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Abstract: In this paper, we consider an iterative learning control problem for a class of unknown
discrete-time nonlinear systems with iteration-varying initial error, iteration-varying system parame-
ters, iteration-varying external disturbance, iteration-varying desired output, and iteration-varying
control direction. These iteration-varying uncertainties are not required to take any particular struc-
ture such as the high-order internal model and only need to satisfy certain boundedness conditions.
We propose an iterative learning control law with an adaptive iteration-varying fuzzy system to
overcome all the uncertainties and achieve the learning control objective. Furthermore, we present a
sufficient condition for designing adaptive gains and prove the convergence of the learning error
to a small value as the trial number is large enough. Finally, we use two simulation examples to
demonstrate all the theoretical results.

Keywords: iterative learning control; iteration-varying; fuzzy system; nonlinear systems

1. Introduction

For controlling a system with a given repetitive task over a finite time interval, we often
considered using the iterative learning control (ILC) [1,2] in the past three decades. Being an
interesting and attractive learning strategy, ILC has achieved plenty of research works in the
literature. Several important theoretical results [3–5] and practical applications [6–11] can
still be found in recent years. Basically, the ILC laws use the previous input and output data
stored in the memory to construct a current control input for the system to track the desired
output perfectly as the number of learning trials is large enough. A basic requirement of
the control system when designing the ILC laws is that all the environmental conditions,
such as the system parameters or external disturbances, are invariant from trial to trial.
This requirement seems reasonable but is generally restrictive as most conditions may vary
in the real physical world.

There are some possible iteration-varying uncertain sources existing in the iterative
learning control systems. The most important ones include: (a) iteration-varying ini-
tial error, (b) iteration-varying external disturbance, (c) iteration-varying desired output,
(d) iteration-varying system parameters, and (e) iteration-varying control direction (sign of
control gain). To solve the design of ILC laws under the consideration of iteration-varying
uncertainties is in general difficult. Some research works have been proposed in the area
of ILC. For example, the ILC laws were studied under the uncertainty (a) in [12,13], un-
der uncertainty (c) in [14], under uncertainties (a), (c) in [15,16], under uncertainties (a),
(b), (c) in [17,18], under uncertainties (c), (d) in [19], under uncertainties (a), (c), (e) in [20],
under uncertainties (a), (c), (d), (e) in [21], under uncertainties (a),(b), (c), (d) in [22–24],
and under uncertainty (e) in [25,26]. However, to the best of the authors’ knowledge, no
research works have been published to deal with the design and analysis of ILC laws under
all the uncertainties of (a), (b), (c), (d), (e) at the same time.

The motivation of this paper is to find a realizable iterative learning control law for
a class of discrete-time nonlinear systems under the five iteration-varying uncertainties
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mentioned above. Furthermore, this paper still has some more new contributions when
compared with the existing ILC laws when dealing with iteration-varying uncertainties.
Firstly, the uncertainties do not have to take any particular forms, such as the strict high-
order internal model (HOIM) structure. Secondly, the uncertainties are not required to
converge to certain iteration-invariant ones along the iteration domain in order to guarantee
a satisfying learning performance. Thirdly, the upper bounds of these uncertainties can be
unknown and not necessarily small.

To achieve this paper’s iterative learning control objective, we first apply a fuzzy
system with iteration-varying consequent parameters as an approximator to approximate
the unknown nonlinear function with iteration-varying parameters. Based on this iteration-
varying fuzzy system, an adaptive strategy is adopted to design the ILC law to solve
the ILC problem with all the existing iteration-varying uncertainties. The control struc-
ture is simple and easy to implement. We first reformulate the error dynamics into an
iteration-invariant nominal part and an iteration-varying uncertain part, respectively. Af-
ter a further derivation, the error dynamics becomes a parameterized linear combination
of fuzzy basis function vector and control input as well as a lumped iteration-varying
uncertainty. An iteration-varying dead-zone-like auxiliary error is proposed to deal with
the lumped iteration-varying uncertainty. Then a set of adaptive laws is presented using
the auxiliary error to update the fuzzy and control parameters from trial to trial in this
ILC law. A rigorous technical proof is given to guarantee the boundedness of the learning
system for each iteration and discrete-time instant. Furthermore, we show that the norm of
output error can asymptotically converge along the iteration axis to a value that depends
on the width of the dead zone. The main contributions can be summarized as follows.

