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Abstract: Unmanned Aerial Vehicles (UAVs) are important tool for various applications, including en-
hancing target detection accuracy in various surface-to-air and air-to-air missions. To ensure mission
success of these UAVs, a robust control system is needed, which further requires well-characterized
dynamic system model. This paper aims to present a consolidated framework for the estimation
of an experimental UAV utilizing flight data. An elaborate estimation mechanism is proposed uti-
lizing various model structures, such as Autoregressive Exogenous (ARX), Autoregressive Moving
Average exogenous (ARMAX), Box Jenkin’s (BJ), Output Error (OE), and state-space and non-linear
Autoregressive Exogenous. A perspective analysis and comparison are made to identify the salient
aspects of each model structure. Model configuration with best characteristics is then identified
based upon model quality parameters such as residual analysis, final prediction error, and fit percent-
ages. Extensive validation to evaluate the performance of the developed model is then performed
utilizing the flight dynamics data collected. Results indicate the model’s viability as the model can
accurately predict the system performance at a wide range of operating conditions. Through this, to
the best of our knowledge, we present for the first time a model prediction analysis, which utilizes
comprehensive flight dynamics data instead of simulation work.

Keywords: Unmanned Speed Aerial Vehicle; system identification ARX; ARMAX; Box Jenkin’s;
Output Error; non-linear ARX

1. Introduction

Over the past few decades, UAVs have become an emerging resource for remote
sensing of various precision, agricultural, military, civil [1], and industrial applications [2,3].
The rapidly increasing fleet of UAVs, along with the widening sphere of their utility,
therefore presents a serious challenge for the designers to formulate unique optimal control
strategies. However, technological advancements in the aviation sector [4–7] and ground
control vehicles [8–19] paved the way for the development of hi-fidelity systems. These
UAVs help researchers by providing means to collect multi-spectral information with
limited resources and data collection times which is critical for time sensitive dynamic
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data [20]. The pivotal factor for a successful and safe remote sensing research/mission is
a robust and fault tolerant UAV control system. Linear and Non-linear control strategies
have been used in diverse ways for solving varying control problems to achieve desired
objectives [21–24]. Developing such control systems require well-characterized dynamic
system models. Similar work [25,26] has been done in the field of ground robotics [8–13,27]
as well. Wind tunnel testing (commonly used method for determining the parameters of
these dynamic systems) is time-consuming and costly. System Identification (SI) can be
used to overcome the limitation of analytical and wind tunnel testing methods for UAVs.
There are several techniques in system identification which can be applied to develop
dynamic system models and identify model parameters. These methods have been applied
to various aerial vehicles in recent years. The developed dynamic model can further be
used to design and verify the autopilot control system of the UAV.

1.1. Related Work

Despite their military importance and abundant usage, owing to the proprietary nature
of these UAVs, very little information related to design and development is available in
literature. Appreciable research work on design and optimization of quad-copters and
UAVs has been done by Mir et al. [22,23]. However, the research work available on model
identification and optimization of UAVs usually covers one or two techniques of system
identification. Perspective analysis and comparison of various techniques on UAVs are quite
sparse. Hopping et al. [28] has used a grey box modeling approach applying the prediction
estimation method (PEM) to model longitudinal dynamics of a UAV named Taurus.

Mir et al. [29] has further done a tremendous contribution towards soaring energetics
of a bio-inspired UAVs. Design optimization of a variable-span morphing wing UAVs and
other design optimization and controllability schemes for UAVs have been discussed in
detail by Mestrinho et al. & Mir et al. [30,31]. Later, the lateral dynamics of the same UAV
was modeled using the same approach and technique by Ahsan et al. [32]. Longitudinal
and lateral dynamics of SmartOne UAV were modeled by Rasheed [33] using grey box
modeling approach with prediction error method along with performance of error analysis.

