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Abstract: Drop impact on a dry substrate is ubiquitous in nature and industrial processes, including
aircraft de-icing, ink-jet printing, microfluidics, and additive manufacturing. While the maximum
spreading factor is crucial for controlling the efficiency of the majority of these processes, there is
currently no comprehensive approach for predicting its value. In contrast to the traditional approach
based on scaling laws and/or analytical models, this paper proposes a data-driven approach for
estimating the maximum spreading factor using supervised machine learning (ML) algorithms such
as linear regression, decision tree, random forest, and gradient boosting. For this purpose, a dataset of
hundreds of experimental results from the literature and our own—spanning the last thirty years—is
collected and analyzed. The dataset was divided into training and testing sets, each representing 70%
and 30% of the input data, respectively. Subsequently, machine learning techniques were applied to relate
the maximum spreading factor to relevant features such as flow controlling dimensionless numbers and
substrate wettability. In the current study, the gradient boosting regression model, capable of handling
structured high-dimensional data, is found to be the best-performing model, with an R2-score of more
than 95%. Finally, the ML predictions agree well with the experimental data and are valid across a wide
range of impact conditions. This work could pave the way for the development of a universal model for
controlling droplet impact, enabling the optimization of a wide variety of industrial applications.

Keywords: drop impact; maximum spreading diameter; scaling laws; analytical models; machine learning

1. Introduction

The impact and spreading of droplets on a solid substrate is of paramount impor-
tance from a scientific and practical standpoint. Ink-jet printing, metal solidification, spray
cooling, microfluidic systems, ice accretion, combustion, coating processes, and pesticide
deposition are just some of the myriad of industrial and environmental applications that
have spurred decades of research on drop impacts [1–7]. In each of these applications,
the maximum spreading diameter is critical, whether it relates to a higher dot resolution
in ink-jet printing or better surface coverage efficiency aiming at maximum coverage of
the target materials with the minimum amount of liquid. In other extreme cases, su-
perhydrophobic surfaces have been developed to limit the spreading diameter due to
their enormous potential applications, such as anti-icing, drag reduction, self-cleaning,
anti-bacteria, and corrosion resistance, to mention a few [8–10].

From a scientific point of view, many studies have been devoted to understanding the
different phenomena happening after impact and which are controlled by a subtle interplay
between inertia, viscosity, and capillary forces for drops smaller than the capillary length.
According to the literature [1,11,12], the droplet impacting process can be divided into four
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phases: kinematic, spreading, relaxation, and wetting/equilibrium, with different outcomes.
The outcomes are closely related to the kinematics and the interfacial properties of the
liquid and the solid, the most important of the outcomes being deposition, receding contact
line with break-up, splashing, and rebound, the latter being either partial or total [13–17].

Analytical models, which are further discussed in this paper, attempt to predict the
maximum spreading diameter of droplet impingement using energy balance, momentum
balance, and sometimes empirical considerations [18,19]. These models are crucial for
understanding the underlying physics, as well as industrial applications. The kinetic
energy, the surface energy, and the viscous dissipation of a droplet impacting on a solid
surface must all be taken into account when analyzing the impact dynamics. It has been
shown that drop impacts are best described and assessed when appropriate dimensionless
groups are used. The Weber and Reynolds numbers are mostly employed in this regard.
The Weber number

(
We = ρV2

0 D0/σ
)

relates the inertia forces to the forces resulting from
surface tension; it represents the ratio of kinetic energy to surface energy and is a measure of
the deformability of the droplet. The Reynolds number (Re = ρV0D0/µ) measures the ratio
of inertia to viscosity, where V0 and D0 are the initial impact velocity and diameter of the
liquid droplet, whilst ρ, σ, and µ are the density, surface tension, and viscosity of the fluid
used for the experiments. Two other dimensionless numbers are also sometimes considered
in the analysis, namely the Ohnesorge number

(
Oh = We1/2/Re

)
and the capillary number

(Ca = We/Re). It should be noted that these numbers are not independent of the first two
(We, Re) but may be quite useful for scaling purposes and to better define regions of study
and applications. Finally, another quantity of interest is βmax, the maximum spreading
factor (or parameter). It serves to normalize the maximum deformation of the droplet and
represents the ratio between the droplet’s maximum spreading diameter (Dmax) and its
initial diameter (D0).