(1) This is the first work that considers the design and analysis of iterative learning control law
for nonlinear unknown systems with all the five kinds of iteration-varying uncertainties.

(2) The mentioned iteration-varying uncertainties are allowed to be unknown and without
any special structure.

(3) The upper bounds of the iteration-varying uncertainties can be unknown and not
necessarily small.

(4) A new concept of using a fuzzy system with iteration-varying consequent parameters
as an approximator is proposed.

This paper is organized as follows. Section 2 gives a problem formulation and defi-
nition of the iteration-varying uncertainties for this work. The iterative learning control
law and the parameter adaptive laws are proposed in Section 3. Based on the derived error
dynamics, we analyzed the closed-loop stability and learning performance in Section 4.
In Section 5, two simulation examples are then given to show the effectiveness of the
iterative learning control law. Finally, we made a conclusion in Section 6.

2. Problem Formulation

In this paper, we consider a class of repetitive nonlinear discrete-time systems as follows,

yj(k + 1) = f (aj(k), X j(k)) + bj(k)uj(k) + dj(k) (1)

where k ∈ {0, 1, 2, · · · , N} is the index of discrete time, j ∈ Z+ is the index of learning control
iteration, X j(k) = [yj(k), · · · , yj(k− 1 + n)]> ∈ Rn is the state vector, f (aj(k), X j(k)) ∈ R
is an unknown nonlinear function of aj(k) and X j(k). yj(k) ∈ R is the output, uj(k) ∈ R
is the input and without loss of generality, we let yj(k) = 0, ∀k < 0. The iteration-varying
uncertainties appeared in this system are defined as follows: (1) the initial output yj(0) is
iteration-varying, (2) the system parameters aj(k) ∈ Rn and bj(k) ∈ R1 are unknown and
iteration-varying, (3) the disturbance dj(k) ∈ R is unknown and iteration-varying, (4) the
desired output yj

d(k) is iteration-varying, (5) the sign of control gain bj(k) is unknown
and iteration-varying. The control objective is to design an iterative learning control law
uj(k) such that yj(k) will track yj

d(k) as close as possible, ∀k ∈ {1, 2, · · · , N}, even all the
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above-mentioned uncertainties exist. Several assumptions are required for the controller
design as follows.

(A1) The iteration-varying initial output error ej(0) = yj(0)− yj
d(0) is bounded ∀j ≥ 1.

(A2) The iteration-varying system parameters aj(k), bj(k) are bounded ∀k ∈ {0, 1, 2, · · · , N}
and j ≥ 1.

(A3) The iteration-varying disturbance dj(k) is bounded with |dj(k)| ≤ dU where dU is an
unknown positive constant for all k ∈ {0, 1, 2, · · · , N} and j ≥ 1.

(A4) The iteration-varying desired output yj
d(k) is bounded with |yj

d(k)| ≤ yU
d where yU

d is
an unknown positive constant for all k ∈ {0, 1, 2, · · · , N} and j ≥ 1.

(A5) The unknown nonlinear function f (aj(k), X j(k)) is smooth and bounded if aj(k) and
X j(k) are bounded.

Remark 1. Note that all the iteration-varying uncertainties are required to be bounded. This is
reasonable in a real control environment. But the upper bounds of the uncertainties are not required
to be small enough so as to guarantee a satisfied performance. Furthermore, these upper bounds are
allowed to be unknown. We will design suitable adaptive laws to overcome these unknown bounds.
Compared with all the related works in the area of ILC dealing with similar problems, this paper can
handle the more general class of iteration-varying uncertainties and needs less knowledge on them.

