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Abstract: Process industries often use B-ring self-tightening sealing structures and rely on interference
assembly to meet the initial sealing requirements. Therefore, determining reasonable B-ring material,
size and interference is crucial to ensure the sealing performance of the structure. In this paper, based
on elastic deformation analysis, the deformation co-ordination equation of a B-ring sealing structure
was established, and a sealing contact pressure calculation formula was obtained, with discussion of
the main factors affecting sealing performance. With the finite element method, transient temperature
field analysis was carried out for startup and shutdown load cases, and contact analysis was carried
out for interference assembly, startup and shutdown. Based on the evaluation criteria of sealing
performance with proposed sealing rate and leakage parameters, the effects of material properties,
interference, B-ring size, etc., on sealing performance were investigated, revealing that although a
B-ring with high material yield stress can meet the sealing requirements, both the B-ring and the
sealing surface of a reactor body will yield plastic deformation. B-rings with a low material yield
stress exhibit obvious plastic deformation during startup and leak during shutdown. However,
leakage parameters can be minimized by smaller interference and moderate wave radius.

Keywords: B-ring; self-tightening seal; FEM; leakage

1. Introduction

In high-pressure vessels and pipeline connection structures, the B-ring seal is a kind
of radial self-tightening structure [1] with a good sealing effect in a large-diameter seal
structure. When the effective contact pressure of a sealing surface is a multiple of medium
pressure [2] or yield stress [3], the effective sealing of the equipment can be guaranteed.
B rings have two forms: composite B rings and the metal B rings. A composite B-ring is
generally composed of a metal body, two nonmetallic gaskets and two metal clamp rings,
in which the nonmetal gasket is susceptible to high-temperature aging and reduces the
sealing performance of the B ring [4]. A metal B ring is a complete metal ring with two
wave surfaces.

Although B-ring self-tightening seals have been used in industry for many years [5],
the reasonable size, material and assembly size are considerably influenced by the connect-
ing structure and operating conditions [6], so a design standard has not been established.
Limited research has been conducted on self-sealing [7–9], with even fewer studies on
B rings. Gao et al. [4] studied the effects of high-temperature aging, creep, system tem-
perature and pressure, assembly size and other factors on the sealing performance of a
combined B ring. Ryś et al. [10–12] conducted detailed theoretical research on metal B
rings under preload and pressurization conditions. Trojnacki equated a B-ring to a shell
model with equal thickness simply supported at both ends of the surface. Through finite
element analysis based on shell theory, several calculation models of an all-metal B ring
under pressure were studied [13], and the influences of several parameters on the strength
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and sealing performance of B rings were determined [14–16]. On this basis, the fitting and
sealing surface flatness were limited [17]. However, these results are more conservative,
and the influence of temperature was not taken into account.

According to the survey, it is found that the metal B-ring seals used in high-pressure
reactors often leak when pressure is reduced, which affects the safe operation of factories.
High-temperature and high-pressure production conditions, material performance and
the structure size of the B ring have an impact on B-ring sealing performance. Therefore,
in this paper, with consideration of temperature, pressure, structure size and material
performance, we analyzed the failure cause of a sealing structure through deformation
co-ordination analysis in the elastic range; furthermore, through finite element calculation
of startup and shutdown, we determined reasonable metal material and B-ring size to
ensure reliable sealing.

2. B-ring Sealing Mechanism, Working Condition Analysis and Material Properties of
High-Pressure Reactors

The B-ring sealing structure of a high-pressure reactor is shown in Figure 1, which
consist of a cylinder, clamp, end cover, nozzle and B ring. The B ring adopts interference
fit with the sealing surfaces of the cylinder and end cover. The clamp adopts a 1/2 split
structure. There is a 1/2 split hollow jacket outside the cylinder for heat exchange, with
water cooling during normal operation and steam heating or heat preservation at the end
of startup and shutdown.
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The reactor is in a heat-preservation state before startup, and steam is introduced into 
the hollow jacket to keep it warm. The temperature of the outer wall of the reactor is 150 °C 
at all times. The temperature–pressure curve in the working conditions of startup and 
shutdown is shown in Figure 2. Startup condition and shutdown condition are divided 
into three stages according to changes in pressure and temperature. 

Stages (1)–(3) include heating and pressurization; pressure increases with the contin-
uous filling of cold materials. A catalyst is added at the end of stage (1) to initiate an exo-
thermic reaction in the reactor, and the temperature begins to rise. At the end of stage (2), 
the jacket is fed with cold water to cool reactor body, and the reaction in the reactor con-
tinues. At the end of stage (3), the pressure and temperature remain stable, and the reactor 
enters the normal production condition. 

Stages (4)–(6) comprise shutdown, cooling and depressurization. Temperature and 
pressure drop rapidly in stages (4) and (5). In stage (6), nitrogen is introduced to discharge 

Figure 1. B-ring sealing structure of a high-pressure reactor. 1, jacket; 2, cylinder; 3, clamp; 4, end
cover; 5, nozzle; 6, B ring.

The reactor is in a heat-preservation state before startup, and steam is introduced into
the hollow jacket to keep it warm. The temperature of the outer wall of the reactor is 150 ◦C
at all times. The temperature–pressure curve in the working conditions of startup and
shutdown is shown in Figure 2. Startup condition and shutdown condition are divided
into three stages according to changes in pressure and temperature.
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Figure 2. Temperature–pressure curve in real time: (a) heating and pressure increase condition;
(b) cooling and depressurization condition.

Stages (1)–(3) include heating and pressurization; pressure increases with the con-
tinuous filling of cold materials. A catalyst is added at the end of stage (1) to initiate
an exothermic reaction in the reactor, and the temperature begins to rise. At the end of
stage (2), the jacket is fed with cold water to cool reactor body, and the reaction in the
reactor continues. At the end of stage (3), the pressure and temperature remain stable, and
the reactor enters the normal production condition.