Existing analytical models can be classified into two main categories: (i) βmax as a
function of Re and We [17,20] and (ii) βmax as a function of Re, We, and θ [14,21], where
θ could be the equilibrium contact angle or the advancing contact angle, with the latter
being dynamic or not [22]. It is only when θ is introduced into the equations that the
interactions between the solid and liquid are considered. Due to the difficulty in predicting
the advancing dynamic contact angle theoretically, however, experimental data are often
used instead. In this paper, some results from analytical models described above to those
obtained using data-driven models are compared.

In view of the quantity of existing experimental results which have been generated over
the years, of the various assumptions which are made to construct the models, and of the
very large number of models, with some of them relatively specialized for certain fluids and
operating conditions [23,24], it may be useful to consider whether one could not resort to
some other technique to obtain the maximum spreading diameter. For instance, the lack
of an analytical model can be circumvented if one applies machine learning (ML) or deep
learning techniques able to unravel hidden interactions and to build a model directly from
the experimental data [25]. The ML models in this work are applied in a supervised manner,
which means that the data have to be prepared beforehand for a given target, which, in this
paper, is the maximum spreading factor. As a result, the main aim of the present study is to
investigate different tree-based machine learning models for the prediction of the maximum
spreading factor of a single droplet onto a dry horizontal surface with various wettabilities.
The simplicity of these models, relying on structured data, allows for better insight into
the physics, unlike approaches such as deep learning applied on unstructured data [26,27].
The focus is essentially on the ensemble learning family of algorithms, which offer some of
the most promising approaches in terms of prediction accuracy.

This paper’s contribution is the development of a comprehensive ML approach for
predicting the maximum spreading factors (βmax) over a wide range of impact conditions
and machine learning models. Existing models do not address these issues and do not
permit a direct comparison of βmax with empirical and energy models in the literature.
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Current methods only predict the diameter after training on a subset of the diameter
evolution or address the droplet impact classification problem [28,29].

This paper is organized as follows: Section 2 is devoted to the background on analytical
models and scaling analyses which help to determine the maximum spreading diameter,
and some of them will be used as benchmarks for comparisons later in the paper. Section 3
presents the machine learning methods used for regression, while Section 4 details the
methodology and the results obtained, with special emphasis on the prediction of βmax for a
large spectrum of dimensionless numbers and contact angles. Finally, Section 5 summarizes
the main conclusions of this work and emphasizes the potentialities of machine learning
methods in the analysis of heterogeneous data.

2. Prediction of the Maximum Spreading Diameter
2.1. Scaling Analyses and Analytical Models

Scaling laws between the maximum spreading factor (βmax) and the Weber (We) or
Reynolds (Re) number have been proposed based on the type of force dominating the
dynamics of drop impact. On one hand, for capillary-force-dominated spreading, one
can obtain a scaling law of βmax ∝ We1/2 by energy conservation or as βmax ∝ We1/4 by
using momentum conservation [17,30]. On the other hand, if the spreading is dominated
by viscous force, then one obtains βmax ∝ Re1/5, whilst βmax ∝ Re1/4 when considering a
balance of kinetic energy with viscous dissipation energy at initial and maximum spread-
ing times [14]. It is noteworthy that Clanet et al. [17] proposed a model that fits well
experimental data for impacts on superhydrophobic substrates and reads:

βmax = 0.9 We1/4 (1)

The accuracy of the different estimations can be evaluated, in particular, on the basis of
their ability to predict the maximum spreading factor, as performed by Clanet et al. [17], but
only for a very specific type of substrate. In this context Laan et al. [31] explored the afore-
mentioned scaling relations to enable universal scaling. The fact that no clear dependency
on We or Re is found suggests that all three effects (inertia, capillarity, and viscosity) are
important. By interpolating between We1/2 and Re1/5 using βmax ∝ Re1/5 fEC

(
WeRe−2/5

)
,

where fEC is a function of the impact parameter P = WeRe−2/5, Laan et al. [31] reach the
following relation for the maximum spreading factor:

βmax = Re1/5 P1/2

(A + P1/2)
(2)

In the first category of models, which do not account for surface interactions, it is
worth mentioning the semi-empirical correlation proposed by Roisman [20], based on a
combination of scaling laws and experimental data fitting. This model has been extensively
used in the literature for benchmarking but, however, fails for very low Weber impacts,
whatever the wettability of the substrate, as well as for low-viscosity fluid drops landing
on superhydrophobic substrates where the equilibrium contact angle θe is higher than 140◦.