Belge et al. [34] obtains an estimate of UAV lateral dynamic system response by using
empirical input-output data sets. The accuracy of parametric model estimation (using ARX,
ARMAX and OE model structures) and model degrees are compared for different external
disturbance effects. The model of Load Transporting System (LTS) originally designed on
UAV has been obtained by linear ARX model structure by Altan et al. [35]. ARX system
identification model has also been used to identify Multiple Input Multiple Output (MIMO)
model of a helicopter. Various transfer functions have been used to analyze the flight
dynamics of helicopter. The system identification of a quad rotor-based aerial manipulator
is presented in research carried out by Dube and Pedro [36]. ARX and ARMAX models
have been obtained from linear accelerations and yaw angular accelerations.

Cavanini et al. [37] has proposed a novel online estimation technique using LPV-ARX
model which is both cost effective and storage effective. His method permits to improve
the base of knowledge of the provided LS-SVM by introducing the possibility to learn
from on-line data, neglecting to perform the time-expensive training phase, such that the
proposed approach is suitable for on-line execution. Cavanini et al further [38] presents
a Model Predictive Control (MPC) based autopilot for a fixed-wing Unmanned Aircraft
Vehicle (UAV) for meteorological data sampling tasks, named Aerosonde. The LPV model
is used to design a MPC to drive the UAV. Two different data driven Linear Parameter-
Varying MPC (MPCLPV) algorithms have been proposed by using a subspace identification
technique. Belge et al. [39] performs the optimum path planning and tracking using
Harris hawk optimization (HHO)–grey wolf optimization (GWO), a hybrid metaheuristic
optimization algorithm, to enable the UAV to actualize the payload hold–release mission
avoiding obstacles. His novel approach generates a fast and safe optimal path without
becoming stuck with local minima, and the quad copter tracks the generated path with
minimum energy and time consumption. Weng et al. [40] addresses the robust trajectory
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tracking control problem of disturbed quadrotor UAVs with disturbances, uncertainties
and unmodeled dynamics by devising a novel compound robust tracking control (CRTC)
approach via data-driven cascade control technique. Marc et al. [41] presents the online
updating of the flight envelope of a UAV. His technique is data-driven and the UAV is
subjected to structural degradation for the research.

Yu et al. [42] investigates the problem of neural adaptive distributed formation
control for quad rotor multiple UAVs subject to unmodeled dynamics and disturbance.
Saengphet et al. [43] uses the input and output data obtained from a flight mission of a tail-
less UAV for SISO mathematical model using frequency response. Bnhamdoon et al. [44]
uses Box-Jenkins model structure and presents a novel method of identification of a
quad-copter autopilot system under noisy circumstances.Real time identification of quad-
rotor UAV dynamics using a deep learning techniques for has also been studied by
Ayyad et al. [45]. Another online estimation method for UAV, using Extended Kalman
Filter(EKF) technique has been presented by Mungguia et al. [46].Puttige and Anavatti [47]
uses both online and offline models of nonlinear and complex UAV have been obtained
using system identification procedure based on Artificial Neural Network (ANN).

Wu et al. [48] provides an approximated solution of the graph partitioning problem by
using a deterministic annealing neural network algorithm. The algorithm is a continuation
method that attempts to obtain a high-quality solution by following a path of minimum
points of a barrier problem as the barrier parameter is reduced from a sufficiently large
positive number to 0. A survey of different methods of system identification techniques and
its applications for small low-cost aerial vehicles has been carried out by Mir et al. [6,7] and
Hoffer et al. [49] . The different control-oriented models of a quad-rotor UAV have been
obtained by applying different identification methods presented by Sierra and Santos [50].
Comparison of ARX method for linear estimation and Hammerstein -Wiener method
for non linear estimation for ARF-60 UAV identified models is presented by Khalil and
Yesildirek [20].

In addition to above referred literature, there are numerous other contributions made
by different researchers. Most of the literature is focused on fixed-winged or multi-rotor
UAVs used for research work in the fields of military (target drown, target interceptor, aerial
munition practice) and non-military (search and rescue, area surveillance, environmental,
agriculture) applications. Even for UAVs, the field of side-by-side comprehensive analysis
and comparison of different linear and non-linear system identification techniques still has
a vast potential for research.