3. Design of the Iterative Learning Control Law

To overcome the unknown smooth nonlinear function f (aj(k), X j(k)), we proposed a
fuzzy system to approximate f (aj(k), X j(k)) as most of the design approaches used in the
past two decades in the literature. However, we are going to present a different concept
to the fuzzy system for an optimal function approximation since the system parameter
vector aj(k) is iteration-varying. We suggest that there exists an optimal iteration-varying
fuzzy system Θj(k)>ξ(X j(k)) for approximation of f (aj(k), X j(k)), where Θj(k) ∈ Rm is
the iteration-varying fuzzy consequent parameter vector, and ξ j(k) ∈ Rm is the fuzzy basis
function vector. This iteration-varying fuzzy system will in general gives a better approxi-
mation to the iteration-varying nonlinear function f (aj(k), X j(k)), and the approximation
error over a compact set will be smaller or the compact set for a reasonable approxima-
tion will be larger than those traditional designs using fixed consequent parameter fuzzy
systems. More precisely, the approximation behavior between the optimal fuzzy system
Θj(k)>ξ(X j(k)) and the nonlinear function f (aj(k), X j(k)) will satisfy

f (aj(k), X j(k)) = Θj(k)>ξ(X j(k) + ε(X j(k)) (2)

where |ε(X j(k))| ≤ εU on a compact setA ∈ Rn with εU being an unknown positive constant.
Then we can rewrite (1) by using (2) as

yj(k + 1) = Θj(k)>ξ(X j(k) + bj(k)uj(k) + dj(k) + ε(X j(k)) (3)

We now separate the iteration-varying parameters Θj(k) and bj(k) into the iteration-
invariant nominal parts Θ∗(k), b∗(k), and the iteration-varying uncertain parts Θ̄j(k), b̄j(k),
respectively. That is, Θj(k) = Θ∗(k) + Θ̄j(k) and bj(k) = b∗(k) + b̄j(k).

Remark 2. It is reasonable that Θ∗(k), b∗(k), and Θ̄j(k), b̄j(k) are all bounded according to
assumption (A2). Furthermore, we assume |Θ̄j(k)| ≤ θU and |b̄j(k)| ≤ bU for some positive
unknown constants θU and bU .
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Based on (3), we derive the output error ej(k + 1) as follows,

ej(k + 1) = yj(k + 1)− yj
d(k + 1)

= Θj(k)>ξ(X j(k)) + bj(k)uj(k) + dj(k) + ε(X j(k))− yj
d(k + 1)

= Θ∗(k)>ξ(X j(k)) + b∗(k)uj(k) + Θ̄j(k)>ξ(X j(k)) + b̄j(k)uj(k)

+ dj(k) + ε(X j(k))− yj
d(k + 1) (4)

The iterative learning control law is designed as

uj(k) =
b̂j(k)

λ + b̂j(k)2

[
−Θ̂j(k)>ξ(X j(k)) + yj

d(k + 1)
]

(5)

where λ is a small positive constant, Θ̂j(k) and b̂j(k) are adaptive control parameters which
will be updated along the iteration domain in order to ensure the learning error convergence
and closed-loop stability. Define the control parameter errors as Θ̃j(k) = Θ̂j(k)−Θ∗(k),
b̃j(k) = b̂j(k)− b∗(k) and substitute the iterative learning control law (5) into the output
error (4). Then we have

ej(k + 1) = Θ∗(k)>ξ(X j(k))− Θ̂j(k)>ξ(X j(k)) + Θ̂j(k)>ξ(X j(k))

+b∗(k)uj(k)− b̂j(k)uj(k) + b̂j(k)uj(k) + Θ̄j(k)>ξ(X j(k)) + b̄j(k)uj(k)

+dj(k) + ε(X j(k))− yj
d(k + 1)

= −Θ̃j(k)>ξ(X j(k))− b̃j(k)uj(k) +
λ

λ + b̂j(k)2

[
Θ̂j(k)>ξ(X j(k))− yj

d(k + 1)
]

+Θ̄j(k)>ξ(X j(k)) + b̄j(k)uj(k) + dj(k) + ε(X j(k))

≡ −Θ̃j(k)>ξ(X j(k))− b̃j(k)uj(k) + δj(k) (6)

where

δj(k) = Θ̄j(k)>ξ(X j(k)) + b̄j(k)uj(k) + dj(k) + ε(X j(k))

+
λ

λ + b̂j(k)2

[
Θ̂j(k)>ξ(X j(k))− yj

d(k + 1)
]

= Θ̄j(k)>ξ(X j(k)) + dj(k) + ε(X j(k))

