
Citation: Liang, F.; Lu, L.; Li, Z.;

Zhang, F.; Zhang, S. Tracking Control

of a Hyperchaotic Complex System

and Its Fractional-Order

Generalization. Processes 2022, 10,

1244. https://doi.org/10.3390/

pr10071244

Academic Editor: Zhiwei Gao

Received: 25 May 2022

Accepted: 16 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Tracking Control of a Hyperchaotic Complex System and Its
Fractional-Order Generalization
Feng Liang 1,2, Lu Lu 2,†, Zhengfeng Li 3, Fangfang Zhang 3,* and Shuaihu Zhang 3

1 Department of Computer and Software Engineering, Shandong College of Electronic Technology,
Jinan 250200, China; lf1839@163.com

2 College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University,
Shandong Academy of Medical Sciences, Jinan 250117, China; squarelu@hotmail.com

3 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China; zhengf_li@163.com (Z.L.); 18437902858@163.com (S.Z.)

* Correspondence: zhff4u@qlu.edu.cn; Tel.: +86-151-6916-3922
† These authors contributed equally to this work.

Abstract: Hyperchaotic complex behaviors often occur in nature. Some chaotic behaviors are harmful,
while others are beneficial. As for harmful behaviors, we hope to transform them into expected
behaviors. For beneficial behaviors, we want to enhance their chaotic characteristics. Aiming at the
harmful hyperchaotic complex system, a tracking controller was designed to produce the hyperchaotic
complex system track common expectation system. We selected sine function, constant, and complex
Lorenz chaotic system as target systems and verified the effectiveness by mathematical proof and
simulation experiments. Aiming at the beneficial hyperchaotic complex phenomenon, this paper
extended the hyperchaotic complex system to the fractional order because the fractional order has
more complex dynamic characteristics. The influences order change and parameter change on the
evolution process of the system were analyzed and observed by MATLAB simulation.
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1. Introduction

Chaos is a complex nonlinear phenomenon in nature. The chaotic system has extensive
applications in the fields of secure communication [1], industrial process [2], ecosystem [3],
and so on. With the application of chaos theory in increasingly more fields, there are
increasingly more requirements for chaotic systems. For example, people expect higher
dimensional and more complex chaotic systems to describe industrial processes. Therefore,
following this, scholars put forward the hyperchaotic system, complex chaotic system, and
hyperchaotic complex system [4–6]. The hyperchaotic complex system in particular has
higher dimensions and more controllable parameters [7,8] that can more accurately describe
some chaotic phenomena in the industrial process. The chaotic system will experience four
states: stable point, period, chaos, and divergence. When the system is in the periodic or
period doubling state, the phase plane will form a closed trajectory, that is, the limit cycle.
Generally speaking, the chaotic system will evolve from a periodic state to a chaotic state,
and the corresponding phase diagram will evolve from limit cycle to chaotic attractor [9].

However, some chaotic behaviors are harmful, while some are beneficial. As for
harmful behaviors, we hope to transform them into expected behaviors. For example,
permanent magnet motor under some parameters can produce chaotic behaviors and
disturb the normal operation of the motor. Therefore, it is necessary to add a controller
to make it track the desired motion trajectory [10,11]. This means the tracking control for
chaos, which can be used to obtain the desired output and improve the performance of the
system [12,13]. The research on the tracking control of hyperchaotic complex systems is of
great value.
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At present, most of the research focuses on the tracking control of real chaotic sys-
tems [14–17], and few scholars have studied the tracking control of hyperchaotic complex
systems. Gao proposed a novel tracking control method for Lorenz systems by using
single-state feedback [18]. Loria addressed the problem of controlled synchronization of a
class of uncertain chaotic systems [19]. Zhang presented the tracking control method and
the parameter identification procedure, aiming at CVCSs with complex parameters [20].
Chaudhary et al. investigated a hybrid projective combination–combination synchroniza-
tion scheme (HPCCSS) in four different hyperchaotic (HC) systems via active control
technique (ACT) [21]. Abbasi proposed a robust resilient design methodology for stabi-
lization and tracking control for a class of chaotic dynamical systems [22]. Zhao realized
tracking control and synchronization of the fractional hyper chaotic Lorenz system [23].
Nagy et al. investigated the combination synchronization phenomena of various fractional-
order systems using the scaling matrix [24]. In this paper, the tracking control of complex
hyperchaotic system was realized.