1.2. Motivating Problems for This Paper

Model prediction and performance analysis using experimental flights for UAVs or
other aerial vehicles is not feasible due to the involved cost and damage hazard to the
system and the environment in case of any crash. Although wind tunnel testing and CFD
analysis for model prediction and performance analysis can be done, however, system
identification presents a very cost-effective and user friendly solution towards mathematical
modelling of the aerial vehicles. Based on the literature review, it has been observed that
in-spite of system identification being widely used for UAVs, very little work related to
model prediction of UAV using system identification is available. Even in UAVs, the
comparison of predicted models using different linear and non linear methods is yet to
be explored. The authors of this paper felt that the researchers must be provided with a
platform for comparison of linear and non-linear techniques using actual flight data for
model estimation and validation. This lack of literature for UAV model prediction using
actual flight data motivated the author to fill in this gap through this paper.

1.3. Main Contributions of This Paper

As evident from the preamble of related work, very little research is available in
open literature which is based on elaborate comparison of different techniques of system
identification for UAVs. Most of the literature for model prediction of UAVs is based on
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simulation results rather than utilizing actual flight data. Furthermore, when it comes
to UAVs, the research contribution using actual flight data along with comprehensive
performance evaluation and comparison of linear and nonlinear system identification
techniques is even much scarce.

The authors aim to present a base platform for model prediction of UAV utilizing
actual flight data after a comprehensive perspective analysis of linear and nonlinear system
identification techniques. This paper aims to provide a consolidated platform for the
audience which provides a mechanism for model prediction of UAV/UAVs. Besides
providing a comprehensive affect of individual training of actual flight data, the presented
approach will also help the readers to carry out analysis of several regression techniques
in linear and non-linear domain. Moreover, the performance comparison of linear and
nonlinear system identification models for quality parameters like final prediction error,
residual analysis, mean squared errors and fit percentages further enhances the effectively
of the proposed approach.

1.4. Sequence of This Paper

This paper is organized as follows. Section 2 presents the build up of 6-Degree of
Freedom (DOF) aerodynamic model for UAV followed by design parameters of UAV. Then
a brief overview of all system identification used in this research is given. The results and
analysis part gives first presents the flight sorties design conducted for estimation and
validation purposes followed by the response of all linear and nonlinear parametric model
along with residue analysis of each. A detailed analysis and comparison is carried out
for selection of final model. Then the author has also verified the finally selected model
by predicting a second actual flight of UAV. Lastly, the conclusion and limitations of the
research are presented.

2. Problem Formulation
2.1. 6 DOF Flight Dynamics Model

A 6-Degrees of Freedom (DOF) Flight Dynamics Model (FDM) has been used for
studying the motion of UAV in three dimensions. 6DOF refers to the number of axes
that a rigid body may freely move in three-dimensional space. It specifies the number
of independent factors that define the configuration of a mechanical system. The body
may move in three dimensions, on the X, Y, and Z axes, as well as change orientation
between those axes via rotation known as pitch, yaw, and roll. FDM assumes a flat and
non-rotating earth approximations and is based on dynamic equations (deduced by Stevens,
Lewis and Johnson [51]) in body frame reference. These sets of equations, which govern
dynamics of translation (Equation (1)), rotation (Equation (2)), kinematics (Equation (3))
and navigation (4)) respectively, are defined as:

U̇ = RV − QW − g sin θ +
XA + XT

m

V̇ = −RU + PW + g sin φ cos θ +
YA + YT

m

U̇ = QU − PV + g cos φ cos θ +
ZA + ZT

m

(1)

In Equation (1), U̇, V, W are the components of linear velocities along the three body
axes respectively. φ, θ&ψ are the Euler angles which define the orientation of body frame
with respect to inertial frame, P, Q, R are the angular velocities along body x, y and z
axis respectively. XA, YA, ZA & XT , YT , ZT are the Force and Thrust components along the
three axis.
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ΓṖ = JXZ(JX − JY + JZ)PQ

− [JZ(JZ − JY) + J2
XZ]QR + JZl + JXZn

ΓQ̇ = (JZ − JX)PR − JXZ(P2 − R2) + m

ΓṖ = [JX(JX − JY) + J2
XZ]PQ − JXZ(JX − JY + JZ)QR

+ JXZl + JXn

(2)

where JX , Jy, Jz, JXZ and Γ are the inertia matrix components. Also l, m, n are the roll, pitch
and yaw moments.

