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Abstract: In order to enhance the hydraulic performance of the volute pump, the Kriging model and
genetic algorithm (GA) were used to optimize the 3D diffuser of the volute pump, and the hydraulic
performance of the optimized model was compared and analyzed with the original model. The
volute pump diffuser model was parameterized by BladeGen software. A total of 14 parameters such
as the distance between the leading and trailing edges and the central axis, and the inlet and outlet
vane angle were selected as design variables, and the efficiency under the design condition was taken
as the optimization objective. A total of 70 sets of sample data were randomly selected in the design
space to train and test the Kriging model. The optimal solution was obtained by GA. The shape and
inner flow of the optimized diffuser were compared with those of the original diffuser. The research
results showed that the Kriging model can effectively establish the high-precision mathematical
function between the design variables and the optimization objective, and the R2 value is 0.95356,
which meets the engineering needs. The optimized geometry model demonstrated a significant
change, the vane leading edge became thinner, and the wrap angle increased. After optimization,
the hydraulic performance of the volute pump under design and part-load conditions were greatly
improved, the efficiency under design conditions increased by 2.65%, and the head increased by
0.83 m. Furthermore, the inner flow condition improved, the large area of low-speed and vortex
disappeared, the pressure distribution in the diffuser was more reasonable, and the pressure gradient
variation decreased.

Keywords: volute pump; Kriging; surrogate model; CFD; 3D diffuser; optimization

1. Introduction

As a general machine, the pump assumes an important and fundamental function in
modern production, and this is supported by the literature. Sakran et al. [1] systematically
summarized the studies related to the effect of blade number on pump performance. Arun
Shankar et al. [2] focused on the energy-saving effect of variable frequency drives (VFD)
applied in pump systems. Liu et al. [3] summarized the published research results related
to performance prediction and geometry optimization in pump-as-turbine. Al-Obaidi [4]
used numerical methods to investigate the effect of different guide vanes on the flow field
structure and axial pump performance under unsteady flow. Bai et al. [5] numerically
investigated the effect of pressure fluctuations and unsteady flow patterns in the pump flow
channel of three configurations with different numbers of diffuser vanes. Yang et al. [6]
analyzed the fluid-dynamical analyses of unsteady flow in the first stage of a 12 multistage
pump-turbine where hump instability occurs.

The hydraulic volute pump plays a key role as the core equipment in the high head,
high flow, long-distance water-transfer project. At the same time, large-scale water transfer
projects, as an important part of the national water infrastructure, also put forward higher
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requirements for the performance of the volute pump. Among them, good operational
stability and high operating efficiency is indispensable. The design of an efficient pump
hydraulic model is heavily dependent on the engineering experience of the designer. For
relatively inexperienced engineering designers, the optimal design of the hydraulic model
is a key step in improving the efficiency of the model. Li et al. [7] summarized the common
methods used in turbomachinery aerodynamics optimization, which are also commonly
used in the field of pump hydraulic optimization and can be divided into three main
categories: design of experiments (DOE), surrogate models, and intelligent algorithms.
DOE mostly adopted Taguchi experimental designs by selecting enough representative
points in the design space to analyze the influence of parameters on performance. Intelligent
algorithms mainly included genetic algorithms (GA), particle swarm algorithms (PSO),
gravitational search algorithms (GSA), etc., combined with the DOE method to seek the
optimal solution directly in the design space. The main elements and advantages and
disadvantages of each method are listed in Table 1.

Table 1. Comparison of the advantages and disadvantages of different optimization methods.