In the category of models where the surface wettability is taken into account, one of
the best known and abundantly cited is probably the one due to Pasandideh-Fard et al. [14],
for which the maximum spreading factor is given explicitly:

βmax =

√√√√ We + 12

3(1− cos θ) + 4
(

We√
Re

) (3)

In their work on carefully characterized substrates, Ukiwe and Kwok [18] concluded
that the Pasandideh-Fard et al. model provided the best estimation, among a set of models,
on their experimental data for βmax. This model was then modified to include different
surface energy terms, resulting in new models [22].
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2.2. Data-Driven Models

There are several traditional machine learning (ML) and deep learning methods, in-
cluding decision trees [32], nearest neighbors, support vector machines, random forest,
and many others [33]. Recently, neural networks [27] have shown significant potential
in a wide range of applications [34–38]. Nevertheless, none of these models consistently
outperform the other methods, and the performance of the model is data-dependent.
Coming to the specific problem at hand, fluid dynamics presents challenges that differ
from those commonly tackled in many applications of ML, such as speech and image
recognition or even the control of manufacturing plants. The application of ML methods
for characterizing drop impacts is rather limited, to the best of our knowledge. In 2018,
Um et al. [39] proposed a new data-driven approach for modeling liquid splashes utilizing
neural networks, which can learn to generate small-scale splash details using training data
collected from high-fidelity numerical simulations. In the continuation of neural networks,
Heidari et al. [28] present a method based on the NARX-ANN approach for predicting
droplet spreading dynamics on a solid substrate. These types of neural networks seem to
be particularly effective in predicting non-linear behavior [40], but, as usual with neural
networks, the underlying phenomena are rather obfuscated. Moreover, Heidari et al. [28]
do not conduct any comparisons with drop impact experiments performed on superhy-
drophobic substrates, making it difficult to determine if their neural network is equally
effective regardless of the values of Weber, Reynolds, and contact angles, since it is found
that superhydrophobic substrates have a peculiar behavior, as reported by [41]. Finally,
Azimi et al. [29] utilized an approach based on machine learning to predict the behavior
of impacting drops on hydrophobic and superhydrophobic surfaces. Their model, based
on a random-forest approach, is used to predict drop behavior with high accuracy while
aiming at finding those conditions favorable for producing a bouncing behavior upon
drop impact for a wide range of Weber numbers and surfaces. Their results based on an
ensemble method offer design criteria for superhydrophobic surfaces, so it is more of a
classification problem than a regression one, as detailed in this paper.

3. Machine Learning Methods for Predicting Maximum Spreading Diameter
3.1. Multiple Linear Regression (MLR)

The first ML considered is a multiple linear regression (MLR), which involves predict-
ing the target variable F(xi) (in our case, the maximum spreading factor) based on the p
input features x1, x2, . . . xp so that the following linear relation is satisfied:

F(x) = α0 +
p

∑
i=1

αixi + ε (4)

where αi is the regression coefficient for the ith input feature xi and ε represents the error.
Using the set of observations compiled from our own experiments [22,42] and data from the
literature (see below), the coefficients αi can be computed using the least-squares approach
by optimization.

3.2. Regression Tree (RT)

The regression tree (RT) method is a supervised nonparametric statistical method [43]
that provides an alternative to parametric regression techniques, which typically need
assumptions and simplifications to generate the described relationship. The main goal of a
decision tree-based regression model is to predict the value of a target variable by learning
simple decision rules based on the input data. To construct the regression tree, the entire
dataset that represents the root node is recursively partitioned into more homogeneous
groups, each of which is described by its own node. At the end of the splitting process,
the resulting groups are known as leaves or terminal nodes. If the dataset is partitioned
into M regions or homogeneous groups such as R1, R2, . . . RM, the system model can be
expressed as:
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F(x) = average(F(xj)/xj ∈ RM) + ε (5)

where xj corresponds to the input variables at jth observation while F(xj) represents target
variables. Overall, Equation (5) illustrates that the predicted value can be computed based
the average of F(xj) in region RM with the associated error ε.

It should be mentioned that a small tree may not be able to capture a nonlinear relation,
but a very large one can overfit with overly complex decision rules, which is more typical
of the behaviour of a single tree. Consequently, tree size is a tuning parameter that can be
adjusted in accordance with the data.