Stages (4)–(6) comprise shutdown, cooling and depressurization. Temperature and
pressure drop rapidly in stages (4) and (5). In stage (6), nitrogen is introduced to discharge
partially or completely unreacted materials in the reactor, and steam is introduced into the
hollow jacket to increase the temperature and slowly reduce the pressure.

The design conditions of the reactor are shown in Table 1, in which several B-ring
materials are also presented for discussion and analysis. Material properties required for
temperature field and stress field analysis of a reactor B-ring seal structure [18] are shown
in Figure 3. In addition, Poisson’s ratio of materials is 0.3, and the density is 7750 kg/m3.

Table 1. Design conditions of a reactor.

Name Parameters

Operating temperature/(◦C) 253
Work pressure/(MPa) 160

Design temperature/(◦C) 300
Design pressure/(MPa) 260

Hydrostatic test pressure/(MPa) 332
Cylinder, clamp, end cover and nozzle material NiCrMoV

Proposed B-ring material 10/20/16 Mn/NiCrMoV/4140
Cylinder radius/(mm) 229.616

Cylinder contact surface radius, Rc1/(mm) 250.830
Clamp outer radius, Rc2/(mm) 787.400
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3. Evaluation Criteria of Sealing Performance

The sealing performance of the structure is usually evaluated according to the average
contact pressure within the effective width range. One view is that the average contact pressure
is greater than the yield stress of material to meet the sealing requirements [14–16], namely:

Q > nσt
s (1)

where Q is the average contact pressure within the effective contact pressure range of the
gasket; σt

s is the yield stress of the gasket material at room temperature or design tempera-
ture; and n is the shim coefficient, which is 1.5 when preloading and 1.0 when working.

This evaluation method was proposed for a lens-shaped ring sealing structure, which
is essentially a forced with a certain self-tightening sealing effect.

Another evaluation method was proposed for the sealing structure of a metal ring
gasket, considering that the sealing can be realized as long as the average contact pressure
of the gasket within the effective contact width is m times the medium pressure [19] in the
operating state, namely:

Q > mp (2)

where p is the medium pressure; and m is the shim coefficient: m = 5.5 for mild steel, m = 6.0
for Monel or 4%~6% chrome steel and m = 6.5 for stainless steel.

Metal ring sealing is essentially a radial self-tightening structure, which is closer to the
B-ring sealing structure.

Combining the two evaluation methods of sealing performance, the following evalua-
tion methods were used to evaluate the sealing performance of a B-ring sealing structure:

(1) When the effective contact pressure, Q, of the sealing surface is less than the yield
stress, σT

s , of the material at T ◦C, use (2) to evaluate.
(2) When the effective contact pressure, Q, of the sealing surface is greater than the

yield stress, σT
s , of the material at T ◦C:

Q > σT
s (3)

The sealing ratio was defined as the ratio of Q to mp (or σT
s ). When the sealing ratio is

less than 1, the sealing is expected to fail, causing the reactor to leak. When the medium
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pressure, p, is 0 MPa, to facilitate the calculation of the sealing rate, the medium pressure, p,
is regarded as 1 MPa.

4. Analysis of B-ring Seal Structure Based on Elastic Deformation

According to the strength condition, the thickness of the B ring was determined on
the basis of the design pressure and hydrostatic test pressure; then, the inner and outer
diameters of the B ring were calculated. Finally, the average contact pressure and contact
width between the B ring, cylinder and end cover were calculated in the elastic range
according to the deformation caused by temperature load and pressure load, respectively,
as well as the deformation co-ordination relationship.

4.1. Determination of B-ring Thickness

A schematic diagram of partial dimensions of the B-ring seal structure is shown in
Figure 4.
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The maximum bending normal stress, σT, in the middle of the B ring under hydraulic
test conditions should meet the following requirements:

σT =
3pT(l − a)2

4h2
1

≤ 0.9R0
el (4)

where pT is the hydraulic test pressure; R0
el is the yield stress of the B-ring material at room

temperature; l, related to the reactor cylinder radius, is 22.2 mm; and the contact width, a,
is mainly related to the yield stress of materials. The values of different B-ring materials are
shown in Table 2.

Table 2. Maximum contact width and minimum thickness of B rings of different materials.

Material 10 20 16 Mn NiCrMoV 4140

a/(mm) 7.0 5.5 5.5 2.0 2.0
h/(mm) 17.7 17.6 15.9 11.7 11.0

According to the yield stress of selected materials, the minimum thickness, h1, of the B
ring that meet the strength requirements of the hydrostatic test can be obtained.
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Under the design conditions, the maximum bending normal stress, σ, in the middle of
the B ring should meet the following requirements:

σ =
3p(l − a)2

4h2
2

≤ 1.5[σ]t (5)

Therefore, the minimum thickness of the B ring can be determined as follows:

h = max[h1, h2] (6)

The minimum thickness of B rings for different materials are also shown in Table 2.
The wave height of the B ring can be calculated according to its the structural characteristics:

h′ = R1 + R2 −

√
R2

1 −
[

R1·l
2(R1 + R2)

]2
−

√
R2

2 −
[

R2·l
2(R1 + R2)

]2
(7)

The width of the B ring can be determined as follows:

A = l + 2
√

2R1h′ − h′2 (8)

The average thickness of the B ring is expressed as follows:

h =
SB

A
(9)

where SB is the cross-sectional area of the B ring (mm2).
The equivalent outer radius of the B ring is proposed as follows:

rB2 = DB1/2 + h = rB1 + h (10)

4.2. Calculation of the Contact Pressure

The contact pressure between the B-ring sealing structure of the reactor and the
sealing surface is affected by the B-ring initial interference, temperature and pressure.
When the contact pressure is relatively low, the B ring only produces elastic deformation,
and when the contact pressure is greater than the yield stress of the B-ring material, the
contact surfaces of the B ring will produce plastic deformation. Similarly, when the contact
pressure is greater than the yield stress of the cylinder and the end-cover material, plastic
deformation will also occur in the relative positions of the contact surfaces. In the following
paragraphs, only the elastic deformation stage of the cylinder and the B-ring was analyzed.