Methods Contents Advantages Disadvantages

Design of experiments Taguchi experimental design
Short optimization period,

easy to obtain
optimal solution

The design parameters are
limited and the resulting
solution is not optimal

Surrogate models
Artificial neural network

Kriging model
Response surface method

Short optimization period and
low consumption of

computational resources

There are errors between the
surrogate model and the actual

Intelligent algorithms
Genetic algorithms

Particle swarm algorithms
Gravitational search algorithms

Multiple design parameters
Long optimization period and

high consumption of
computational resources

The surrogate model approach is a common method in modern optimization. Its
main concept is to use an approximate mathematical model instead of a complex and time-
consuming numerical computation process. Cho et al. [8] used an artificial neural network
(ANN) model to optimize the operating conditions of a new explosive waste treatment
method to reduce NOx emissions. Zhang et al. [9] established an effective optimization
framework for aerodynamic shape design based on the multi-fidelity deep neural network
(MFDNN) model, which can significantly improve optimization efficiency and outperform
the single-fidelity method. The Kriging model is a common surrogate model and has also
been studied by many scholars. Keshtegar et al. [10] compared the accuracy of four methods,
Kriging, response surface method (RSM), multivariate adaptive regression (MARS), and
M5 model tree (M5 Tree), in solar radiation estimation. The periodic Kriging model was
found to be superior to the other three models. Ren et al. [11] proposed two active learning
approaches combined Kriging and ANN models for reliability analysis, and the proposed
methods can effectively assess, compared to a single typical surrogate model, the reliability
of high and rare event problems with low computational cost. Hasanipanah et al. [12]
investigated the accuracy and agreement of Kriging’s nonlinear interpolation strategy for
shear strength estimation at rock joints.

The application of the surrogate model approach in pump optimization design can
effectively reduce the number of sampling points, shorten the computation time, and
improve optimization efficiency. Tong et al. [13] compared the optimization prediction
accuracy of the hydraulic loss model and three surrogate models for a ten-stage centrifugal
pump and confirmed that the surrogate model was more accurate. De Donno et al. [14]
proposed an open-source software-based surrogate optimization process to compare the
effectiveness of Kriging and ANN models in pump optimization and validated it with an
Ercoftac centrifugal pump. Ma et al. [15] used a machine-learning-based surrogate model
to improve the hydraulic performance of a two-vane pump for wastewater treatment.
Jaiswal et al. [16] selected the blade angle as the design variable, the shaft power, and
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head as the optimization objectives, and used a hybrid surrogate model for multi-objective
optimization of the centrifugal pump impeller. Chen et al. [17] proposed an inverse design
and optimization method based on an adaptive proper orthogonal decomposition (APOD)
hybrid model that reduces the cost of numerical computation and improves the accuracy of
flow field prediction. Gan et al. [18] performed a multi-objective optimization of the inlet
pipe of an inline pump based on genetic algorithm (GA) and ANN model to improve the
inlet flow conditions of the inline pump.

As a key hydraulic component, the diffuser plays an important role in the volute
pump. Posa et al. [19] investigated the effect of different operating conditions and different
diffuser vane angles on pressure pulsation by large eddy simulation (LES). In a study
by Yang et al. [20] for a large vertical centrifugal pump, matching optimization of the
diffuser and volute had been performed using a variety of surrogate models to reduce
the operating energy consumption, with the efficiency under the design conditions as the
optimization objective. Lai et al. [21] studied the energy loss in a single-stage centrifugal
pump for different diffuser outlet diameters. Wang et al. [22] experimentally investigated
the influence of the clocking effect on the performance of centrifugal pumps. In the existing
literature, there are relatively few studies on surrogate model optimization, specifically for
the diffuser of volute pumps. Therefore, optimization of the volute pump diffuser using
the surrogate model approach will facilitate further improvement of pump performance.

In this paper, a high-precision nonlinear mathematical function was established be-
tween the geometric parameters of the diffuser and the pump efficiency based on the Krig-
ing model, and the optimal combination of parameters was obtained using an optimization-
seeking algorithm. A comparative analysis of the hydraulic model performance, inner
flow, and energy loss before and after optimization was conducted to explore the effect of
different diffuser vane shapes on the performance of volute pumps.

2. Numerical Calculation of Hydraulic Model and Experimental Verification
2.1. Hydraulic Model

The pump model was a vertical single-stage single-suction with a diffuser volute
centrifugal pump with design flow Qd = 920 m3/h, head H = 21 m, speed n = 1250 r/min,
and specific speed ns = 235. Where the specific speed was calculated from Equation (1).

ns =
3.65nQ1/2

d
H3/4 (1)

The 3D modeling of the computational domain including the inlet and outlet pipe was
completed by UG NX software, as shown in Figure 1. The volute outlet was located at the
side and the cross-section was circular. The number of impeller blades was Zim = 6 and the
number of diffuser vanes was Zdi = 8. The remaining design specifics are shown in Table 2.

Table 2. Design specifics of the volute pump.

Design Parameters Symbol Value

Impeller inlet diameter Dj (mm) 270
Impeller outlet diameter D2 (mm) 360

Impeller outlet width b2 (mm) 70.5
Impeller inlet blade angle β1 (degree) 24

Impeller outlet blade angle β2 (degree) 22
Wrap angle of impeller blade ϕ (degree) 136

Diffuser inlet diameter D3 (mm) 365
Diffuser outlet diameter D4 (mm) 505

Diffuser width b3 (mm) 72
Volute inlet width b5 (mm) 72

Volute base circle diameter D5 (mm) 440
Volute outlet diameter D6 (mm) 350



Processes 2022, 10, 1076 4 of 15
Processes 2022, 10, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 1. Computational domain of the volute pump. 