+
b̄j(k)b̂j(k)
λ + b̂j(k)2

[
Θ̂j(k)>ξ(X j(k))− yj

d(k + 1)
]

+
λ

λ + b̂j(k)2

[
Θ̂j(k)>ξ(X j(k))− yj

d(k + 1)
]

(7)

It is easily shown that ∣∣∣∣∣ b̄j(k)b̂j(k)
λ + b̂j(k)2

∣∣∣∣∣ ≤ bU

2
√

λ
(8)

so that the term δj(k) in (7) will satisfy the bounding condition as follows,

|δj(k)| ≤ θU |ξ(X j(k))|+ dU + εU +

(
bU

2
√

λ
+ 1
)(

m|Θ̂j(k)|+ yU
d

)
≡ ψ∗Rj(k) (9)
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where ψ∗ is a suitably defined unknown positive constant and Rj(k) = |Θ̂j(k)|+ 1. To over-
come all the unknown Θ∗(k), b∗(k), ψ∗ caused by iteration-varying uncertainties, a dead-
zone like auxiliary error ej

φ(k + 1) is firstly introduced:

ej
φ(k + 1) = ej(k + 1)− φj(k + 1)sat

(
ej(k + 1)
φj(k + 1)

)
(10)

for k ∈ {0, 1, 2, · · · , N − 1}. It is noted that ej
φ(0) is not defined since it will not be utilized

in the later design. The notation sat in (10) is a saturation function defined as

sat
(

ej(k + 1)
φj(k + 1)

)
=


1 if ej(k + 1) > φj(k + 1)

ej(k+1)
φj(k+1)

if |ej(k + 1)| ≤ φj(k + 1)

−1 if ej(k + 1) < −φj(k + 1)

φj(k + 1) can be considered as a width of dead zone which is iteration-time varying and it
is defined as

φj(k + 1) = ψ̂j(k)Rj(k) (11)

where ψ̂j(k) is another control parameter. According to the definition, it is easy to prove

that ej
φ(k + 1)sat

(
ej(k+1)
φj(k+1)

)
= |ej

φ(k + 1)|.
In this iterative learning controller, Θ̂j(k), b̂j(k) in (5) and ψ̂j(k) in (11) are used to

compensate for the unknown iteration-invariant parameters Θ∗(k), b∗(k) and ψ∗, respec-
tively. As the uncertainties are unknown, a direct strategy is to construct certain adaptive
laws to automatically search for the optimal parameters. The adaptive laws are designed
to ensure the closed-loop stability and improve the learning performance as the number
of iterations is large enough. The parameter adaptive laws for Θ̂j(k), b̂j(k) and ψ̂j(k) at
(j + 1)th iteration are proposed in the following:

Θ̂j+1(k) = Θ̂j(k) +
β1ej

φ(k + 1)ξ(X j(k))

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 (12)

b̂j+1(k) = b̂j(k) +
β2ej

φ(k + 1)uj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 (13)

ψ̂j+1(k) = ψ̂j(k) +
β3|e

j
φ(k + 1)|Rj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 (14)

for k ∈ {0, 1, · · · , N − 1}, where β1, β2, β3 > 0 are the adaptive gains. In the first trial,
we will set Θ̂1(k) = Θ1, b̂1(k) = b1 to be any constant vector, and ψ̂1(k) = ψ1 > 0 to
be a small number. According to (14), we have ψ̂j(k) > 0, ∀k ∈ {0, 1, · · · , N − 1} and
∀j ≥ 1. If we define the parameter errors as Θ̃j(k) = Θ̂j(k)−Θ∗(k), b̃j(k) = b̂j(k)− b∗(k),
ψ̃j(k) = ψ̂j(k)− ψ∗ and subtract Θ∗(k), b∗(k) and ψ∗ on both sides of (12)–(14) respectively,
then it will yield

Θ̃j+1(k) = Θ̃j(k) +
β1ej

φ(k + 1)ξ(X j(k))

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 (15)

b̃j+1(k) = b̃j(k) +
β2ej

φ(k + 1)uj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 (16)

ψ̃j+1(k) = ψ̃j(k) +
β3|e

j
φ(k + 1)|Rj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 (17)
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4. The Main Results for Stability and Convergence

This section will study the system convergent performance and the boundedness of
all the internal signals. The main results are summarized in the following theorem.