As shown in Figure 5, the radial displacement of the B-ring is ∆p
B under medium

pressure, ∆T
B under temperature, and ∆Q

B under contact pressure. ∆p
B,∆T

B and ∆Q
B are the

deformations in the equivalent radius of the B ring. The cylinder is only subject to the
contact pressure in the contact area with the B ring but is still affected by the medium
pressure outside the contact area. When only the cylinder displacement caused by the
medium pressure is discussed, the radial displacement caused by the contact pressure
transmitted to the cylinder through the B ring is obviously less than that directly caused by
medium pressure. Therefore, the radial displacement of the cylinder calculated for medium
pressure is larger, and the contact pressure between the cylinder and the B ring is lower.
For the sake of conservativeness, the radial displacement of the cylinder is approximately
that generated directly the medium pressure, that is, ∆p+Q

c = ∆P
c . The radial displacement

of the cylinder caused by temperature is ∆T
c , and ∆p+Q

c and ∆T
c are the deformation at the

sealing surface of the cylinder. The end of the cylinder and the clamp are in contact with
each other, and they are not separated during the assembly and pressure-bearing process.
Therefore, the calculated outer radius of the cylinder is approximately equal to the outer
radius of the clamp, rc2.
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Deformation co-ordination between the B ring and cylinder is expressed as:[
∆p

B + ∆T
B + δ− ∆Q

B

]
−
[
∆p+Q

c + ∆T
c

]
= 0 (11)

To obtain the contact pressure, Q, it is necessary to provide the deformation of the B
ring and cylinder under temperature and pressure.

4.2.1. Radial Deformation by Temperature Load

For a cylinder with an initial temperature, T0; inner radius, r1; outer radius, r2; inner
wall temperature, T1; and outer wall temperature, T2, the thermal deformation [20] can be
divided into free deformation by temperature and thermal deformation by thermal stress.

Free thermal deformation is expressed as:

∆r = r·α
(T1 − T0) ln r2

r + (T2 − T0)
(

ln r2
r1
− ln r2

r

)
ln r2

r1

(12)

The deformation caused by thermal stress is expressed as:

ur = r·α(T1 − T2)

2(1− µ)

1− ln r2
r

ln r2
r1

− r1

r
− µ

1− 3 ln r2
r

ln r2
r1

−
( r2

r
)2 − 3(

r2
r1

)2
− 1


 (13)

The total deformation caused by temperature load is expressed as:

∆T = ∆r + ur (14)

For the B ring, the uniform temperature is T; and r1 and r2 are rB1 and rB2, respectively.
The deformation by temperature load at rB2 is expressed as:

∆T
B = ∆Br = rB2αB(T − T0) (15)
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For the cylinder, r1 and r2 are rc1 and rc2, respectively; and the inner and outer wall
temperatures are Tc1 and Tc2, respectively. The deformation by temperature load at rc1 is
expressed as:

∆T
c = rc1

αc(T1 − T2)

2(1− µc)

 1
ln rc2

rc1

− 2− µc

1− 3 ln rc2
rc1

ln rc2
rc1

−

(
rc2
rc1

)2
− 3(

rc2
rc1

)2
− 1


+ αc(Tc1 − Tc0)

 (16)

4.2.2. Deformation by Pressure Load

For a thick-walled cylinder with an inner radius, r1; outer radius, r2; and inner wall
pressure, p, radial displacement at radius r under closed conditions is expressed as:

∆ =
r

E
(
r2

2 − r2
1
)[(1− 2µ)pr2

1 + (1 + µ)
pr2

1r2
2

r2

]
(17)

The radial displacement at radius r under opening condition is expressed as:

∆ =
r

E
(
r2

2 − r2
1
)[(1− µ)pr2

1 + (1 + µ)
pr2

2
r2

]
(18)

For B rings, which can be regarded as openings, the deformation caused by the
pressure load is expressed as:

∆p
B =

2pr2
B1rB2

ET
B
(
r2

B2 − r2
B1
) (19)

For a cylinder, which can be regarded as a closed mouth, the deformation caused by
pressure load is expressed as:

∆p+Q
c =

rc1 p
ET

c
(
r2

c2 − r2
c1
) [(1− 2µc)r2

c1 + (1 + µc)r2
c2

]
(20)

4.2.3. Deformation by Contact Pressure

The radial deformation of a cylinder caused by contact pressure of the B ring can be
conservatively calculated with Equation (21). Only the radial displacement of the B ring
under contact pressure is considered here.

Under the contact pressure, Q, of the ring, the relationship between Q and the hoop
strain, εθ, of the B ring can be approximately expressed as:

2QarB2 = ET
B εθ(rB2 − rB1)A (21)

The deformation of the B ring due to contact pressure is expressed as:

∆Q
B = εθrB2 =

2Q·r2
B2

ET
B (rB2 − rB1)

· a
A

(22)

where, according to Hertz’s theory, the arc surface contact width [21] is:

a =
8QR1

π
·
(

1− µ2
B

ET
B

+
1− µ2

c
ET

c

)
(23)

Substitute (24) into Equation (23) to obtain:

∆Q
B =

16Q2·r2
B2

ET
B(rB2 − rB1)

· R1

πA
·
(

1− µ2
B

ET
B

+
1− µ2

c
ET

c

)
(24)

where µB = µc = 0.3.
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4.2.4. Analysis of Contact Pressure

The effective contact pressure of the B ring is obtained by inputting
Equations (15), (16), (19), (20) and (24) into the deformation co-ordination Equation (12):

Q =

√
πET

B A·(rB2 − rB1)

16R1r2
B2·(1− µ2)

·
ET

B ·ET
c

ET
B + ET

c
·
{[

∆p
B + ∆T

B + δ
]
−
[
∆p+Q

c + ∆T
c

]}
(25)

It can be seen from Equation (25) that within the elastic range of the same material of
the B ring, the parameters that can affect the average contact pressure, Q, are as follows:
temperature, T; pressure, p; allowable stress of B-ring material; yield stress; elastic modulus,
EB; linear expansion coefficient, αB, of the B ring; elastic modulus, Ec and linear expansion
coefficient, αc, of the cylinder material; cylinder inner diameter, rc1, and outer diameter rc2;
B-ring arc radius R1, R2; and the interference, δ.