3.3. Random Forest (RF)

The random forest method comprises regression trees developed in a random manner.
The purpose of the RF method is to build an ensemble of low-correlated regression trees
and average them in order to address the weaknesses of decision trees and reduce variance,
which is quite high in the case where a single tree is generated. The random forest method
was first proposed by Breiman [44]. Randomization is applied in two processes to build
low-correlated trees: each tree is formed using a random subset of observations and each
node of a tree is split using a random subset of input features. RF can predict a new
observation x by using a tree-based regression model in the forest to make new predictions
FS(x) and then taking the average of the S prediction values as follows:

F(x) =
1
S

S

∑
s=1

Fs(x) + ε (6)

Thus, the random forest output is a meta-estimator that integrates the results of several
predictions and many decision trees, with some adjustments that prevent overfitting and
underfitting if sufficient trees are generated for a particular task.

3.4. Gradient Boost Regression Tree (GBRT)

Schapire [45] introduced the first boosting algorithm in 1990, followed by Freund
and Schapire in 1996 with the AdaBoost method [46]. Boosting is a potent method for
merging numerous base classifiers to create a group whose performance can be much
superior to that of any base classifier. Boosting’s central concept is to add new models to
the ensemble sequentially but according to a predetermined pattern, as opposed to the
random forest technique, in which trees are developed in parallel. At each successive
iteration, a weak, base-learner model is trained relative to the error of the entire ensemble
learned [47]. Gradient boosting, which was developed by Friedman [48], constructs the
model in stages, such as in other boosting approaches, but generalizes weak learner models
and optimizes the loss function based on gradient descent. As with the random forest
method, it can be used for regression or classification problems and results in a lower
variance than a single regression tree. The mathematical formulation for GBRT reads:

F(x) =
M

∑
m=1

γmhm(x) (7)

where hm(x) are the basis functions, which, in the context of boosting, are typically referred
to as weak learners. GBRT employs small, fixed-size decision trees for weak learners. Nu-
merous abilities of decision trees make them advantageous for boosting. GBRT constructs
the additive model in forward stages [48] as follows:

Fm(x) = Fm−1(x) + γmhm(x) (8)

At each stage, the decision tree hm(x) is selected to minimize the loss function L, such as:
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Fm(x) = Fm−1(x) + argmin
n

∑
i=1

L(yi, Fm−1(xi)− h(x)) (9)

The initial model F0 varies depending on the problem; for least squares regres-
sion, the mean of the target values is typically chosen, while the loss function is the
mean squared error.

3.5. Data Description and Processing

The data that we use in this paper come from our own experiments [22,42], as well as
quite a large number of experimental investigations which have been produced by different
researchers over the past thirty years. Table 1 summarizes the provenance of the prominent
data. The experimental results cover a large spectrum of Weber (0.2 to 802) and Reynolds
numbers (8.7 to 14191), with drops impacting on substrates for which the equilibrium
contact angle varies between 0 degree and 164 degrees.

Table 1. Selected experimental βmax and drop impact characteristics considered for ML models.

Investigation Range of Weber
Numbers

Range of Reynolds
Numbers

Range of Equilibrium
Contact Angles

Range of Values of Maximum
Spreading Factors

Rioboo et al. [12] 36–614 20–10,394 0◦–154◦ 1.4–5.4

Pasandideh-Fard et al.
[14] 27–641 213–5833 20◦–140◦ 2.15–4.4

Bayer et al. [15] 11.5 1078 10◦–115◦ 2.1–2.5

Šikalo et al. [49] 50–802 27–12,300 0◦–105◦ 1.7–5.2

Vadillo et al. and
Vadillo [22,42] 0.21–12.4 39–2400 5◦–160◦ 1.2 – 2.3

Roisman et al. [50] 0.88–7.9 400–1200 92◦ 1.2–1.5

Mao et al. [24] 11–511 1966–13,297 37◦–97◦ 1.65–4.94

Kim and Chun [51] 30–582 3222–14,191 6.2◦–87.5◦ 2.3–5.1

Antonini et al. [41] 33 3379 99◦–164◦ 1.8–2.45

The dataset which has been constituted for this paper from various sources is prob-
ably one of the most extended reported in the literature on maximum spreading diame-
ter. The detailed statistics on the dataset are shown in Table 2, with the number of data
points(count), the minimum, mean, percentile, and the maximum of the different parame-
ters describing the impact conditions. In addition, we represent various cross-plots between
the dataset’s variables in Figure 1. Finally, to apply the ML models, the collected data are
subdivided into two independent and non-overlapping datasets: a training set of 70% and
a test set of 30%. While the training set is used for regression analysis to predict maximum
diameters, the test set is used for assessing prediction accuracy.

Table 2. Statistics on the test dataset.