φ̇ = P + tan θ(Q sin φ + R cos φ)

θ̇ = Q cos φ − R sin φ

ψ̇ =
Q sin φ + R cos φ

cos θ

(3)

ṖE = U cos θ cos ψ + V(− cos φ sin ψ + sin φ sin θ cos ψ)

+ W(sin φ sin ψ + cos φ sin θ cos ψ)

ṖN = U cos θ sin ψ + V(cos φ cos ψ + sin φ sin θ sin ψ)

+ W(− sin φ cos ψ + cos φ sin θ sin ψ)

ḣ = U sin θ − V sin φ cos θ − W cos φ cos θ

(4)

where Pe and Pn are the position coordinates alongside the inertial east and north directions.
h is the vehicle altitude, J is the moment of inertia matrix, m is the mass, g is the acceleration
due to gravity, l, m, n are the angular velocity components (roll, pitch and yaw moments)
in the body axis, α and β are the aerodynamic angles representing angle of attack and side
slip angle respectively.

Aerodynamic Parameters

High fidelity numerical techniques of Computational Fluid Dynamics (CFD) and USAF
DATCOM were utilized for generating FDM based on 6-DOF simulation environment.
Flight conditions define aerodynamic forces and moments acting on high speed and are
governed by Equations (5) and (6) respectively.

L = q∞SCL, D = q∞SCD, Y = q∞SCY (5)

where L, D and Y represent aerodynamic lift, drag and side force respectively in wind axis.
CL, CD, CY are the dimensionless aerodynamic coefficients for lift, drag and side forces
respectively, q∞ is the dynamic pressure and S is the wing area.

lw = q∞bSCl , mW = q∞cSCm, nW = q∞bSCn (6)

where nw, mw and lw are the yaw, pitch and roll moments in wind axis, b is the wing span,
c is the wing chord and Cn, Cm, Cl are the dimensionless aerodynamic coefficients for yaw,
pitch and roll moments respectively. The design of UAV under test was optimized based
on CFD analysis and comparison of various design configurations.

3. Model Identification

The objective of this search is to build an accurate model for UAV. MATLAB was used
for system identification of the system. The adopted research methodology was divided
into following steps:

• Acquiring data for two sorties of experimental UAV.
• Pre-processing and filtering the data for whole flight of the UAV.
• Model identification using flight data from one sortie using ARX, ARMAX, Output

Error, Box Jenkin’s, Non-linear ARX (with various estimators).
• Training of model for each individual technique
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• Selection of best fit model on basis of model quality parameters like Final Prediction
Error (FPE), fit percentage to actual flight data and residual analysis.

• Validation of selected model on a different flight data and analysis of the results.

3.1. Model Structures

Various model structures are used in this research to model MIMO dynamics of the
UAV. The inputs taken were aileron deflection (δa) and Vtail deflection (δe) whereas the
outputs are taken to be yaw rate (P), pitch rate (Q), and roll rate (R).

3.1.1. Auto-Regressive Exogenous (ARX) Model

The second method used is the estimation of ARX model which as per the literature
is assumed to be the most efficient polynomial estimation method as linear regression
equations are in analytic form whose solution is also unique. The estimation of the ARX
model is the most efficient of the polynomial estimation methods because it is the result
of solving linear regression equations in analytic form with a unique solution. when the
model order is high, then ARX model is preferred. For input u(t), output y(t) and noise
e(t), the ARX model is given by Equation (7).

A(q)y(t) =
nu

∑
i=0

Bi(q)ui(t − nki) +e(t) (7)

where A and B are polynomials expressed in time shift operator q−1. Although ARX model
is suited for most high order dynamic systems, it has a disadvantage as the disturbances
are part of the system model. The disadvantage of the ARX model is that disturbances
are part of the system dynamics. However, this disadvantage can be curbed with a good
signal-to-noise ratio.