As for beneficial chaotic behavior, we hope to enhance its chaotic characteristics.
For example, more complex chaotic behaviors can make the stirring more sufficient in
industrial process. Moreover, in secure communication, complex chaotic signal can increase
the confidentiality of transmitted signal.

In order to obtain more complicated chaotic behaviors, we can extend the integer-order
hyperchaotic complex systems to fractional order, because fractional order can increase the
degree of freedom of the chaotic system and make its dynamic behaviors more complicated.
As an extension of the integer-order complex hyperchaos system, the fractional- order
complex hyperchaos system also has higher accuracy in describing processes in many
fields and can more accurately describe various irregular physical phenomena. Therefore,
many scholars have carried out a large amount of research on the fractional order. Ma
investigated a new 4D incommensurate fractional-order chaotic system [25]. Jahanshahi
investigated a multi-stable fractional-order chaotic system [26]. Rahman presented a new
three-dimensional fractional-order complex chaotic system [27].

However, the above references fractional-order extension of real chaotic systems, but
few scholars have studied the fractional-order hyperchaotic complex systems. In this paper,
the complex hyperchaotic system was extended to fractional order.

On the basis of the above discussion, the main innovations of this paper are as follows:

(1) The tracking controller for the hyperchaotic complex system is designed. Three state
variables of the hyperchaotic complex system track the sine function, constant, and
complex Lorenz chaotic system individually, which realize the control of harmful
chaotic behaviors. The stability and feasibility of the controller were verified by
mathematical proof and simulation experiments.

(2) The hyperchaotic complex system is extended to fractional order, which enhances the
beneficial chaotic behaviors. The effects of initial value, order, and parameters on the
fractional hyperchaotic complex system are discussed.

The rest of this paper is structured as follows: In Section 2, we introduce the model of
hyperchaotic complex system. In Section 3, we designed a controller to realize the tracking
control of the hyperchaotic complex system and verified its feasibility from two aspects of
a mathematical proof and simulation experiment. In Section 4, we extended the complex
hyperchaotic system to fractional order and analyzed its initial value sensitivity and the
system evolution process of the fractional complex hyperchaotic system with order and
parameters. In the last section, we conclude the paper.
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2. The Model of the Hyperchaotic Complex System

In 2021, Li et al. constructed a new hyperchaotic complex system by adding feedback
term and introducing complex variables [7]. The mathematical model is as follows:

.
x1 = a(x2 − x1) + x2x3 + x4.
x2 = cx1 − x2 − x1x3 + x4.
x3 = 1/2(x1x2 + x1x2)− bx3.
x4 = 1/2(x1x2 + x1x2)− dx4

(1)

where
.
x1 = u1 + ju2,

.
x2 = u3 + ju4 is a complex variable and

.
x3 = u5,

.
x4 = u6 is a real

variable. We separated the real part and imaginary part of the variable to obtain the
equivalent mathematical model, as shown in system (2):

.
u1 = a(u3 − u1) + u3u5 + u6.
u2 = a(u4 − u2) + u4u5.
u3 = cu2 − u3 − u1u5 + u6.
u4 = cu2 − u4 − u2u5.
u5 = u1u3 + u2u4 − bu5.
u6 = u1u3 + u2u4 − du6

(2)

When a = 10, b = 8/3, c = 20, d = 15 and the initial value is (1, 2, 3, 4, 5, 6), the system
shows obvious chaotic characteristics. The Lyapunov exponents of system (2) is as follows:
LE1 = 1.7555, LE2 = 0.1175, LE3 = 0, LE4 = −11.6914, LE5 = −14.8827, LE6 = −22.3471,
which is (+, +, 0, −, −, −), so the system is in a hyperchaotic state. The attractor phase
diagram of system (2) is shown in Figure 1.
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3. Tracking Control

In this section, the controller is designed so that the three state variables of the
system (2) can track the sine function, constant 5, and the fourth dimension of the complex
Lorenz chaotic system individually.