Table 2. Design specifics of the volute pump. 

Design Parameters Symbol Value 
Impeller inlet diameter Dj (mm) 270 

Impeller outlet diameter D2 (mm) 360 
Impeller outlet width b2 (mm) 70.5 

Impeller inlet blade angle β1 (degree) 24 
Impeller outlet blade angle β2 (degree) 22 

Wrap angle of impeller blade φ (degree) 136 
Diffuser inlet diameter D3 (mm) 365 

Diffuser outlet diameter D4 (mm) 505 
Diffuser width b3 (mm) 72 

Volute inlet width b5 (mm) 72 
Volute base circle diameter D5 (mm) 440 

Volute outlet diameter D6 (mm) 350 

2.2. Grid Sensitivity Analysis and Numerical Calculation 
TurboGrid was used to build the impeller and diffuser mesh. Due to the complex 

structure of the volute, a hybrid mesh was generated for it with ICEM software, the key 
walls, such as the spacer tongue, were refined, and all walls were set with boundary layer 
meshes. 

A total of 5 sets of independent meshes with element counts of 2.7 million, 5.02 mil-
lion, 6.76 million, 9.6 million, and 11.7 million were generated. The results of efficiency 
and head calculation for the 5 sets of meshes are shown in Figure 2, in which the efficiency 
curve fluctuates, but the magnitude is not significant and the head curve does not increase 
significantly after the count of elements reaches 6.76 million. After comprehensive consid-
eration, the third set of meshes was used for subsequent calculations. Part of the mesh is 
shown in Figure 3, and the number of elements in each domain is shown in Table 3. 

Figure 1. Computational domain of the volute pump.

2.2. Grid Sensitivity Analysis and Numerical Calculation

TurboGrid was used to build the impeller and diffuser mesh. Due to the complex
structure of the volute, a hybrid mesh was generated for it with ICEM software, the key
walls, such as the spacer tongue, were refined, and all walls were set with boundary
layer meshes.

A total of 5 sets of independent meshes with element counts of 2.7 million, 5.02 million,
6.76 million, 9.6 million, and 11.7 million were generated. The results of efficiency and head
calculation for the 5 sets of meshes are shown in Figure 2, in which the efficiency curve
fluctuates, but the magnitude is not significant and the head curve does not increase signifi-
cantly after the count of elements reaches 6.76 million. After comprehensive consideration,
the third set of meshes was used for subsequent calculations. Part of the mesh is shown in
Figure 3, and the number of elements in each domain is shown in Table 3.
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Table 3. Number of elements in each domain.

Domain Number of Elements (×104)

Inlet pipe 36.5
Impeller 217.3
Diffuser 207.7
Volute 189.3

Outlet pipe 25.5

The numerical calculation of the pump model was performed using ANSYS CFX soft-
ware, and the RNG k-ε turbulence model was used to close the N-S equations for solution.
In the steady numerical calculation, the inlet boundary condition was the total pressure of
1 atm and the outlet boundary condition was the mass flow rate. The intersection between
the impeller and the inlet pipe, and the impeller and the diffuser in the dynamic and static
domain were set to Frozen rotor, and the wall was set to smooth. The convergence residual
RMS was 10−5, and the maximum number of computational iteration steps was 500.

2.3. Experimental Verification

The comparison of the performance curves obtained from the numerical calculation
and the experimental results is shown in Figure 4. The trend of the calculated curve and
the test curve was very similar; the calculated efficiency was 87.55% under the design
condition and the test efficiency was 87.12%, with a difference of 0.43%. This indicates that
the numerical calculation results were accurate.
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3. Optimization Process and Setting
3.1. The Kriging Model and Optimization Process

The Kriging model is an interpolation model which originated from geostatistics.
The idea was first proposed by Krige [23], a South African mining engineer, in 1951,
and then further promoted and applied by Professor Sacks et al. [24] in 1989. It has
become a representative agent model in modern optimization methods. Its good ability
to approximate nonlinear functions has allowed it to also be used in many applications in
pump optimization design. The mathematical expression is shown as Equation (2).

y =
k

∑
i=1

βi fi(x) + Z(x) (2)

where fi(x) is the basis function of the regression model, βi is the regression coefficient,
and Z(x) is a stationary stochastic process with mean 0 and covariance as follows:

Cov[Z(xi), Z(xj)] = σ2R(xi, xj) (3)

where σ2 is the variance of Z(x), and R(xi, xj) is the correlation function between xi and xj.
In this paper, the Gaussian function was chosen as the correlation function.