3.1.2. Auto Regressive Moving Average eXogenous (ARMAX) Model

For dynamics systems with dominating disturbances that enter the process in the early
stages like wind gust in case of aerial systems, ARMAX model comes in handy. ARMAX
model has advantage over ARMAX model by providing more flexibility for handling
disturbances.For input u(t), output y(t) and noise e(t), the ARMAX model is given by
Equation (8).

A(q)y(t) =
nu

∑
i=0

Bi(q)ui(t − nki) +C(q)e(t) (8)

where A, B and C are polynomials expressed in time shift operator q−1.

3.1.3. Box Jenkin’s (BJ) Model

When complete system model dynamics are described by modeling the noise and
system dynamics separately, this comes under the category of BJ’s Model.Very sparse
literature is available related to research carried out on UAVs using BJ model as this model
is particularly useful when the disturbances enter towards the end of the process. The
disturbance is basically the measurement noise. For input u(t), output y(t) and noise e(t),
the BJ model is given by Equation (9).

y(t) =
nu

∑
i=0

Bi(q)
Fi(q)

ui(t − nki) +
C(q)
D(q)

e(t) (9)

where B, C, D and F are polynomials expressed in time shift operator q−1.

3.1.4. Output Error (OE) Model

Output Error model is usually used when there is only the need to parameterize the
system dynamics without estimating the noise model. This model is only suitable for
theoretical modelling of the aerial vehicles, however, its use in practical system dynamics
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may be considered after due consideration. For input u(t), output y(t) and noise e(t), the
OE model is given by Equation (10).

y(t) =
nu

∑
i=0

Bi(q)
Fi(q)

ui(t − nki) +e(t) (10)

3.1.5. State Space Model

State Space model structure was also used in this research owing to its less computa-
tional time in case of iterative analysis which can be attributed to lower model order of the
state space model. Equation (11) describes a state space system.

x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) +e(t)
(11)

In Equation (11), A, B, C, D and K are system matrices. The previously mentioned para-
metric methods of system identification have their own advantages. However, those models
may lead to higher order models and a large number of parameters which could lead to lack
of convergence to global minima and extensive computational times for iterative analysis.

3.1.6. Nonlinear-ARX Model

As depicted by Equation (7), the ARX model predicts the output by using the weighted
sum of linear regressors i.e, weighted sum of current inputs and past inputs and outputs.
The non-linear ARX model provides additional structural flexibility by having a non-linear
function F as a model regressor. Three types of model regressors or mapping functions
namely wavelet network non-linearity, tree partition non-linearity and multilayered neural
network were used for this research. The former two estimators use a combination of
offset, linear weights and non-linearity function for computation of output in which units
of the non-linear function operate on radial combination of inputs. in the later estimator
i.e., multilayered neural network estimator, These networks consists of three type of layers,
one is input, one is output and then we can have multiple hidden layers. This type of
technique has the ability to find the relation of very complex nature and can cover a
large regime of input and output. However, once the network has been trained and is
appropriately selected, it will produce good accuracy for the regime it has been trained,
but its results could be quite misleading for the values of input and outputs outside what it
has been trained.

4. Results and Analysis

The results of various model structures to describe MIMO dynamics od UAV using
aileron deflection (δa), Vtail deflection (δe), height (h), speed (Vt) and thrust (δT) as inputs
and yaw rate (P), pitch rate (Q), and roll rate (R) as outputs of the function are presented.
The data of first flight used to estimate the model has been divided into two parts: the first
part for estimation of the model and second part for validation of the model for the same
flight. a number of iterations were performed and training was done for each technique.
The best model was picked on the basis of Final Prediction Error (FPE) and the picked
model quality is further analysed using the following factors:

• Final Prediction Error (FPE)
• Residual Analysis
• Percentage of fit to validation data
• Mean Squared Error (MSE)

The reader is also presented with a comparative analysis amongst the best model of
each technique and final model is selected analysing the model quality using previously
stated factors. This selected model is further validated to predict the outputs using a
different data of the same flight regime.
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4.1. Flight Designs

The first and foremost step of mathematical modelling of experimental UAV was
data acquisition of inputs and outputs for an actual flight. A flight design was sorted out
to cover all aspects of control surfaces under different flight conditions. Once, the flight
design was finalized, flight was conducted and data was acquired for offline empirical
mathematical modelling of the UAV. After modelling, a second flight was conducted to
compare the predicted response using finalized model with actual flight response.