The system model of complex Lorenz chaotic system is as follows:
.
x1 = a1(x2 − x1).
x2 = a2x1 − x1x3 − a3x2.
x3 = −a4x3 + 1/2(x1x2 − x1x2)

(3)
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Separating the real part and imaginary part of the complex Lorenz chaotic system, the
following equivalent mathematical model can be obtained:

.
xr

1 = a1(xr
2 − xr

1)
.
xi

1 = a1(xi
2 − xi

1).
xr

2 = a2xr
1 − xr

1x3 − a3xr
2

.
xi

2 = a2xi
1 − xi

1x3 − a3xi
2.

x3 = −a4x3 + (xr
1xr

2 + xi
1xi

2)

(4)

We add the controller to system (2) and obtain system (5)

.
u1 = a(u3 − u1) + u3u5 + u6 + v1.
u2 = a(u4 − u2) + u4u5 + v2.
u3 = cu2 − u3 − u1u5 + u6 + v3.
u4 = cu2 − u4 − u2u5 + v4.
u5 = u1u3 + u2u4 − bu5 + v5.
u6 = u1u3 + u2u4 − du6 + v6

(5)

where V = (v1, v2, v3, v4, v5, v6)
T is the designed controller vector. We obtain the following

Theorem 1.

Theorem 1. As for system (5), if we design the controller as system (6),

v1 =
.
r1 + r1 + (a− 1)u1 − au3 − u3u5 − u6

v2 =
.
r1 + r1 + (a− 1)u2 − au4 − u4u5

v3 =
.
r2 + r2 − cu2 + u1u5 − u6

v4 =
.
r3 + r3 − cu2 + u2u5

v5 =
.
r2 + r2 − u1u3 − u2u4 + (b− 1)u5

v6 =
.
r2 + r2 − u1u3 − u2u4 + (d− 1)u6

(6)

then the state variable u1 can track sine function, the state variable u2 can track constant 5, and the
state variable can track xi

2 of the complex Lorenz chaotic system.

Proof: Set the error as e1, e2, e3, then

e1 = u1 − r1, e2 = u3 − r2, e3 = u4 − r3 (7)

The expected goals are expressed as follows,
r1 = sin t
r2 = 5
r3 = xi

2

⇒


.
r1 = cos t
.
r2 = 0
.
r3 = a2xi

1 − a3xi
2 − xi

1x3

(8)

Select Lyapunov function V = 1
2 (e1 + e2 + e3)

2 > 0. Substituting (5)–(8) into Lya-
punov function V, we can obtain

.
V = e1

.
e1 + e2

.
e2 + e3

.
e3

= (u1 − r1)(u1 − r1)
′ + (u3 − r2)(u3 − r2)

′ + (u4 − r3)(u4 − r3)
′

= (u1 − sin t)(sin t− u1) + (u3 − r2)(5− u3)
+
(
u4 − xi

2
)(

cu2 − u4 − u2u5 + v4 − a2xi
1 + a3xi

2 + xi
1x3
)

= (u1 − sin t)(sin t− u1) + (u3 − 5)(5− u3) +
(
u4 − xi

2
)(

xi
2 − u4

)
= −(u1 − sin t)2 − (u3 − 5)2 −

(
u4 − xi

2
)2

< 0

According to the Lyapunov stability theorem, the error of tracking control approaches
0, and the proof is completed. �
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The tracking results are shown in Figures 2–4.
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Figure 4. Tracking the fourth dimension of the complex Lorenz chaotic system.

The simulation results are consistent with the theoretical analysis, and the effectiveness
of the controller is verified from two aspects of simulation and mathematical analysis.

4. Fractional-Order Generalization

In order to make the beneficial chaotic behavior in industrial process more complicated,
this paper extended the hyperchaotic complex system to fractional order, which is a useful
and simple method to enhance the beneficial chaotic behaviors.

4.1. Mathematical Background

Fractional order refers to any order of calculus. In a sense, fractional calculus is a
generalized form of integer calculus. For fractional calculus, there are three main defini-
tions: Grunwald Letnikov definition, Riemanu Liouville definition, and Caputo definition.
Since Caputo definition includes initial conditions and initial values, Caputo calculus is
considered in engineering calculations. In this paper, we chose the Caputo definition.
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Definition 1. Caputo fractional differential form is as follows:

C
0 Dα

t f (t) =
dm

dtm Jm−α =


1

Γ(m−α)

∫ t
0

f (m)(τ)

(t−τ)α−m+1 dτ, m− 1 < α < m
dm

dtm f (t), α = m
(9)

where α = [m]+1, [m] is the integer part of m, Γ(∗) is the gamma function, and Dα
t is the gamma

function α order differential operator. In this paper, Dα
∗ is used to represent C

0 Dα
∗ , and we mainly

consider the case of 0 < α < 1.