We Re θeq β

count 204 204 204 204
mean 101.7 2551.3 49.7 2.5

std 170.1 3315.0 36.5 1.1
min 0.2 8.7 0.1 1.0
25% 10.6 140.3 16.0 1.6
50% 33.0 1046.3 48.5 2.2
75% 117.1 3392.8 77.0 3.2
max 802.0 14,191.0 164.0 5.4
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Figure 1. Exploratory analysis of the dataset based on the cross-plots of the different variables.

3.6. Feature Selection

As shown in Table 1, we have settled for the choice of Weber number (We), Reynolds
number (Re), and equilibrium contact angle (θe) as features for the machine learning methods
since these are the easiest to obtain when going through the different results reported in the
literature. This does not mean, however, that other quantities such as surface tension, density
of the fluid, and advancing and receding angles are unimportant, although some of them
are present thanks to dimensionless numbers. To be practical, the point is that they are not
mentioned in some papers, whilst all of them report the dimensionless flow numbers and the
equilibrium contact angles of substrates used in the investigations.

3.7. ML Model Evaluation Metrics

To assess the performance of the different regression models, we use the R2-score
between the actual (yi) and predicted values (ỹ), which measures the predictive capability
of the ML model. This score can be defined as follows:

R2-score = 1− ∑N
i=1(yi − ỹi)

2

∑N
i=1(yi − ȳ)2

(10)

where ȳ = ∑N
i=1 yi/N, with N corresponding to the number of samples. In addition,

the mean absolute error (MAE) is computed as follows:

MAE =
1
N

N

∑
i=1
|yi − ỹi| (11)
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Finally, we use randomized search and grid search to tune and set the hyperparameters
of the different ML models.

4. Results and Discussion
4.1. Linear Regression Model (LRM)

After collecting and processing the data, we are in a position to test the accuracy of the
data-driven models. A simple linear regression model constructs an optimized linear com-
bination of the predictors variables, also known as features. The relatively strict assumption
of a linear relationship makes it difficult to match with real-world problems, where many
factors may contribute to the final result in a non-linear manner. One advantage of the
multiple linear regression method is that it can be used to evaluate the contribution of
each individual input variable to the target variable. The result of the model on estimating
βmax is shown in Figure 2, with an R2-score of 78% and MAE of 0.41, highlighting the
non-linearity, between the input features—chosen as Re, We, θe—and the target, βmax,
which cannot be fully captured by the linear model.

0 1 2 3 4 5 6 7
exp

0

1

2

3

4

5

6

7

M
L

Linear Regression (LR) Model 
 R2-score: 0.777 

 MAE: 0.413
Train set
Test set

Figure 2. Linear regression model with three features.

4.2. Decision Tree (DT)

Due to their simplicity, practicality, and interpretability, decision trees have gained in
popularity as a ML technique in recent years. In Figure 3, we find that the first split, at the level
of the root node, is performed for a Reynolds number smaller than or equal to 3613. The mean
maximum spreading factor value for the 142 samples, which concerns only the train set, in the
root node is 2.44 and the mean squared error (MSE) is 1.16. The resulting tree is of quite small
depth with only six leaves and is representative of the trees that will be used in the methods
discussed later on. It should be emphasized that at such a low depth level, the highest MSE
for a leaf is 0.13, so more than 10 times lower than the initial value, and the MSE could be as
small as 0.04, i.e., more than 30 times smaller than the initial value. The regression tree seems
to accommodate quite well for non-linearities that exist in the drop spreading phenomenon.
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squared_error = 0.04
samples = 19
value = 2.26

squared_error = 0.07
samples = 16
value = 3.15

squared_error = 0.09
samples = 14
value = 1.86

We <= 38.67
squared_error = 0.25

samples = 35
value = 2.67

squared_error = 0.09
samples = 60
value = 1.6

Re <= 376.73
squared_error = 0.34

samples = 49
value = 2.44

squared_error = 0.13
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value = 3.53

squared_error = 0.08
samples = 10
value = 5.05

We <= 14.57
squared_error = 0.38

samples = 109
value = 1.98

We <= 248.5
squared_error = 0.6

samples = 33
value = 3.99

Re <= 3613.44
squared_error = 1.16

samples = 142
value = 2.44

Figure 3. Decision tree graph for the maximum spreading factor.