Theorem 1. Consider the class of discrete-time nonlinear systems (1) which satisfies the as-
sumptions (A1)–(A5) and design iterative learning control law as in (5), (10) and (12)–(14).
If β = max{β1, β2, β3} satisfies

2− β > 0, (18)

then we can get the following results.

(t1) The adaptive parameters Θ̂j(k), b̂j(k), ψ̂j(k) are bounded ∀k ∈ {0, 1, · · · , N}, j ≥ 1.

(t2) The dead-zone-like auxiliary error ej
φ(k + 1), output error ej(k) and control input uj(k) are

bounded ∀k ∈ {0, 1, · · · , N − 1}, j ≥ 1. Furthermore,

lim
j→∞

ej
φ(k + 1) = 0

lim
j→∞
|ej(k + 1)| ≤ ψ̂∞(k)R∞(k).

Proof. (t1) To show the boundedness of adaptive parameters, we define a positive function
as follows,

V j(k) =
1
β1

Θ̃j(k)>Θ̃j(k) +
1
β2

b̃j(k)2 +
1
β3

ψ̃j(k)2

By using (15)–(17), we can derive V j+1(k)−V j(k) as follows,

V j+1(k)−V j(k)

=
1
β1

(
Θ̃j+1(k)>Θ̃j+1(k)− Θ̃j(k)>Θ̃j(k)

)
+

1
β2

(
b̃j+1(k)2 − b̃j(k)2

)
+

1
β3

(
ψ̃j+1(k)2 − ψ̃j(k)2

)

≤
2ej

φ(k + 1)Θ̃j(k)>ξ(X j(k))

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 +
β1ej

φ(k + 1)2
∣∣ξ(X j(k))

∣∣2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2

+
2ej

φ(k + 1)b̃j(k)uj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 +
β2ej

φ(k + 1)2uj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2

+
2|ej

φ(k + 1)|ψ̃j(k)Rj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 +
β3ej

φ(k + 1)2Rj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2 (19)

According to (6), we can find that

Θ̃j(k)>ξ(X j(k)) + b̃j(k)uj(k) = −ej(k + 1) + δj(k) (20)

This implies that

ej
φ(k + 1)Θ̃j(k)>ξ(X j(k)) + ej

φ(k + 1)b̃j(k)uj(k) = −ej(k + 1)ej
φ(k + 1) + ej

φ(k + 1)δj(k) (21)

If we substitute (21) into (19), then we have



Processes 2022, 10, 1275 7 of 15

V j+1(k)−V j(k)

≤
−2ej(k + 1)ej

φ(k + 1) + 2ej
φ(k + 1)δj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 +
β1ej

φ(k + 1)2|ξ(X j(k))|2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2

+
β2ej

φ(k + 1)2uj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2 +
2|ej

φ(k + 1)|ψ̃j(k)Rj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

+
β3ej

φ(k + 1)2Rj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2 (22)

Substituting (10) into (22) and using the fact that |δj(k)| ≤ ψ∗Rj(k) in (9), we can
derive that

V j+1(k)−V j(k)

≤
−2ej

φ(k + 1)2

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 −
2|ej

φ(k + 1)|ψ̂j(k)Rj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

+
2|ej

φ(k + 1)|ψ∗Rj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 +
2|ej

φ(k + 1)|ψ̃j(k)Rj(k)

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

+
β1ej

φ(k + 1)2|ξ(X j(k))|2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2 +
β2ej

φ(k + 1)2uj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2

+
β3ej

φ(k + 1)2Rj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2

≤
−2ej

φ(k + 1)2

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 +
βej

φ(k + 1)2|ξ(X j(k))|2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2

+
βej

φ(k + 1)2uj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2 +
βej

φ(k + 1)2Rj(k)2(
1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2

)2

≤
−(2− β)ej

φ(k + 1)2

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 (23)

where β = max{β1, β2, β3}. If we choose β such that p ≡ 2− β > 0, then we have

V j+1(k)−V j(k) ≤
−pej

φ(k + 1)2

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 ≤ 0 (24)