Because 10, 20 and 16 Mn steels produce plastic deformation in the assembly stage,
only a B-ring made of 4140 steel was analyzed herein. Considering that the arc radius, R2,
of the B ring has little effect on its equivalent outer radius, rB2, R2 was fixed at 17.5 mm.
Here, the influence of radius, R1; interference, δ; temperature, T; and medium pressure, p,
of the B ring on contact pressure and contact width are discussed.

According to the results of finite element simulation, three working points of the B-ring
seal structure in a completely elastic state, namely, assembly working conditions, 0 min and
60 min working conditions (listed in Table 3), were selected for analysis and calculation.
The temperatures of the cylinder and B ring were obtained by finite element simulation.

Table 3. Temperature at different positions under different conditions (◦C) 1.

Location

Assembly Condition
(0 MPa)

0 min
(0 MPa)

60 min
(25 MPa)

T1 T2 T1 T2 T1 T2

B ring 20.0 70.0 61.0
Cylinder 20.0 20.0 70.0 35.0 63.5 40.00

1 T1 is the inner wall temperature; T2 is the outer wall temperature. The initial temperature, T0, is 20 ◦C.

The changes in the average contact pressure, Q, and the contact width, a, of a B ring
with an arc radius, R1, and interference, δ, at different times and under different working
conditions are shown in Figure 6. It can be seen that there is a higher-than-average contact
pressure, Q, with a smaller arc radius, R1, and a larger interference, δ. A larger arc radius,
R1, and larger interference, δ, can lead to a larger the contact width, a. Under different
structural parameters, Q and a increase with T and p.

Although Equations (23) and (25) can be used to calculate the effective contact pressure,
Q, and contact width, a, of the B ring in the elastic stage under different conditions, the
plastic deformation of the B ring is inevitable during the operation cycle, especially when a
material with lower yield stress is used. At this time, the effective contact pressure, Q, and
contact width, a, of the B ring can be calculated by finite element simulation.
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5. Finite Element Analysis

To obtain the sealing effect of the B-ring seal structure in different stages of the process,
a finite element analysis model is established. First, assuming a 20 steel B-ring with an
arc radius, R1, of 14.3 mm; an inner arc radius, R2, of 17.5 mm; and an interference, δ, of
0.15 mm as an example, the transient temperature field of the structure was analyzed. Then,
the calculated temperature load was applied to the structure, together with the pressure,
and the average contact pressure of the B ring was obtained through contact analysis; then,
the sealing performance was evaluated.

To investigate the influence of various factors on the sealing performance of the B ring,
the material properties and crucial structural dimensions of the B ring were parametrically
calculated and analyzed.

5.1. Finite Element Model and Boundary Conditions
5.1.1. Finite Element Models and Simplification

According to the sealing structure and load characteristics of the reactor, an axisym-
metric model was used. The model includes part of the cylinder and its end, the end cover
(including its nozzle), the clamp and the B ring. Because the rigidity of the 1/2 split hollow
jacket outside the cylinder is much lower than that of the cylinder, the hollow jacket was
ignored in the model, and its heating effect on the cylinder was replaced by equivalent
convective heat transfer. 2D solid elements were used to mesh the structure. The division
of grid is shown in Figure 7. The thermal analysis used the Plane55 element, and the
structural analysis used the Plane182 element. There were five contact pairs in the model,
namely the contact between the end of the cylinder, the end cover and the clamp; the
contact between the B-ring and sealing surfaces of the cylinder and the end cover; and the
contact between the cylinder and the end cover. For the contact calculation, we used the
target unit, Target169, and the contact unit, Conta172.

5.1.2. Boundary Conditions
Calculation of Heat Transfer Boundary Conditions in the Transient Temperature Field

The upper-end face of the cylinder and the end face of the nozzle are thermal insulation
boundaries. The convective heat transfer boundaries include the medium contact parts of
the cylinder body and its end, the end cover and its nozzle, and the B ring. It also includes
the air contact parts of the outside of the clamp. Considering the heat transfer effect of the
hollow jacket outside the cylinder, the outer wall of the cylinder was set as the equivalent
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convective heat transfer boundary. The contact thermal conductivity between the cylinder,
the end cover, the clamp and the B ring was set to 3/2 of the thermal conductivity of the
material. There was radiation heat transfer between the clamp, the cylinder and the end
cover, and the emissivity coefficient was 0.75.
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The reactor has three working conditions: heating up and boosting, normal operation,
and cooling down and depressurizing. Among them, the two states of startup and shut-
down are the most prone to reactor leakage. Therefore, the sealing of the reactor under
these two working conditions were mainly simulated. According to the conditions, the
convective heat transfer coefficient of heat transfer boundaries can be calculated through
the empirical formula [22]; the heat transfer boundaries are shown in Table 4.

Table 4. Thermal analysis boundaries.