The overall optimization process in this paper is shown in Figure 5. Firstly, the
optimization objective, design variables, and their range were determined. Next, multiple
sets of data were randomly selected from the design space and divided into two parts,
one for model training and the other for model testing, without duplication between the
two parts. In the next step, R2 was calculated based on the training and testing results,
and if it met the accuracy requirements, the optimal value of the model was found using
the optimization-seeking algorithm and the data were recorded; otherwise, the data were
sampled again to train the model. The above process was repeated several times, and
finally, the optimal result was selected as the optimization result output, and the process
was finished.
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3.2. Optimization Objectives, Design Variables, and Ranges

Hydraulic efficiency is an important energy consumption characterization of the
model. Obtaining an efficient hydraulic model, especially for design conditions, is the main
goal of pump optimization design. In this paper, the maximum hydraulic efficiency of the
model under the design conditions was taken as the optimization objective, which was
calculated as follows:

ηQd =
ρgHQd

Tω
(4)

where, T is the impeller torque, ω is the impeller angular velocity, H is the model head,
and the calculation formula is

H =
p2tot − p1tot

ρg
(5)

where, p2tot is the total pressure at the outlet of the pump, and p1tot is total pressure at the
inlet of the pump.

BladeGen was used to complete the parameterization of the diffuser model. In Blade-
Gen, the vane angle curves in the hub plane and shroud plane were fitted with 4th-order
Bessel curves to achieve parametric control of the diffuser vane geometry. According to
engineering experience, the vane angle, as well as the leading and trailing edges, had a large
impact on the performance. A total of 14 design variables, numbered x0–x13, were chosen
to achieve fine control of the vane shape when combined with the BladeGen software



Processes 2022, 10, 1076 8 of 15

parametric modeling method. Among these variables, x0 and x1 were the distances from
the intersection of the leading edge of the diffuser vane with the hub plane and the shroud
plane to the central axis of the diffuser, respectively, and x2 and x3 were the distances from
the intersection of the trailing edge of the diffuser vane with the hub plane and the shroud
plane to the central axis of the diffuser, respectively, as shown in Figure 6a. Variables x4–x8
showed the y-coordinate values of the 5 Bezier curve control points in the hub plane, as
shown in Figure 6b. Variables x9–x13 showed the y-coordinate values of the 5 Bezier curve
control points in the shroud plane, with the same graph as the hub plane. The x-coordinates
of each Bessel curve control point were evenly distributed and fixed, and the upper and
lower boundaries of each design variable are listed in Table 4.
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Table 4. Design variable boundaries.

Variables x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Upper Bound 0.19 0.19 0.252 0.252 30 40 40 40 30 30 40 40 40 30
Lower Bounds 0.184 0.184 0.242 0.242 15 10 10 10 22 15 10 10 10 22

3.3. Samples and Optimization of Process Parameter Setting

A total of 70 sets of data were randomly selected in the design space, of which the
first 50 sets were used to train the Kriging model and the remaining 20 sets were used to
test. All of them automatically called 3D modeling, meshing, and numerical calculation
software to complete the numerical calculation to obtain the corresponding efficiency. Some
of the data are listed in Table 5. The series of sampling, training, and testing processes were
repeated a total of 50 times. The R2 criterion was greater than or equal to 0.95. After the
model was trained to the standard, the GA was used to find the best, and the number of
populations of the algorithm was set to 80 and the number of iterations was set to 300.

Table 5. Partial sample data.

No. 1 2 3 4 5 . . . 66 67 68 69 70

x0 0.1887 0.1863 0.1895 0.1875 0.1899 . . . 0.18708 0.18499 0.18587 0.18733 0.18673
x1 0.1853 0.1869 0.1865 0.18743 0.1859 . . . 0.18681 0.1874 0.18775 0.18738 0.1873
x2 0.2495 0.2515 0.24417 0.252 0.24883 . . . 0.2505 0.252 0.252 0.25117 0.24917
x3 0.24417 0.25183 0.25083 0.24956 0.24683 . . . 0.252 0.24963 0.2487 0.252 0.25066
x4 23.25 28.25 26.75 30 15.25 . . . 22.25 26.75 30 27.25 30
x5 24.5 12.5 15.5 11.93 26.5 . . . 12.75 15.41 10.34 17.15 13
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Table 5. Cont.