4.3. Random Forest (RF)

As already explained, a single classification or regression tree is easy to obtain and
its interpretability is straightforward, but one is confronted with the problem of high
variance. As with the random forest approach, we plot βexp vs. βML in Figure 4 below. It
can be noted that there is a quantitative difference between the coefficients of determination
found for the multiple linear regression and decision tree methods and the one for the
random forest method (variation from 0.78 to almost 0.95), demonstrating the excellent
non-linear mapping generalization ability of the latter method. We lose somewhat in terms
of interpretability because of the number of trees which are grown, but we gain quite
significantly in terms of prediction accuracy.

0 1 2 3 4 5 6 7
exp

0

1

2

3

4

5

6

7

M
L

Random Forest (RF) Model 
 R2-score: 0.953 

 MAE: 0.165
Train set
Test set

Figure 4. Experimental maximum spreading factor plotted against βmax given by the random
forest method.

4.4. Gradient Boost Regression Tree (GBRT)

As a final method, we have chosen the gradient boost regression tree technique, which
performs well, if not the best, on a variety of datasets. Instead of trees grown parallel,
the trees are grown sequentially, correcting each time. As for the random forest method,
there are a number of parameters which need to be tuned: (i) the number and depth of
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trees used in the ensemble, (ii) the learning rate, which should be a small number, used to
limit how much each tree contributes to the ensemble, and (iii) random sampling such as
fitting trees on random subsets of features and samples. One may note that the comparison
(Figure 5) is slightly better than for the random forest method, which is a testimonial to the
adequacy of this method to tackle highly non-linear problems, in line with results reported
in the literature.

0 1 2 3 4 5 6 7
exp

0

1

2

3

4

5

6

7

M
L

Gradient Boosting (GB) Regressor Model 
 R2-score: 0.963 

 MAE: 0.148
Train set
Test set

Figure 5. βmax experimental plotted against βmax given by the gradient boosting method.

Finally, we have added Table 3 summarizing the performance of the different ML
models. We can observe that GBRT outperforms the other models in terms of both R2-score
and MAE.

Table 3. Summary of the performance of the different models.

Evaluation Metrics LR RT RF GBRT

R2-score 0.777 0.885 0.953 0.963
MAE 0.413 0.308 0.165 0.148

4.5. Importance of Features

Since GBRT outperforms the different ML models tested, this technique has been
used to determine the relevance of the input features controlling droplet impact on a flat
surface. The result is shown in Figure 6, where the relevance of Re and We compared to θe
is retrieved.

Finally, we provide the results of various models on the test set, hitherto unseen data
(Table 4), including machine learning-based GBRT, the models of Pasandideh-Fard et al. [14],
and Laan et al. [31]. The results, as shown in Figure 7, demonstrate that machine learning
models can outperform existing models, paving the way for a data-driven approach to a
better understanding and control of droplet formation and impact.
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Figure 6. Feature importance as given by the GBRT.

Table 4. Statistics on the test dataset.

- We Re θe

count 62 62 62
mean 122.7 2722.2 47.8

std 191.2 3394.8 39.1
min 0.2 8.7 0.1
max 802.0 13,297.2 160.0
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Figure 7. A comparative estimation of the maximum spreading factor based on machine learning,
scaling, and analytical models. Pasandideh-Fard et al. [14], and Laan et al. [31].

5. Conclusions and Perspectives

The maximum spreading diameter of impacting drops plays a significant role in a
number of industrial applications. Currently, there are three main methods for estimating
the maximum spreading factor: (i) scaling law analyses, (ii) energy balance approach, and
(iii) numerical simulation. In contrast, this paper offers a different approach to the issue.
Indeed, recent advances in computing technologies have led to the development of an array
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of accurate and sophisticated machine learning techniques. In addition, the best machine
learning technique cannot be determined beforehand, and numerous algorithms must be
examined to determine their applicability for a particular task. This study compared the
performance of commonly used scaling laws and analytical models to ensemble-based
machine learning approaches, such as random forest (RF) and gradient boost (GB), which
are both widely employed for prediction. We found that machine learning algorithms (RF
and GB) that use decision trees as their base learners can predict experimental results of the
maximum spreading factor more accurately than conventional methods. We posit that some
of this improved estimation is due to hidden interactions (fluid properties fluctuations,
substrate heterogeneities, experimental artifacts, and so on) that are not always completely
controlled in experiments and are not accounted for in analytical models. Finally, the
proposed machine learning models are highly versatile; they do not require any adjustable
parameters and may be used to improve the interpretation of heterogeneous data, the
detection of trends, and the performance of industrial processes involving droplet impact
and spreading.
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