Working Conditions

Convective Heat Transfer
Coefficient/W/(m2·K) Temperature of the Medium/◦C

Inside the Reactor Outside the Reactor
with Jacket Inside of Reactor Inside

the Jacket Air

Normal operation 15,009 52.429 253.15 24
0Open or shutdown 13,135 116.282 186.575 142.04

Steam hold 10,384 81.997 150 250

Boundaries for Structural Analysis

An axial displacement constraint was imposed on the upper-end face of the cylinder
(as shown in Figure 7). Medium pressure was evenly applied to the inner wall of the B ring,
the reactor, the end cover and the nozzle. At the same time, the end load was calculated
according to Equation (27) and applied to the end of the nozzle.

pc =
p

K2 − 1
(26)

where K is the diameter ratio of the nozzle, and p is the medium pressure (MPa).
Setting 20 ◦C as reference temperature at zero stress, stress–strain analysis of the struc-

ture was conducted by reading the node temperatures calculated by the transient thermal
analysis as the temperature load and taking the medium pressure at the corresponding
time as the mechanical load. The structural displacement field, stress–strain field and the
contact pressure between the B ring and the sealing surface were obtained.
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5.1.3. Mesh Independence Verification

The arc R1 of the B ring and the contact parts of the cylinder and the end cover
were divided into 20, 40, 80, 100, and 120 divisions, respectively, and other parts were
divided adaptively. Figure 8 shows the average contact pressure–pressure change curve
on the cylinder side of the B ring under different fractions. In the process of heating and
pressurization, the average contact pressure–pressure curve of the B-ring arc at 20 and
40 divisions was quite different from the other three curves. In the process of cooling
and decompression, the overall coincidence of the five contact pressures is high, but the
split curves of 20 and 80 divisions fluctuate considerably at about 25 MPa. Therefore, the
100 divisions of the B-ring arc surface can meet the requirements of mesh independence.
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5.2. An Example of Analysis

Assuming a 20 steel B ring with an arc radius, R1, of 14.3 mm; an inner arc radius, R2,
of 17.5 mm; and an interference of 0.15 mm as an example, the calculation results of each
working condition were obtained, and the leakage analysis was elucidated.

5.2.1. Calculation Results of Preloading Condition

The contact pressure contour of the sealing structure under preloading conditions is
shown in Figure 9a, and the contact pressure distribution curves of the B-ring contact area
on the cylinder side and the end-cover side is shown in Figure 9b. The area where the
contact pressure is greater than 0 is defined as the effective contact area, and the contact
pressure in the effective contact area can be calculated by Equation (27).

Q =
∑n

1 pi·(yi−1 − yi+1)

2(y1 − yn) + y1 − y0 + yn+1 − yn
(27)

The average contact pressure on the cylinder side is 327.687 MPa, and that on the
end-cover side is 329.308 MPa, which shows that the average contact pressure on the
end-cover side is slightly higher than that on the cylinder side.
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5.2.2. Calculation Result of the Process of Heating and Pressurization

The temperature contours, the contact pressure contours and the plastic deformation
contours at different times during the heating and pressurization stage of the reactor are
shown in Figure 10.

During the process of heating and pressurization, the medium pressure of the reactor
increases continuously, and the contact pressure between the B ring and the cylinder, as
well as the end cover, also increases due to the self-tightening. The maximum plastic strain
near the contact area of the B ring also increases continuously. The average contact pressure
and the maximum plastic strain of the cylinder side and the end-cover side in the process of
heating and pressurization are shown in Figure 11. When the medium pressure is between
0 MPa and 25 MPa, the effective contact pressure and the maximum plastic strain of the
B-ring cylinder side and the end-cover side are almost the same. However, at 15 MPa,
plastic deformation of the B ring occurs, and the contact width increases suddenly, resulting
in a sudden decrease in Q. Average contact pressure and maximum plastic strain are greater
on the cylinder side than the end-cover side when the pressure is between 25–75 MPa,
which is due to the higher temperature of the cylinder in this stage, as shown in Figure 10c.
This causes the thermal expansion of the cylinder to be larger than that of the end cover, and
the contact surface of the cylinder shifts inward due to the displacement constraint of the
clamp; therefore, the effective contact pressure and the maximum plastic strain of the B-ring
cylinder side are higher than those of the end-cover side at this stage. When the medium
pressure in the reactor is between 75 MPa and 160 MPa, the average contact pressure and
the maximum plastic strain on the end-cover side of the B ring are generally higher than
those on the cylinder side, which is due to the end cover rotating counterclockwise under
the action of medium pressure around the contact point between the clamp and the end
cover, as shown in Figure 12, resulting in increased contact pressure with the B-ring and
higher maximum plastic strain.
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5.2.3. Calculation Results of the Process of Cooling and Depressurizing

The temperature contours, the contact pressure contours of the B ring and the plastic
deformation contours at different times during the cooling and depressurizing stage of
the reactor are shown in Figure 13, and the change in effective contact pressure of the B
ring with medium pressure is shown in Figure 14. Within the medium-pressure range of
160–30 MPa, the contact pressure changes on the end cover side and the cylinder side are
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basically the same. However, in the process of reducing the medium pressure from 30 MPa
to 0 MPa, the effective contact pressure on the end cover side fluctuates violently, reaching
0 MPa when the pressure is reduced to 10 MPa. This is due to the deflected end cover
slowly rotating with the decrease in medium pressure and the seal being closer to line
contact. Due to excessive plastic deformation on the side of the B-ring end cover, the contact
pressure of B-ring end cover is low or even 0 under low pressure, and leakage occurs.
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5.2.4. Leakage Analysis

The contact pressure of each node on the contact surface of the B-ring cylinder side
and end-cover side were extracted under different medium pressures in the process of
heating and pressurization or cooling and depressurizing to calculate the average values,
which were the average contact pressure, Q, of the B-ring contact surface in each case. Then,
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the sealing rates were calculated as defined in Section 3. The variations of sealing rate of
B-rings made of 10, 20 and 16 Mn steels with medium pressure are shown in Figure 15.
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(b) heating and pressurization (end-cover side); (c) cooling and depressurization (cylinder side);
(d–f) cooling and depressurization (end-cover side).