No. 1 2 3 4 5 . . . 66 67 68 69 70

x6 35.5 14.5 12.5 11.5 22.5 . . . 26.5 14.5 10 11.3 18.5
x7 34.5 10.5 26.5 10.5 30.5 . . . 13.5 21.5 10 18.5 10
x8 22.4 22.13 25.33 24.5 26.13 . . . 22 25.73 23.73 23.31 23.66
x9 28.75 19.25 15.25 22.75 17.75 . . . 22.25 20.25 21.29 21.44 19.5
x10 26.5 28.5 21.5 14.76 19.5 . . . 26.75 20.91 21.37 25.13 21.79
x11 10.5 26.5 14.5 17.43 25.5 . . . 29.52 24.86 16.5 21.76 18.96
x12 29.5 15.5 37.5 17.22 19.5 . . . 16.64 14.82 15.99 21.5 13.53
x13 24.27 29.87 29.33 28.26 23.73 . . . 29.07 27.32 26.8 28 28.27

η (%) 84.7 86.49 84.82 87.5 84.65 . . . 84.98 85.63 87.72 85.84 86.55

4. Discussion of Results
4.1. Surrogate Model Check and Comparison of Diffuser Vane Geometry

The R2 analysis method was used to evaluate the prediction accuracy of the model.
The evaluation results are shown in Figure 7. It can be seen that the predicted value had
good consistency with the actual value, the prediction accuracy was high, and the R2 value
was 0.95356, which meets the engineering application standard. The R2 calculation formula
is as follows:

R2 = 1 −

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − y)2

(6)

where ŷi is the predicted value, yi is the actual value, y is the average value, and n is the
number of test points.
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Table 6 shows the values of each design variable before and after optimization. All of
them changed significantly except for x4 and x12. The vane inlet angle x4 in the hub plane
and the vane inlet angle x9 in the shroud plane were no longer consistent. Meanwhile, the
leading edge on the hub plane was closer to the center axis (x0 < x1) than on the shroud
plane, indicating that the vane became twisted, which was also reflected in the optimized
diffuser vane 3D model in Figure 8. The hub plane and the shroud plane vane outlet angle
x8, x13 was still relatively consistent. It can also be seen in Figure 8 that the hub plane and
the shroud plane vane wrap angle were no longer the same, the shroud plane wrap angle
was larger and the optimized model leading edge was thinner than the original model.
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These changes resulted in less diffusion in the flow path between the diffuser vanes and a
tighter inner flow.

Table 6. Comparison of design variables of diffuser.

Variables x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Before 0.18774 0.18774 0.2484 0.2484 15.53 19.97 24.24 23.2 27.15 15.53 19.97 24.24 23.2 27.15
After 0.18426 0.18986 0.25171 0.25169 16.15 11.28 11.56 10.14 22.17 29.59 11.86 10.31 23.35 22.58
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4.2. Hydraulic Performance Curve Analysis

Figure 9 demonstrates the hydraulic performance curves of the optimized model
compared with the original model in all working conditions. The efficiency under design
conditions and part-load conditions was greatly improved. The efficiency was improved
by 3.36% and 3.4% under 0.6 Qd and 0.8 Qd conditions, respectively, by 2.65% under design
conditions, and the high efficiency area was widened. Meanwhile, the efficiency decreased
under the over-load condition 1.1 Qd, but only by 1.69%, so the efficiency of the optimized
model can still be considered to have substantial improvement. Similarly, the model head
also had a substantial increase under the design condition and part-load condition. Head
under the design condition was increased by 0.83 m, while the high flow condition was
slightly reduced. The model power decreased under the part-load condition and the design
condition and over-load condition were consistent with the original model, indicating that
the optimized model had better hydraulic performance and lower energy consumption,
which ultimately achieved the goal of optimization.