for j ≥ 1. Note that for the first iteration, Θ̃1(k) = Θ̂1(k)−Θ∗(k), b̃1(k) = b̂1(k)− b∗(k)
and ψ̃1(k) = ψ̂1(k) − ψ∗ are bounded ∀k ∈ {0, 1, 2, · · · , N} since the initial settings of
Θ̂1(k), b̂1(k) and ψ̂1(k) are bounded. This implies V1(k) is bounded ∀k ∈ {0, 1, 2, · · · , N},
and hence V j(k), Θ̃j(k), b̃j(k) and ψ̃j(k) are bounded ∀j ≥ 1 according to the result of (24).
This proves (t1) of the theorem.

(t2) Summing (24) from 1 to j, it yields

V j(k) ≤ V1(k)−
j−1

∑
i=1

pei
φ(k + 1)2

1 + |ξ(Xi(k))|2 + ui(k)2 + Ri(k)2
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Because V1(k) is bounded and V j(k) is nonnegative, we can conclude that

lim
j→∞

ej
φ(k + 1)2

1 + |ξ(X j(k))|2 + uj(k)2 + Rj(k)2 = 0 (25)

∀k ∈ {0, 1, 2, · · · , N − 1}.
To prove that ej

φ(k + 1) will be bounded and converge to zero, we firstly note that
the fuzzy basis function vector ξ(X j(k)) is bounded, and uj(k) given in (5) as well as
Rj(k) = |Θ̂j(k)| + 1 are bounded according to (t1). We can guarantee 1 + |ξ(X j(k))|2 +
uj(k)2 + Rj(k)2 are bounded ∀j ≥ 1. Hence, (25) implies that

lim
j→∞

ej
φ(k + 1)2 = 0 (26)

∀j ≥ 1 and k ∈ {0, · · · , N − 1}. When j→ ∞, the output error e∞(k + 1) satisfies

lim
j→∞
|ej(k + 1)| ≤ φ∞(k + 1) = ψ̂∞(k)R∞(k) (27)

∀ k ∈ {0, 1, 2, · · · , N − 1}. This concludes the result of (t2) in the theorem.

Remark 3. In this theorem, we show that the output error ej(k + 1) will converge to a residual set
which is bounded by ψ̂∞(k)R∞(k). Therefore, we require that ψ̂∞(k)a∞(k) is as small as possible
for all k ∈ {0, 1, 2, · · · , N}. This is the reason for us to set the initial value of ψ̂1(k) to be a small
number and the adaptive gain β3 in (14) as a small one such that ψ̂j(k) and hence, ψ̂∞(k)R∞(k), k ∈
{0, 1, 2, · · · , N} will remain in a reasonable small value for all j ≥ 1. Of course it is no problem to
choose β3 as small as possible due to the requirement of convergent condition in (18).

5. Simulation Examples

Example 1. In this example, we use a simple parameterized nonlinear system with iteration-
varying uncertainties to study the learning performance of the iterative learning control system.
The nonlinear system considered is given as

yj(k + 1) = Θj(k) f (X j(k)) + bj(t)uj(k) + dj(t) (28)

where

Θj(k) = 2 + 0.5 sin(k)− 0.1 sin(2π j/100) (29)

f (X j(k)) =
2 sin(yj(k))

1 + 0.01yj(k− 1)2 (30)

bj(k) = s(1 + 0.3e−jk + 0.3 sin(kπ/100)) (31)

dj(k) = 0.1rand (32)

yj(0) = 0.5 + 0.1rand (33)

here s denotes the sign of control gain bj(k), rand is a uniform distribution on the interval (0, 1)
and f (X j(k)) is known for simplicity. We use the following reference model to generate the desired
output,

yj
d(k + 1) = 0.3yj

d(k) + rj(k), yj
d(0) = 0.1 + 0.1rand

rj(k) = 3 sin(2πk/15) + 0.1(1 + 0.1 sin(j/20))

The iterative learning control objective in this example is to force the system output yj(k) to
track the desired output yj

d(k) for all k ∈ {1, · · · , 50} as close as possible. The proposed iterative
learning control law (5), (10) and (12)–(14) are chosen with ξ(X j(k)) = f (X j(k)), λ = 0.01,



Processes 2022, 10, 1275 9 of 15

β1 = 1.5, β2 = 0.5, β3 = 0.001 so that 2− β = 2−max{β1, β2, β3} = 0.5 > 0. The control
parameter values at first iteration are given as Θ̂1(k) = 1.5, b̂1(k) = 0.2, ψ̂1(k) = 0.01 for all
k ∈ {0, 1, · · · , 50}.