As shown in Figure 15, when the medium pressure on end-cover side of 10, 20 and
16 Mn steel B rings is in the range of 18.9–10.2 MPa, 9.8–0 MPa, 16.9–0 MPa and 7.3–0 MPa,
the sealing rates are less than 1, i.e., within leakage pressure range. The leakage of the
10steel B ring is divided into two intervals because steam is introduced into the jacket when
the pressure is reduced to 16 MPa, and the reactor is heated up, which increases the contact
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pressure between the B ring and the end cover, as shown in Figure 2. Then, the leakage time,
t of, these leakage intervals was determined according to the temperature–pressure curve
shown in Figure 2. The leakage parameter is defined as the product of the average leakage
pressure of each leakage interval and the leakage time, i.e., Φ = ∑ (p× t). Therefore, the
leakage parameters under this calculation condition are 102.50 MPa·min, 102.13 MPa·min
and 104.27 MPa·min.

5.3. Analysis and Discussion on Influencing Factors of Sealing Performance

The analysis and calculation presented in Section 4.2.4 show that the contact pressure
of the sealing surface is considerably affected by the arc radius, R1; interference, δ; and
material properties of the B ring. Therefore, the influence of interference, δ, and material
properties on the sealing performance were discussed; then, the influence of the B-ring arc
radius on the sealing performance was further studied under optimal interference, and on
this basis, the optimal value was determined.

5.3.1. Influence of Interference (δ) and B-ring Material on Sealing Performance

Under the same size of B ring, the influence of interference and material on effective
contact pressure, Q, and contact width, a, were discussed and calculated according to the
parameters listed in Table 5.

Table 5. Calculation scheme of interference (δ) and material 1.

δ/mm
Material

10 20 16 Mn NiCrMoV 4140

0.05 LS11 LS12 LS13 LS14 LS15
0.15 LS21 LS22 LS23 LS24 LS25
0.25 LS31 LS32 LS33 LS34 LS35
0.35 LS41 LS42 LS43 LS44 LS45

1 The circular radius R1 of the B ring in the table is 14.3 mm.

The B-ring seal structures specified in Table 5 were simulated and calculated. Ac-
cording to the calculation results of the cooling and depressurizing stage, the leakage
pressure range, leakage duration and leakage parameters were sorted according to method
described in Section 5.2.4. The results are shown in Table 6, and the variation of leakage
parameters with material yield stress and interference of the B ring is shown in Figure 16.
In the calculation range, B rings made of materials with a higher yield stress (NiCrMoV,
4140) do not leak, whereas B rings made of materials with a lower yield stress (10, 20 and
16 Mn) leak to varying degrees. This is because the plastic deformation of the end-cover
side of B rings made of materials with low yield stress is relatively large during heating
and pressurization (the plastic strain contour is shown in Figure 17a). When the reactor is
cooled and depressurized to the lower pressure, the contact pressure between the B ring
and the sealing surface is too low, resulting in leakage of the reactor.

Table 6. Leakage parameters of B rings of various materials under different interference values.

Serial Number
Leak Pressure Leak Duration Leak Parameter

/MPa /min /MPa·min

LS11
19.27 15.16 0.88

36.937.62 0 5.73

LS21
18.87 10.23 4.56

102.509.82 0 7.38
LS31 18.76 0 12.19 114.40

LS41
19.69 16.08 0.25

34.178.90 0 6.66
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Table 6. Cont.

Serial Number
Leak Pressure Leak Duration Leak Parameter

/MPa /min /MPa·min

LS12 17.93 0 12.14 108.81
LS22 16.93 0 12.07 102.13
LS32 16.39 0 12.03 98.54
LS42 16.5 0 12.04 99.30

LS13 19.85 0 12.27 121.83
LS23 17.25 0 12.09 104.27
LS33 16.62 0 12.04 100.09
LS43 16.76 0 12.05 101.04

LS14 0 0 0 0
LS24 0 0 0 0
LS34 0 0 0 0
LS44 0 0 0 0

LS15 0 0 0 0
LS25 0 0 0 0
LS35 0 0 0 0
LS45 0 0 0 0
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The change in leakage parameters of the B rings for 10, 20 and 16 Mn steels are shown
in Figure 18a. For a 10 Mn steel B ring in the range of 0.05–0.35 mm interference, the leakage
parameter first increases and then decreases. When the interference is 0.22 mm, the leakage
parameter reaches a maximum of 118.7 MPa·min, and the minimum leakage parameter is
34.17 MPa·min when the interference is 0.35 mm. However, the leakage parameters of B
rings made of 20 and 16 Mn steel gradually decrease and tend to be stable in the range of
0.05–0.35 mm interference.
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The radial displacement of the contact position between the outer side of the B ring
and the sealing surface of the end cover of the three materials changes with the interference
is shown in Figure 19a. Larger interference results in smaller radial displacement, which
means a larger gap with the sealing surface and worse sealing performance. In addition,
due to the low yield stress of these three materials, the B ring will produce plastic deforma-
tion during the process of increasing temperature and pressure, as shown in Figure 19b; the
higher the interference, the lower the plastic strain. With 20 and 16 Mn steel, compressive
plastic strain will occur. Obviously, higher expanded plastic strain is beneficial in that it
reduces the gap between the B ring and the sealing surface after cooling and depressuriza-
tion. Higher expanded plastic strain leads to better the sealing. Conversely, compressed
plastic strain is not good for sealing.

Considering the plastic strain at the inner diameter position of the B ring and the
radial displacement at the outer diameter position, the change in clearance between the
outer side of the B ring and the sealing surface of the end-cover side with interference is
shown in Figure 19c. The variation trend is consistent with that of the leakage parameters
given in Figure 18a.