4.3. Inner Flow Analysis

Figure 10 showed the velocity distribution and streamlines within the diffuser in
different z-planes, respectively. For the convenience of description, the flow paths between
the diffuser vanes were numbered from one to eight in a clockwise direction, respectively.
It can be seen that the original model (Figure 10a) had a wide range of low-speed areas and
vortex areas in the flow path, and these vortices blocked the flow path and seriously affected
the performance. In the z = −0.25 b3 plane, the low-speed area was mainly distributed
in the middle and outside of runners three and seven, outside of runner four, in most
of runner eight, and there were also small low-speed areas outside of runner six. Most
of these low-speed areas were near the back of the vane where the streamlines began to
spread out and the flow separation phenomenon occurred. In runner eight, where the flow
separation was most severe, the annular streamlines on the outside indicate that a vortex
had developed in this area. The situation in the z = 0 plane was more severe, except for the
runner five, which was good, the rest of the runners near the back side of the vane had a
wide range of flow separation and vortex phenomenon. The streamlines on the outside
of runners one and two turned at a large angle and extended along the outer circle of the
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diffuser, indicating that the flow in the volute on the outside of the diffuser was also not
optimistic. The z = 0.25 b3 plane was slightly better than the z = 0 plane, the streamlines in
runners one and five were more satisfactory, while the rest of the runners also had flow
separation and vortex phenomenon. These low-speed areas had a common feature, their
locations were located in the runner near the back side of the vane.
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Compared to the original model, the streamlines between the diffuser vanes of the
optimized model (Figure 10b) were improved significantly. The large low-speed area almost
disappeared, only two vortices affecting three planes were outside of runners seven and
three near the back of the vane, and a small low-speed area outside of runner four near
the back of the vane also affected three planes. All other low-speed areas did not affect all
planes and were small enough to have little effect on the streamlines. Overall, compared
with the original model, the optimized model had a tighter streamline between the diffuser
vanes, and there was no large range of low-speed areas blocking the flow paths. These
inner flow changes resulted in improved hydraulic performance in the diffuser.
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Figure 11 shows the pressure distribution in the diffuser in different z-planes. The
pressure distribution between different planes was slightly different, but the difference
was not significant. The pressure distribution grew gradually throughout the flow channel
from inside to outside in the original model, with the blade working surface pressure being
greater than the back, and the leading edge seeming high-pressure point due to direct fluid
impact. Comparing the optimized model (Figure 11b) with the original model (Figure 11a),
the pressure gradient variation in the diffuser of the optimized model was reduced, which
was beneficial to pressure recovery and reduced energy loss. The point with high pressure
disappeared because the vane leading edge became thinner and the intensity of direct
impact by fluid was reduced.
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Figure 10. Comparison of different z-plane speeds and streamlines before (a) and after (b) optimization.

Based on the content of this paper, the collaborative optimization design of a hydraulic
model for multiple operating conditions can be a further research direction to improve
the current situation where the performance of the optimized model decreases under
the over-load condition. Additionally, further research into the unsteady performance of
the optimized model, considering the pressure fluctuation strength as the optimization
objective to improve the operational stability of the volute pump, is recommended.
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5. Conclusions

In this paper, 14 parameters from the 3D diffuser of the volute pump were selected
as design variables, and the model efficiency under design conditions was taken as the
optimization objective. The diffuser was optimized based on the Kriging model and GA,
and the hydraulic performance of the volute pump before and after optimization was
compared and analyzed. The following conclusions were obtained:

(1) The Kriging model can effectively establish the high-precision nonlinear mathematical
relationship between the selected 14 design variables and the optimization objectives
with an R2 value of 0.95356, which can meet the engineering needs.

(2) The hydraulic performance of the optimized model under design conditions and
part-load conditions was greatly improved, the efficiency under design conditions
was increased by 2.65%, and the head was increased by 0.83m under the premise that
the power was relatively the same.

(3) The inner flow of the optimized model was significantly improved under the design
condition, the large low-speed area and vortex area disappeared, and the pressure
gradient change was reduced, which reduced the energy loss.
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Nomenclature

Qd (m3/h) Design flow rate
H (m) Pump head
H (%) Pump efficiency
n (r/min) Rotational speed
ns Specific speed
Zim Number of impeller blades
Zdi Number of diffuser vanes
Dj (mm) Impeller inlet diameter
D2 (mm) Impeller outlet diameter
b2 (mm) Impeller outlet width
β1 (degree) Impeller inlet blade angle
β2 (degree) Impeller outlet blade angle
ϕ (degree) Wrap angle of impeller blade
D3 (mm) Diffuser inlet diameter
D4 (mm) Diffuser outlet diameter
b3 (mm) Diffuser width
b5 (mm) Volute inlet width
D5 (mm) Volute base circle diameter
D6 (mm) Volute outlet diameter
T (N) Impeller torque
Ω (rad/s) Impeller angular velocity
ρ (kg/m3) Water density
p1tot (Pa) Total pressure at inlet of the pump
p2tot (Pa) Total pressure at outlet of the pump
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