Case 1: s = 1 (unknown positive control gain)
Figure 1a shows maxk∈{1,··· ,50} |e

j
φ(k)| versus iteration j = 1, · · · , 100. The simulation

result proves that (t2) of the theorem is correct. Figure 1b shows the output error e100(k),
width of iteration-varying dead zone φ100(k) and −φ100(k) at the 100th trial. The profile of
e100(k) roughly lies between −φ100(k) and φ100(k), for k ∈ {1, · · · , 50}. The system output
y100(k) and desired output y100

d (k) at the 100th iteration are shown in Figure 1c. Finally,
the bounded control input u100(k) at the 100th iteration is given in Figure 1d.

0 10 20 30 40 50 60 70 80 90 100

iteration j
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0
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1
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2

(a)

0 5 10 15 20 25 30 35 40 45 50

discrete-time k

−0.1

−0.05

0

0.05

0.1
(b)

0 5 10 15 20 25 30 35 40 45 50

discrete-time k
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−2

0
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(c)

0 5 10 15 20 25 30 35 40 45 50

discrete-time k
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−2

0

2

4

6
(d)

Figure 1. (a) maxk∈{1,··· ,50} |e
j
φ(k)| (∗) versus iteration j. (b) e100(k) (solid line) and φ100(k),−φ100(k)

(dotted lines) versus time k. (c) y100(k) (solid line) and y100
d (k) (dotted line) versus discrete-time k.

(d) u100(k) versus discrete-time k.

Case 2: s = −1 (unknown negative control gain)
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In order to check if the learning performance still remains when the sign of the control
gain bj(k) changes, we let s of bj(k) in (31) be replaced by s = −1 and make a simulation
again without changing any parameters in the proposed iterative learning control law in
case 1. It is clear from Figure 2 that the learning performances are almost the same as those
in case 1. But the control input u100(k) in Figure 2d is reversed when compared with that in
Figure 1d. This proves that the proposed iterative learning control law can work without
the knowledge of the control gain sign.
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(c)

0 5 10 15 20 25 30 35 40 45 50

discrete-time k
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6
(d)

Figure 2. (a) maxk∈{1,··· ,50} |e
j
φ(k)| (∗) versus iteration j. (b) e100(k) (solid line) and φ100(k),−φ100(k)

(dotted lines) versus discrete-time k. (c) y100(k) (solid line) and y100
d (k) (dotted line) versus discrete-

time k. (d) u100(k) versus discrete-time k.
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Case 3: s = −1 at the 15th, 30th, 60th iterations and s = 1 for the others (iteration-varying
control gain)

In this case, we study the learning effect when the sign of control gain bj(k) is iteration-
varying. We let s = 1 for most of the iterations except at the 15th, 30th, and 60th iterations.
The simulation results are now shown in Figure 3. It is interesting to find that the learning
system has to re-learn when the sign of control gain suddenly changes. However, it can
overcome the variation quickly after several trials and capture the control direction again.
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Figure 3. (a) maxk∈{1,··· ,50} |e
j
φ(k)| (∗) versus iteration j. (b) e100(k) (solid line) and φ100(k),−φ100(k)

(dotted lines) versus discrete-time k. (c) y100(k) (solid line) and y100
d (k) (dotted line) versus discrete-

time k. (d) u100(k) versus discrete-time k.
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Example 2. In this example, we use the proposed fuzzy iterative learning control law to control a
non-BIBO nonlinear unknown system similar to but more complex than that in [27]. The difference
equation of the nonlinear system with iteration-varying uncertainties is given as

yj(k + 1) = (0.2 + 0.1 sin(k/j))yj(k)2 + 0.2yj(k− 1)

+ 0.4 sin
(

0.5(1− e
−jk
100 )
(
yj(k− 1) + yj(k)

))
cos
(

0.5
(
yj(k− 1) + yj(k)