4.1.1. Flight 1 (Estimation)

The experimental UAV was given full throttle and held back with the catapult mech-
anism. The height profile along with x-axis acceleration and thrust shutoff point at time
of parachute deployment of the UAV was used to identify the whole flight regime to be
used for modelling. The UAV attains a certain height and then maintains that height while
performing maneuvers to capture the complete range of control surface deflections for
different flight conditions (Figures 1 and 2).

Figure 1. Aileron Deflection.

Figure 2. V Tail Deflection.
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After capturing the required data, it was trained offline to use it for system modelling.
The data was divided in half. The first half comprising the takeoff and part of level flight
was used for model estimations and the second half was used used for validation.

4.1.2. Flight 2 (Validation)

Finalizing the the mathematical model using flight 1 data led the authors to conduct
validation trial. A second flight was conducted using the same flight design aspects dis-
cussed in Section 4.1.1. Different profiles for the validation sortie are shown in Figures 3–8.
Complete flight regime (takeoff till parachute deployment) was predicted using the mathe-
matical model and the results are depicted in Section 4.9.

Figure 3. Height: Validation Flight.

Figure 4. X-acceleration Validation.

Figure 5. Thrust: Validation Flight.
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Figure 6. Speed: Validation Flight.

Figure 7. Aileron Deflection: Flight 2.

Figure 8. V-Tail Defection: Flight 2.

4.2. Finite Impulse Response (FIR) Model

From the FIR model response in Figure 9 the excitation orders for all the inputs are
[50 50 50 50 50] and the time delay Ts will be taken zero in further techniques. The FPE and
MSE of FIR model is 3.352 × 106 and 2.6 × 104 respectively and fit percentage between
modeled output and actual output is for pitch rate, roll rate and yaw rate is −1036%, 11.06%,
−9067% respectively. The number of free coefficients of the impulse response model is 1050
which is quite high.
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Figure 9. Finite Impulse Response.

4.3. Auto Regressive Exogenous (ARX) Model

The model order for the ARX model was selected in an iterative fashion where different
combinations of the order of polynomial A(q) (Na), order of polynomial B(q) (Nb) were
chosen. A total of 75 models were derived and training was performed on each of each
model before a best ARX model with minimum FPE of 0.00257 and MSE of 0.6356 was
finalized. Fit percentages to actual outputs are depicted in 1-step ahead prediction response
of ARX model in Figure 10. The auto-correlation and cross-correlation plots of the model
response (Figure 11) also shows that the selected model gives good confidence level as
the residues are within the range the region marked blue which defines the part of the
input response not been able to be predicted by the model. In our research we have set the
confidence region to be 98%.

Figure 10. ARX Model Response.
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Figure 11. ARX Model Residue Correlation.

4.4. Autoregressive Moving Average eXogenous (ARMAX) Model

The same iterative approach was used for model order selection of ARMAX model.
Final ARMAX model was selected after deriving and training a total of 125 model with
FPE and MSE equal to 0.002208 and 0.6352. Fit percentages to actual outputs are depicted
in 1-step ahead prediction response of ARX model in Figure 12. The auto-correlation and
cross-correlation plots of the model response (Figure 13) also shows that the selected model
gives good confidence level.

Figure 12. ARMAX Model Response.
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Figure 13. ARMAX Model Residue Correlation.

4.5. Box Jenkin’s (BJ Model)

Order selection procedure used in [44] was adopted to select the model order which
gives satisfactory residue correlation (Figure 14) and fit percentages (Figure 15) along with
an impressive FPE and MSE 0.005407 and 0.8946 respectively.

