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Abstract: Microwave heating is a process in which the electric, magnetic, and temperature fields
are coupled with each other and are characterised by strong non-linearity, high time variability,
and infinite dimensionality. This paper proposes a method for predicting the microwave heating
temperature distribution of the TE10 mode, because the traditional numerical calculation method
is not conducive to designing microwave controllers. First, the spatial distribution of the main
electromagnetic mode TE10 waves in a rectangular waveguide was analysed using the principal
mode analysis method. An expression for the transient dissipated power and a heat balance equation
with infinite-dimensional characteristics were constructed. Then, the microwave heating model
was decomposed into electromagnetic and temperature field submodels. A time discretization
approach was used to approximate the transient constant dielectric constant. The heating medium
was meshed to solve the electric field strength and transient dissipated power in discrete domains,
and the temperature distribution was obtained by substituting this value into the finite-dimensional
temperature field submodel. Finally, the validity of the proposed numerical model was verified
by comparing the results with the numerical results obtained with the conventional finite element
method. The methodology presented in this paper provides a solid basis for designing microwave
heating controllers.

Keywords: microwave heating; temperature distribution; numerical models; mesh division; TE10

mode

1. Introduction

In recent years, microwave heating technology has become increasingly prevalent
in food processing, metallurgical engineering, materials science, and other fields [1–3].
In the chemical engineering field of multiphase catalytic systems, the use of microwaves
provides the possibility of inverting the direction of heat flow, which can facilitate the
olefins’ reaction on the surface of the catalyst [4]; in the field of construction engineering
asphalt pavement maintenance, the use of microwave heating to repair and maintain the
pavement can achieve the efficient recycling of asphalt mixture [5]; in the field of materials
science metal connection, the use of microwave composite heating to connect large pieces of
metal can be free of the constraints of the joint structure and fast and efficient [6]. In contrast
to traditional heat radiation, heat convection, and heat conduction methods, microwave
heating is selective, fast, and clean. Microwave heating converts electromagnetic energy
into heat energy through interactions between electromagnetic waves with polar molecules
and charged particles in the heated medium, producing volumetric heat [7–9]. On the one
hand, selective heating can be used to selectively heat the material in a mixture; on the other
hand, this feature may cause an uneven temperature distribution in the heated material,
resulting in hot and cold spots. When the hot spots reach a critical temperature, the
heated medium becomes extremely unstable, and the hot spots may drive the temperature
to become even higher, resulting in thermal runaway phenomena [10–12]. Therefore, it
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is important to accurately obtain the temperature domain distribution of the medium
within the microwave heating cavity to improve the uniformity of the heating and avoid
thermal runaway.

Microwave heating is a process in which the electromagnetic and temperature fields
are coupled to each other with strong coupling, nonlinearity, and infinite dimensionality.
Together with the inhomogeneous boundary conditions and the temperature dependence of
the thermodynamic parameters of the heated medium, it is almost impossible to analyse mi-
crowave heating processes using analytical methods. Various studies have proposed different
numerical calculation methods for microwave heating processes. Pitchai et al. [13] used the
finite-difference time-domain (FDTD) method to construct a three-dimensional electromag-
netic thermal model that effectively identified hot and cold spots in food during the heating
process. Acevedo et al. [14] used the FDTD method to solve a system of transient Maxwell’s
equations and constructed a model for the microwave heating of a glass. Jing et al. [15] used
the finite-difference time-domain and finite difference method (FDTD-FDM) to numerically
simulate the temperature field in microwave-heated polyolefin mixtures, with the FDTD
method used to solve the electric field distribution and the FDM used to solve the temperature
field distribution. Lou et al. [16] used the finite element method (FEM) to construct a coupled
electric—magnetic-thermal model of asphalt heating using microwaves and studied the effects
of the heating frequency and power on the electromagnetic and temperature fields within the
steel slag asphalt medium. They found that 2.45 GHz was the best frequency to ensure that
the electromagnetic and temperature fields had uniform distributions and maximum heating
efficiency. Ye et al. [17] used the FEM to model the multiphysics field of a solid sample in a
microwave cavity during rotational lifting and combined this model with an implicit function-
level set approach to update the dielectric constants in the moving region. Zhou et al. [18]
used the FEM to construct a heating model with a conveyor belt inside the heating chamber,
and Yi et al. [19] used the FEM to study microwave heating cavities with translational and
rotational motion. In recent years, the use of the FEM has become particularly popular in
microwave heating studies [20–22]. However, this method usually transforms the heating
model into a high-dimensional system of ordinary differential equations during the solution
process [23], which is not conducive to the design of microwave heating controllers [24].
With the improvements in computer technology, various commercial softwares (e.g., FDTD
Solutions and COMSOL Multiphysics) based on these methods (e.g., FDTD [13,14] and FEM
[16–22]) have emerged, which provide a good interactive interface and enable researchers to
carry out simulation experiments without knowing the internal mechanism. This will also
greatly hinder researchers’ understanding of the internal mechanism of microwave heating. It
also causes difficulties in extracting the state variables in the reaction process.