4.2. Fractional-Order System Model

In this section, the hyperchaotic complex system is extended to fractional order, and
the following fractional-order new hyperchaotic complex system is constructed.

Dα1∗ x1 = a(x2 − x1) + x2x3 + x4
Dα2∗ x2 = cx1 − x2 − x1x3 + x4
Dα3∗ x3 = 1/2(x1x2 + x1x2)− bx3
Dα4∗ x4 = 1/2(x1x2 + x1x2)− dx4

(10)

where Dαl∗ is the Caputo operation of order αl , and αl is the order of relevant variables of
xl(l = 1, 2, 3, 4). According to fractional linear operation, we can obtain
Dα1∗ x1 = Dα1∗ (u1 + ju2) = Dα1∗ u1 + jDα1∗ u2, Dα2∗ x2 = Dα2∗ (u3 + ju4) = Dα2∗ u3 + jDα2∗ u4
Dα3∗ x3 = Dα3∗ u5, Dα4∗ x4 = Dα4∗ u6.

The above system can be transformed into the following forms:

Dα1∗ u1 = a(u3 − u1) + u3u5 + u6
Dα1∗ u2 = a(u4 − u2) + u4u5
Dα2∗ u3 = cu1 − u3 − u1u5 + u6
Dα2∗ u4 = cu2 − u4 − u2u5
Dα3∗ u5 = u1u3 + u2u4 − bu5
Dα4∗ u6 = u1u3 + u2u4 − du6

(11)

4.3. Fractional-Order Attractor

We select the initial value of system (11) as (1, 1, 1, 1, 1, 1), a = 10, b = 8/3, c = 30, d = 12,
and fractional-order αl = 0.95(l = 1, 2, 3, 4). On the basis of the definition of Caputo, the
system (11) is simulated by MATLAB, and the attractor phase diagram of system (11) is obtained
as shown in Figure 5. It can be seen that the attractor of the system presents obvious chaotic
characteristics. Comparing Figure 5 with Figure 1, the interval and shape of the attractor are
found to be different.
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4.4. 0-1 Test

Gottwald and Melbourne proposed a reliable and effective binary test method to
test whether the system is chaotic, which is called the “0-1 test” [28]. The basic idea is
to establish a stochastic dynamic process for data and then study how the scale of the
stochastic process changes with time. Next, we used this method to test and analyze the
chaotic characteristics of system (11), as shown in Figure 6.
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whether the system is chaotic, which is called the “0-1 test” [28]. The basic idea is to estab-
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Figure 6. The “0-1”test.

It can be seen from Figure 6 that the new hyperchaotic complex system shows obvious
unbounded motion, similar to Brownian motion. Therefore, it is chaotic.

4.5. Order α Impact on System Status

In this section, we all took u1 − u5 to observe the evolution of the attractor of the
system (11).

When α < 0.82, the system is in a divergent state.
When α ∈ (0.82, 0.94), the system converges to a stable point.
When α = 0.95, the system changes from stable point to chaotic state, and at this time,

it presents obvious butterfly attractor shape.
When α = 0.99, the system is still in chaos, but under the same number of cycles, the

shape of the attractor is fuller.
When α = 1.01, the order of the system is a fractional order greater than 1. At this

time, the system is still in a chaotic state, but the attractor forms are different and sparse.
When α = 1.03, the system is in a chaotic state, and the attractor shape becomes fuller

with the increase in order.
When α = 1.05, the system is in period doubling limit cycle state.
When α > 1.07, system divergence occurs.
The detailed evolution process is shown in Figure 7. Through observation, it is found

that the fractional complex hyperchaotic system shows a more complex system evolution
process with the change of order, such as the position and shape of the attractor having
changed to some extent.
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Figure 7. The evolution process of system (11) with order. (a) αl(l=1,2,3,4) = 0.82; (b) αl(l=1,2,3,4) = 0.94;
(c) αl(l=1,2,3,4) = 0.95; (d) αl(l=1,2,3,4) = 0.99; (e) αl(l=1,2,3,4) = 1.01; (f) αl(l=1,2,3,4) = 1.03;
(g) αl(l=1,2,3,4) = 1.05; (h) αl(l=1,2,3,4) = 1.07.