The variation trend of the minimum leakage parameters of three B-ring materials with
yield stress is shown in Figure 18b. The minimum leakage parameter varies parabolically.
When the yield stress is 277 MPa, the leakage parameter reaches its maximum value.
Among the three materials with smaller yield stress, the leakage parameter of the B ring
made of 10 steel is the smallest.

For a B ring with high yield stress (NiCrMoV, 4140), although there is no leakage within
the calculation range, plastic deformation of the contact position appears successively at
the B-ring, the sealing surface of the reactor cylinder and the end cover. The plastic strain
increases with the interference and the yield stress of the B-ring material (as shown in
Figure 20).
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5.3.2. Influence of Arc Radius (R1) on Sealing Performance of the B Ring

Taking 4140 and 10 steels as examples, the influence of arc radius, R1, on sealing
performance was explored. The calculation scheme is shown in Table 7. The interference
of the two materials with good sealing performance was used for calculation, which was
0.15 mm for 4140 steel and 0.05 mm for 10 steel.
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Table 7. Calculation scheme of arc radius (R1) and material type.

R1/mm
Material

10 4140

8.3 LD11 LD12
10.3 LD21 LD22
12.3 LD31 LD32
14.3 LD41 LD42
16.3 LD51 LD52

The B-ring seal structures specified in Table 7 were simulated and calculated. Based
on the calculation results of the cooling and decompression stage, the leakage parameters
are sorted according to the method introduced in Section 5.2.4. The leakage parameters of
the B rings made of 10 and 4140 with different arc radii are shown in Figure 21. Leakage
occurs with each arc radius value for 10 steel, but 4140 steel does not leak at all.
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When the reactor is cooled and depressurized to a lower pressure, there is not enough 
spring back, and the reactor will leak. On the other hand, when the arc radius, R1, is larger, 
the h′ is smaller, and the overall thickness of the B ring decreases. At this time, the B ring 

Figure 21. Influence of R1 on leakage parameters of a B ring made of 10 steel.

The leakage parameter of a B ring made of 10 steel first decreases and then increases
with an increase in arc radius, R1. On the one hand, with a smaller arc radius (R1) and
contact width of the B-ring, higher plastic strain is generated in the heating and boosting
stage, as well as the production stage, as shown in Figure 22a.
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spring back, and the reactor will leak. On the other hand, when the arc radius, R1, is larger, 
the h′ is smaller, and the overall thickness of the B ring decreases. At this time, the B ring 

Figure 22. Influence of R1 on maximum plastic strain and clearance of the B ring. (a) Maximum
plastic strain; (b) clearance.



Processes 2022, 10, 1084 23 of 27

When the reactor is cooled and depressurized to a lower pressure, there is not enough
spring back, and the reactor will leak. On the other hand, when the arc radius, R1, is
larger, the h′ is smaller, and the overall thickness of the B ring decreases. At this time,
the B ring is more prone to radial deformation under the same pressure and temperature
load. However, because of the larger contact width, the plastic strain is lower, as shown in
Figure 22a, and the maximum plastic deformation increases, resulting in a higher minimum
clearance between the end cover and the B ring and increased leakage parameters, as shown
in Figure 22b. The combined effect of the two aspects makes the leakage parameter the
smallest when R1 = 14.3 mm; the sealing performance of the B-ring with this R1 is the best.

Although a B ring of made of 4140 steel will not leak, the plastic strain of the contact
surface of the end cover first decreases and then increases with an increase in the arc
radius (R1), reaching its minimum value at R1 = 14.3 mm, as shown in Figure 23. This is
because, on the one hand, the larger the radius, R1, of the circular arc of the B ring and the
contact width cause a lower the contact pressure under the same pressure and temperature
load, which leads to lower plastic deformation of the end cover. On the other hand, the h’
decreases with decreased arc radius (R1), and the overall thickness of the B ring decreases
accordingly. Under the same pressure and temperature load, the B ring is more prone to
radial deformation, resulting in a larger contact surface load, so the plastic deformation of
the end cover increases, especially when the arc radius, R1, is increased from 14.3 mm to
16.3 mm. As a result, the structure with this R1 has the best sealing effect.
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5.4. Comparison of Results between Theoretical Calculation and Finite Element Analysis in
Elastic Range

For a B ring made of 4140 steel with an arc radius, R1, of 14.3 mm at a 0 min working
point, contact pressure of finite element analysis value (QF) and theoretical calculation
value (QA), contact width of finite element analysis value (aF) and theoretical calculation
value (aA), total contact load (N = Q·a) of finite element analysis value (NF) and theoretical
calculation value (NA), as well as their relative errors (EQ, Ea and EN) are shown in Table 8
with varying interference, δ. The contact pressure, contact width, total contact load and
relative error of a 4140 steel B ring at the 0 min operating point when the interference, δ, is
1.5 mm are shown in Table 9.

As shown in Tables 8 and 9, the relative errors between the analytical calculation
values of effective contact pressure and contact width and the finite element analysis values
are less than 25%, and those of total contact load are less than 15%, which shows that the
two results are basically consistent.
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In addition, as shown in Figure 24, the radial displacements of the B ring and the
sealing surface position of the cylinder obtained by analytical analysis and finite element
analysis are basically consistent at the assembly condition, 0 min and 60 min operating
points, and their relative errors are less than 20%.

Table 8. Comparison between finite element solution and analytical solution with varying interference.

δ/(mm) QF/(MPa) QA/(MPa) EQ aF/(mm) aA/(mm) Ea NF/(N) NA/(N) EN

0.05 224.34 275.49 0.23 0.25 0.19 −0.24 57.08 52.12 −0.09
0.15 499.70 421.51 −0.16 0.26 0.29 0.11 129.35 122.01 −0.06
0.25 591.14 528.47 −0.11 0.34 0.36 0.07 200.12 191.80 −0.04
0.35 541.45 617.03 0.14 0.51 0.42 −0.17 273.73 261.46 −0.04

Table 9. Comparison between finite element solution and analytical solution with varying arc radius.