))
+
(
1.2 + 0.3 cos(yj(k)

)
uj(k) + dj(k),

yj(0) = 0.5 + 0.1randn

where yj(k) is the system output, uj(k) is the control input and dj(k) = 0.01rand is a non-
repeatable random disturbance. Here the reference model is chosen as

yj
d(k + 1) = 0.6yj

d(k) + rj(k), yj
d(0) = 0

where rj(k) = 0.2 sin(2πk/100) + 0.1 sin(2π j/50) is an iteration-varying bounded reference
input. We choose λ = 0.1 in (5) and the initial value of control parameters at the first iteration as
Θ̂1(k) = [0.1, 0.1, 0.1, 0.1, 0.1]>, b̂1(k) = 1 and ψ̂1(k) = 0.0015, respectively. The adaptive gains
are chosen as β1 = 1.5, β2 = 1, β3 = 0.01. Five fuzzy rules are chosen to construct the fuzzy basis
function vector ξ(yj(k), yj(k− 1)). The detailed fuzzy membership functions are given as follows,

µ11(yj(k)) =

{
1 if yj(k) < −2

e−(y
j(k)−(−2))2

if yj(k) ≥ −2

µ12(yj(k)) = e−(y
j(k)−(−1))2

µ13(yj(k)) = e−(y
j(k)−(0))2

µ14(yj(k)) = e−(y
j(k)−(1))2

µ15(yj(k)) =

{
e−(y

j(k)−(2))2
if yj(k) < 2

1 if yj(k) ≥ 2

µ21(yj(k− 1)) =

{
1 if yj(k− 1) < −2

e−(y
j(k−1)−(−2))2

if yj(k− 1) ≥ −2

µ22(yj(k− 1)) = e−(y
j(k−1)−(−1))2

µ23(yj(k− 1)) = e−(y
j(k−1)−(0))2

µ24(yj(k− 1)) = e−(y
j(k−1)−(1))2

µ25(yj(k− 1)) =

{
e−(y

j(k−1)−(2))2
if yj(k− 1) < 2

1 if yj(k− 1) ≥ 2

Hence, the fuzzy basis functions are given as

ξi(yj(k), yj(k− 1)) = µ1i(yj(k))µ2i(yj(k− 1))

i = 1, 2, 3, 4, 5. In Figure 4a, we show the evolution of maxk∈{1,··· ,200} |e
j
φ(k)| with respective

to iteration j. After 100 iterations, the converged learning error e100(k) is shown in Figure 4b.
Same as example 1, the trajectory of e100(k) roughly lies between −φ100(k) and φ100(k), for k ∈
{1, · · · , 200}. After the 100th trial, a satisfied output tracking performance is achieved. We then
show the relation between y100(k) and y100

d (k) in Figure 4c for k ∈ {0, 1, 2, · · · , 200}. Finally,
Figure 4d shows the control input u100(k) which is clearly bounded.
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Figure 4. (a) maxk∈{1,··· ,200} |e
j
φ(k)| (∗) versus iteration j. (b) e100(k) (solid line) and φ100(k),−φ100(k)

(dotted lines) versus discrete-time k. (c) y100(k) (solid line) and y100
d (k) (dotted line) versus discrete-

time k. (d) u100(k) versus discrete-time k.

6. Conclusions

A robustness problem caused by iteration-varying uncertainties in studying itera-
tive learning control is always a practical but difficult challenge. This paper aims to
design an iterative learning control law for a class of unknown discrete-time nonlinear
systems with five kinds of iteration-varying uncertainties. These uncertainties include
iteration-varying initial error, iteration-varying external disturbance, iteration-varying de-
sired output, iteration-varying system parameters, and iteration-varying control direction.
This paper is the first ILC work that can deal with these uncertainties at the same time.
In addition to this main contribution, the five kinds of iteration-varying uncertainties can
take a general structure. They don’t have to satisfy the assumption of the high-order
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internal model or any other special formulation. We not only show that all the internal
signals are bounded for each iteration and discrete-time instant but also guarantee that the
output error asymptotically converges to a small value. Two simulation results are studied
with several scenarios to show that the fuzzy iterative learning control law is practical
and feasible.
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