Figure 14. BJ Model Response.
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Figure 15. BJ Model Residue Correlation.

4.6. Output Error (OE) Model

The OE model response and residual correlation are shown in Figures 16 and 17
respectively. As shown in the figure, the output error model is not able to predict the
1·step ahead predicted response. This can be attributed to the fact that output error model
acts as a similation model in which the model response is computed using input data and
initial conditions. Since no past outputs are being used to compute the response the error
accumulates and the results deviate from actual response.

Figure 16. OE Model Response.
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Figure 17. OE Model Residue Correlation.

4.7. State Space Model

Figures 18 and 19 shows the state space model fit percentages and residue correlation
respectively. The model order is equal to 6 with FPE and MSE equal to 0.005307 and 0.7822
respectively. The lower model order of the state space model and the residual graphs of the
same show that this model provides ease of computation by reducing the order without
compromising the quality of the response.

Figure 18. SS Model Response.
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Figure 19. SS Model Residue Correlation.

4.8. Non-Linear ARX Model

The fit percentages and residue correlation plots of non-linear ARX models with tree
partition, wavelet network and neural network estimators are presented in Figures 20–22.
The Model order is selected to be the same as the best fit ARX model for further comparison.
Although the results of wavelet network are acceptable but the added complexity in the
model due to non linearity is not favored for time compressed computational environments.
the same quality of model response is also provided by linear models.

Figure 20. NLARX Tree Partition Model Response.
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Figure 21. Tree Partition Residue Correlation.

Figure 22. NLARX Wavelet Network Model Response.

4.9. Comparative Analysis

The comparison analysis of results for all linear and non-linear parametric model
estimation techniques used in this research are tabulated in Table 1 for selection of best
model based on parameters like model order, Final Prediction Error (FPE), Mean Square
Error (MSE), fit percentages of roll rate (P), pitch rate(Q) and yaw rate (R), number of free
parameters and perspective analysis of residue correlation.
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Table 1. Comparison Analysis of Linear and Nonlinear Parametric Model Responses.

Parameter ARX ARMAX BJ OE SS
NLARX

TP WL NN

FPE 0.00257 0.0022 0.00868 2.611 0.0037 - 0.002688 -
MSE 0.6356 0.635 0.8518 16.29 0.74 3.998 0.643 0.6545
PFit 89% 88.04% 88.62% 1.854% 87.46% 63.16% 88.74% 87.7%
QFit 80.68% 81.76% 74.75% −19.5% 66.5% 12.57% 73.85% 77.02%
RFit 82.87% 83.48% 78.23% −173.2% 88.95% −21.28% 82.08% 81.79%

Coeff. 210 135 72 105 102 - - -

ARMAX model and linear ARX model gave best values for FPE, MSE, fit percentages
etc. Finally, ARMAX model was selected based on residue analysis. The next step was to
validate the selected model on a different flight data covering the same flight regime. The
comparison results for predicted output of ARMAX model and actual output data from
validation sortie are presented in Figure 23 along with the residue correlation in Figure 24.
The fit percentages of the ARMAX model are satisfactory and the residue correlation plot
also shows good confidence level.

Figure 23. Validation of ARMAX Model with Second Flight Data.
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Figure 24. Residue Correlation.

4.10. Discussion and Remarks

As evident from Table 1 the linear and non-linear parametric models give results
which are acceptable for use in future design modifications and simulations of the UAV
under test. However, the output error model can’t be used owing to the high deviations in
predicted responses and measured responses. The reason for this can be attributed to the
fact that the output error model takes only the previous inputs rather than the previous
inputs and outputs for the prediction of the model response. The linear ARX model has
higher model order as compared to the linear ARMAX model. However, The ARMAX
model provides a better prediction with lower model order and hence, reducing the number
of free coefficients in the model, which is usually desired.

