1, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Sah, D.; Verma, P.K.; Kumari, K.M.; Lakhani, A. Chemical partitioning of fine particle-bound As, Cd, Cr, Ni, Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhal. Toxicol. 2017, 29, 483–493. [Google Scholar] [CrossRef]
- Khan, M.R.; Ahmad, N.; Ouladsmane, M.; Azam, M. Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age. Molecules 2021, 26, 2375. [Google Scholar] [CrossRef]
- Huang, C.-C.; Su, Y.-J. Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths. J. Hazard. Mater. 2010, 175, 477–483. [Google Scholar] [CrossRef]
- Rana, P.; Mohan, N.; Rajagopal, C. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Res. 2004, 38, 2811–2820. [Google Scholar] [CrossRef]
- Rana-Madaria, P.; Nagarajan, M.; Rajagopal, C.; Garg, B.S. Removal of chromium from aqueous solutions by treatment with carbon aerogel electrodes using response surface methodology. Ind. Eng. Chem. Res. 2005, 44, 6549–6559. [Google Scholar] [CrossRef]
- Dermentzis, K. Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization. J. Hazard. Mater. 2010, 173, 647–652. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. Selective Capacitive Removal of Pb2+ from Wastewater over Redox-Active Electrodes. Environ. Sci. Technol. 2021, 55, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.I.; Gwak, G.; Dorji, P.; He, D.; Phuntsho, S.; Hong, S.; Shon, H. Palladium Recovery through Membrane Capacitive Deionization from Metal Plating Wastewater. ACS Sustain. Chem. Eng. 2018, 6, 1692–1701. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, J.; Kang, J.S.; Jo, K.; Kim, S.; Sung, Y.-E.; Yoon, J. Lithium recovery from brine using a lambda -MnO2/activated carbon hybrid supercapacitor system. Chemosphere 2015, 125, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.S.; Liou, S.Y.H.; Hou, C.H. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere 2017, 184, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ. Health Perspect. 2004, 112, 1371–1374. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Samdani, M.S.; Azam, M.; Ouladsmane, M. UPLC-ESI/MS analysis of disinfection by-products (perchlorate, bromate, nitrate, nitrite and sulfite) in micro-filtered drinking water obtained from spring, well and tap water (desalinated) sources. J. King Saud Univ. Sci. 2021, 33, 101408. [Google Scholar] [CrossRef]
- EPA. U.S. Edition of the Drinking Water Standards and Health Advisories Tables; Environmental Protection Agency: Washington, DC, USA, 2018.
- Zhang, J.; Tang, L.; Tang, W.; Zhong, Y.; Luo, K.; Duan, M.; Xing, W.; Liang, J. Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization. Sep. Purif. Technol. 2020, 237, 116322. [Google Scholar] [CrossRef]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-Based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Choi, J.-H. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Res. 2012, 46, 6033–6039. [Google Scholar] [CrossRef]
- Xu, L.; Yu, C.; Tian, S.; Mao, Y.; Zong, Y.; Zhang, X.; Zhang, B.; Zhang, C.; Wu, D. Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology. ACS ES&T Water 2021, 1, 175–184. [Google Scholar]
- Bian, Y.; Chen, X.; Lu, L.; Liang, P.; Ren, Z.J. Concurrent Nitrogen and Phosphorus Recovery Using Flow-Electrode Capacitive Deionization. ACS Sustain. Chem. Eng. 2019, 7, 7844–7850. [Google Scholar] [CrossRef]
Ions | Valence | Hydrated Radius (Å) |
---|---|---|
Li+ | +1 | 3.82 |
Na+ | +1 | 3.58 |
K+ | +1 | 3.31 |
Mg2+ | +2 | 4.28 |
Ca2+ | +2 | 4.12 |
NH4+ | +1 | 3.31 |
Fe2+ | +2 | 4.28 |
Cu2+ | +2 | 4.19 |
Cd2+ | +2 | 4.26 |
Pb2+ | +2 | 4.01 |
Cr3+ | +3 | 4.61 |
Fe3+ | +3 | 4.57 |
F− | −1 | 3.52 |
Cl− | −1 | 3.32 |
Br− | −1 | 3.30 |
I− | −1 | 3.31 |
NO3− | −1 | 3.35 |
SO42− | −2 | 3.79 |
Target Ions | Competing Ions | The Order of Electrosorption | Methods/Electrode Material | Ref. |
---|---|---|---|---|
SO42− | Cl− | SO42− > Cl− | Resin/QPVA Coated Electrode | [67] |
SO42− | Cl−, H2PO4− | SO42− > Cl− > H2PO4− | Amino-modified activated carbon | [68] |
SO42− | Cl− | SO42− > Cl− | Optimization of operating parameters | [69] |
F− | Cl− | - | Optimization of operating parameters | [22] |
F− | Cl− | Cl− > F− | Optimization of operating parameters | [70] |
F−, Cr6+ | - | - | Modeling and kinetic study | [71] |
F− | Cl−, NO3− | - | Using rGO/HA electrode | [72] |
F− | HCO3−, CO32− | CO32− > HCO3− > F− | Optimization of operation parameters | [30] |
Br− | Cl− | Br− > Cl− | Activated carbon cloth electrode | [73] |
Cl− | - | - | Bi anode and Activated carbon cathode | [74] |
Cl− | SO42− | Cl− > SO42− | Using Bi electrode | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, S.; Xi, J.; Chen, L.; He, W.; Shen, J.; Gong, H. Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies. Processes 2022, 10, 1075. https://doi.org/10.3390/pr10061075
Chai S, Xi J, Chen L, He W, Shen J, Gong H. Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies. Processes. 2022; 10(6):1075. https://doi.org/10.3390/pr10061075
Chicago/Turabian StyleChai, Shuqian, Jiarui Xi, Ling Chen, Wei He, Junjie Shen, and Hui Gong. 2022. "Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies" Processes 10, no. 6: 1075. https://doi.org/10.3390/pr10061075
APA StyleChai, S., Xi, J., Chen, L., He, W., Shen, J., & Gong, H. (2022). Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies. Processes, 10(6), 1075. https://doi.org/10.3390/pr10061075