R1/(mm) QF/(MPa) QA/(MPa) EQ aF/(mm) aA/(mm) Ea NF/(N) NA/(N) EN

8.3 539.77 538.55 0.00 0.23 0.21 −0.07 124.65 115.61 −0.07
10.3 508.06 489.17 −0.04 0.24 0.24 0.01 122.08 118.36 −0.03
12.3 502.32 451.51 −0.10 0.25 0.27 0.07 125.37 120.42 −0.04
14.3 499.70 421.51 −0.16 0.26 0.29 0.11 129.35 122.01 −0.06
16.3 478.94 396.86 −0.17 0.30 0.31 0.04 143.68 123.29 −0.14
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Figure 24. Comparison between the analytical solution and the finite element solution of the radial 
displacement of the contact surface between the B ring and the cylinder. (a,d) Assembly condition; 
(b,e) 0 min; (c,f) 60 min; (a–c) B-ring radial displacement; (d–f) radial displacement of cylinder con-
tact surface. 
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tion are as follows: (1) The contact force between the B ring and the sealing surface is 
applied at the two peak positions, but Equation (22) is an approximate derivation based 

Figure 24. Comparison between the analytical solution and the finite element solution of the radial
displacement of the contact surface between the B ring and the cylinder. (a,d) Assembly condition;
(b,e) 0 min; (c,f) 60 min; (a–c) B-ring radial displacement; (d–f) radial displacement of cylinder
contact surface.

The main reasons for the errors between analytical solution and finite element solution
are as follows: (1) The contact force between the B ring and the sealing surface is applied at
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the two peak positions, but Equation (22) is an approximate derivation based on a uniform
load. (2) The radial displacement caused by contact pressure on the sealing surface of
the cylinder is calculated approximately according to the internal pressure. Because the
analytical solution and the finite element solution are basically the same in the elastic range,
it can be considered that the analytical solution in Section 4.2.4 has a certain reference value
for the analysis of the B-ring sealing performance.

6. Conclusions

Based on the elastic deformation analysis, the deformation co-ordination equation of
a B-ring sealing structure of a high-pressure reactor under the action of temperature and
pressure was established, and a contact pressure calculation formula of the sealing structure
was obtained. A finite element analysis model of the sealing structure was established;
transient temperature field analysis was carried out for startup and shutdown; and contact
analysis was carried out for the interference assembly, as well as startup and shutdown
conditions. Based on the evaluation criteria of sealing performance with the proposed
sealing rate and leakage parameters, the effects of material properties, interference, B ring
size, etc. on the B-ring sealing performance of a high-pressure reactor were investigated.
Our analyses yielded the following results.

(1) During heating and pressurization, a B ring made of 10, 20, 16 Mn, NiCrMoV or
4140 steel will not leak in the range of the discussed interference and the wave radius of
the B ring. During cooling and depressurization, only a B ring with high yield stress will
not leak, such as those made of NiCrMoV and 4140.

(2) Although a B-ring made of NiCrMoV or 4140 steel with high yield stress will not
leak, the B-ring, the sealing surface of the cylinder and the end cover will yield plastic
deformation during heating and pressurization. When replacing a B-ring, it is necessary to
adjust its size according to the plastic deformation of the sealing surface to ensure that the
interference requirement is satisfied.

(3) For B rings made of 10, 20 or 16 Mn steels with lower yield stress, due to the plastic
deformation caused by the interference assembly, as well as heating and pressurization, a
radial gap is generated between the outer side of the B ring and the sealing surface at the
end cover, resulting in sealing failure. However, leakage parameters can be minimized by
lower interference and a moderate wave radius.

(4) Compared with the results of finite element analysis, the contact pressure of the B
ring based on elastic deformation analysis is higher, and the contact width is smaller, but
the contact load is almost the same. Elastic deformation analysis is helpful to some extent
for sealing performance analysis of the B-ring seal structure.

Highlight
The deformation coordination equation of the B-ring seal structure of high-pressure

reactor under the action of temperature and pressure is established, and the formula of
contact pressure gauge at the sealing part is obtained.

Sealing performance is analyzed by finite element method for the B shape ring sealing
structure. And the effects of material properties, interference, and wave radius of the B
shape ring on the sealing performance are discussed.
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Notation

A Width of B ring, mm
a Width of contact, mm
c Specific heat capacity, J/(kg K)
E Young’s modulus, GPa
h Minimum thickness of B ring, mm
h′ Height of wave of B ring, mm
h Average thickness of B ring, mm
K Diameter ratio of nozzle
l Center distance of B ring, mm
m Gasket factor
p Medium pressure, MPa
pi Contact pressure of nodal, MPa
Q Average contact pressure, MPa
ReL Yield stress, MPa
R1 Inner arc radius of B ring, mm
R2 Outer arc radius of B ring, mm
rB1 Inside radius of B ring, mm
rB2 Equivalent outer radius of B ring, mm
rc1 Radius of sealing surface, mm
rc2 Outer radius of clamp, mm
rc Inner arc radius of cylinder, mm
T Temperature, ◦C
y Node ordinate, mm
α Coefficient of thermal expansion, ×10−6 m/◦C
δ Initial interference, mm
λ Thermal conductivity, W/(m·K)
µ Poisson ratio
σ Stress, MPa
Φ Leakage parameters, MPa min
∆P

B, ∆T
B, ∆Q

B Radial displacement of B ring, mm
∆P

c1, ∆T
c1, ∆Q

c1, ∆P+Q
c1 Radial displacement of cylinder, mm
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