Box Jenkins and state space model, although giving even lower model order and
lesser number of coefficients in the model, The performance of these models based on
fit percentages, mean squared error and final prediction error states render them of less
utility in comparison to ARMAX and ARX models. The nonlinear ARX models with tree
partition, wavelet network and neural network show acceptable fit percentages but the fact
that the model is nonlinear, which adds to the complexity and computational time with
high model orders, render them with less utilization. The last factor which has contributed
towards the selection of best model amongst all model structures is the residual analysis.
ARMAX model gives the best results on this model quality assessment parameter also.
Hence, ARMAX model was selected as final model for verification of a different flight data.

4.11. Research Limitations

The research pertains to system identification utilizing various linear/nonlinear tech-
niques. Limited research in this regard is available in literature to make it a benchmark
for this research. The flights to be performed for the purpose of data gathering for model
prediction clearly presents a financial and administrative challenge. The integrity of model
prediction and its accuracy greatly enhances with availability of sufficient flight data. We
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believe that the technique presented in this research will present even more accurate results
with the increase in the available flight data.

5. Conclusions

This paper describes the development of 6 DOF Flight Dynamics Model of the UAV
followed by basic parameters of the UAV under test and launch and recovery mechanism
of the same. System identification was applied to actual flight data, and various linear and
nonlinear parametric models with different model structures were developed. The model
structures included the impulse response model, ARX, ARMAX, Box Jenkin’s, Output
Error, State Space, Nonlinear ARX models with tree partition, wavelet network, and neural
network models. Several models were developed for each model structure, and each model
was trained before the selection of the final model from that category. A comprehensive
analysis was carried out for all the models, and after detailed comparison and analysis
best fit model was finalized to be ARMAX model, which has FPE of 0.0022. The model
was further used to predict output of a different sortie with same flight regime and the fit
percentages of the modeled output to actual output of Roll rate (P) was 88.72%, Pitch Rate
(Q) was 72.81% and Yaw Rate (R) was 38.36% which is quite satisfactory. It is imperative to
highlight that the proposed framework presented in this study provides a consolidated
platform which can be utilized by researchers to perform model estimation for any similar
platform. The best fit model structure most suitable for that particular configuration can
be selected accordingly as per the proposed benchmarks. The research presented in this
paper is purely original and to the best of author’s knowledge, such a detailed analysis is
presented for the first time in literature.
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Abbreviations
The following abbreviations are used in this manuscript:

c̄ Mean aerodynamic chord (m)
CD, CY , CL Coefficients of drag, side force and lift
Cl , Cm, Cn moment coefficients of Roll, pitch and yaw
D Drag (N)
g Acceleration due to gravitational force (ms−2)
GCM Guidance and Control Module
h Altitude (m)
UAV Unmanned High Speed Aerial Vehicle
Jx, Jy, Jz Components of the inertia matrix components in body frame
Vt Free-stream velocity (m/s)
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L Lift (N)
m Mass of the vehicle (kg)
n,m,l (yaw, pitch and roll moments respectively) defined in body frame (Nm)
Pe, Pn Position coordinates along the inertial east and north directions (m)
p, q, r Roll, pitch and yaw rates in body frame (deg/s)
q∞ Free stream dynamic pressure (N/m2)
SRe f Reference area (m2)
XA, YA, ZA (axial, side and tangential force respectively) in the body frame (N)
T Engine thrust (N)
U,V,W Linear velocity along body x, y and z axis respectively (m/s)
W Weight (N)
ARX Automatic Regression eXogenous
ARMAX Automatic Regression Moving Average eXogenous
BJ Box Jenkin’s
OE Output Error
SS State Space
TP Tree Partition
WL WaveLet Network
NN Neural Network
FPE Final Prediction Error
MSE Mean Squared Error
n Model order for state space model
Nb Order of Polynomial B(q)
Nc Order of Polynomial C(q)
Nd Order of Polynomial D(q)
N f Order of Polynomial F(q)

Greek Symbols
The following greek symbols are used in this manuscript:

ρ Air density (kg/m3)
β Side slip angle (deg)
α Aerodynamic angle of attack (deg)
φ, θ, ψ Roll, pitch and azimuth angles describing body frame w.r.t inertial frame (deg)
γ Flight path angle (deg)
δa,δe,δ f aileron, elevator and flap controls respectively
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