4.6. Influence of Parameter Change on System Attractor

It can be seen from Section 4.4 that when order α = 0.95, the system attractor presents
an obvious chaotic attractor form. In this section, we selected order α = 0.95 and changed
the values of system parameters a, b, c, and d individually to observe the influence of
parameters on the system state and system attractor. In this section, we all took the phase
diagram of u1 − u5 to observe the evolution of the attractor of the system.
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4.6.1. Parameter a Change

We kept parameters b, c, and d unchanged; changed the value of parameter a; and
selected the same initial value as the integer order to observe the evolution process of the
system with parameter a, as shown in Figure 8. It can be seen that the system entered the
chaotic state from the limit cycle state and continued to evolve in the chaotic state. The
attractor changed from sparse to full and then to sparse, and then returned to the limit
cycle state and finally diverged.
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(c) a = 10, chaos; (d) a = 20, chaos; (e) a = 23, chaos; (f) a = 28, limit cycle.
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4.6.2. Parameter b Change

We kept the parameters a, c, and d unchanged; changed the value of parameter b; and
selected the same initial value as the integer order to observe the evolution process of the
system with the change of parameter b, as shown in Figure 9. It can be seen that the system
entered the chaotic state from the limit cycle state and continued to evolve in the chaotic
state. The attractor changed from sparse to full, then returned to the limit cycle state and
finally diverged.
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chaos; (c) b = 1.5, chaos; (d) b = 8/3, chaos; (e) b = 3, chaos; (f) b = 4, limit cycle.
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4.6.3. Parameter c Change

We kept parameters a, b, and d unchanged; changed the value of parameter c; and
selected the same initial value as the integer order to observe the evolution process of the
system with the change of parameter c, as shown in Figure 10. It can be seen that the system
entered the chaotic state from the limit cycle state, evolved continuously in the chaotic state,
and finally returned to the limit cycle state and diverged.
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Figure 10. The evolution process of system (11) with parameter c. (a) c = 22, limit cycle; (b) c = 23,
chaos; (c) c = 30, chaos; (d) c = 40, chaos; (e) c = 44, chaos; (f) c = 44.8, limit cycle.
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4.6.4. Parameter d Change

We kept parameters a, b, and c unchanged; changed the value of parameter d; and
selected the same initial value as the integer order to observe the evolution process of the
system with parameter d, as shown in Figure 11. It can be seen that the system entered the
chaotic state from the limit cycle state and evolved continuously in the chaotic state. It can
be seen that when the system was in the chaotic state, compared with parameters a, b, c,
parameter d had the largest value range, and finally the system returned to the limit cycle
state and finally diverged.
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Figure 11. The evolution process of system (11) with parameter d. (a) d = 6, limit cycle; (b) d = 9,
chaos; (c) d = 10, chaos; (d) d = 60, chaos; (e) d = 100, chaos; (f) d = 151.6, limit cycle.
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It was found that the fractional hyperchaotic complex system showed a more complex
system evolution process with the change of parameters, such as the position and shape of
the attractor having changed to some extent.

5. Conclusions

In this paper, aiming at the harmful hyperchaotic complex behavior in industrial
process, a tracking controller was designed for the hyperchaotic complex system so that
the three state variables of the hyperchaotic complex system can track the controller of sine
function, constant 5, and complex Lorenz chaotic system individually, and its stability was
proven to realize the tracking control of the system. In order to make the intentional chaotic
behavior in the industrial process more complex, we extended the hyperchaotic complex
system to fractional order. The effects of initial value, order, and parameter changes on the
fractional hyperchaotic complex system were discussed and studied. When the order and
parameters changed, the detailed evolution process of the system state was given. It was
found that there were no coexistence attractors and parameter attractors in the system.

In this paper, the application of the hyperchaotic complex system was studied. For the
harmful chaotic system, the controller was designed to convert it into the desired system;
for the beneficial chaotic system, this paper extended it to fractional order, which made its
chaotic behavior more complex.

There are several prospects for the study of chaos theory: (1) research on the physical
background of the chaotic system, or it can show more abundant dynamic behavior;
(2) chaos theory can be applied to some complex systems, such as weather forecasting
and industrial processes; (3) on the basis of chaotic systems, new chaotic cryptographic
algorithms or chaotic neural networks can be formed and applied in various fields.
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