Zhong et al. [25] proposed a finite-dimensional ordinary differential equation (ODE)
model for microwave heating. They used auxiliary functions to obtain the equivalent
homogeneous boundary condition partial differential equation (PDE), derived the char-
acteristic spectrum of the spatial differential operator, and obtained a finite-dimensional
ODE model with a modified Galerkin’s truncation methods. A one-dimensional heating
model of deionised water with a temperature-dependent dielectric constant was obtained
using numerical simulations. During microwave heating, the temperature distribution
of the medium considerably varied throughout the two-dimensional space, and a one-
dimensional heating model may ignore the presence of some hot spots. Zhong et al. [26]
analysed microwaves’ propagation characteristics in a rectangular medium and the spatial
distribution of the primary modes in the medium, derived an explicit expression for the
dissipated power in the two-dimensional direction and obtained the global temperature
distribution in a medium with a constant dielectric constant with numerical simulations.
Treating the dielectric constant as a constant value in the calculation of a two-dimensional
heating model is an idealisation that is only suitable for applications in which the accu-
racy of the model is low. In practical applications, the dielectric constant of a medium
depends on the temperature. Therefore, it is of high engineering value to construct a two-
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dimensional finite-dimensional model of microwave heating with a temperature-dependent
dielectric constant.

In this paper, a two-dimensional microwave heating model with a temperature-
dependent dielectric constant is constructed. The finite-dimensional calculation method
for determining the global temperature distribution of the medium is derived by time
discretization, mesh division, and cyclic iteration. This calculation is universally applicable
to nonmagnetic media (e.g., potato, silicon carbide (SiC) and Debye media). In Section 2, a
conventional microwave heating model is constructed, and the vector distribution charac-
teristics of the TE10 mode are analysed using the principal mode analysis method. Based
on the distribution characteristics of the TE10 mode, the transient dissipated power ex-
pressions and heat balance equations are derived in two dimensions. In Section 3, the
dielectric constant is considered constant in each time interval by discretizing the heat-
ing time. The heating medium is meshed into a finite number of solution domains, and
the transient dissipated power in each small solution domain is obtained by solving the
electromagnetic field submodel. The transient dissipated power is substituted into the
finite-dimensional thermodynamic field submodel to obtain the transient temperature dis-
tribution, and the global temperature distribution is calculated using the circular iteration
method. In Section 4, the results of the proposed method are compared with those of the
FEM calculations from temporal and spatial perspectives. The numerical calculation results
demonstrate the validity of the microwave heating model and temperature distribution
solution method in the TE10 mode.

2. Microwave Heating Temperature Model
2.1. Conventional Microwave Heating Temperature Model

During microwave heating, the coupled oscillating electric and magnetic fields are
excited by each other, and their relationship in time can be described by a system of Maxwell
equations [27,28]: 

∇× H =
∂D
∂t

+ Je, Je = σE,

∇× E = −∂B
∂t
− Jm, Jm = σmH,

∇ · D = ρe,

∇ · B = ρm,

(1)

where Je, Jm, ρe, and ρm denote the current density, magnetic current density, electric charge
density, and magnetic charge density, respectively. σ denotes the electrical conductivity of
the medium and σm represents the magnetic resistivity of the medium (Ω/m). H, E, D, and
B denote the magnetic field vector, electric field vector, electric displacement vector, and
magnetic flux density vector, respectively.

The electric field distribution in the microwave reaction chamber can be obtained by
solving the Maxwell waveform equation [29,30]:

∇× µ−1
r (∇× E)− k2

0

(
ε(T)− jσ

ωε0

)
E = 0, k0 = ω

√
ε0µ0 =

ω

c
, (2)

where µr denotes the relative permeability; ε(T) denotes the dielectric constant; k0 denotes
the wavenumber in a vacuum; ω denotes the angular frequency of the incident electromag-
netic wave; E denotes the incident electric field strength; ε0 = 8.854× 10−14 F/cm denotes
the permittivity of the vacuum; µ0 = 4π × 10−7 H/cm denotes the magnetic permeability
of the vacuum; c = 3.0× 108 m · s−1 denotes the propagation speed of electromagnetic
waves in a vacuum.
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During microwave heating, the microscopic heat balance equation within the medium
can be described by a typical class of PDEs [31]:

ρCp
∂T
∂t

= ∇(κ∇T) + Qabs(x, y, z, t), (3)

where ρ, Cp, and κ denote the density, specific heat capacity, and thermal conductivity of
the medium being heated, respectively; T denotes the temperature of the medium at time t;
and Qabs(x, y, z, t) is the transient dissipated power, which describes the spatial distribution
of the energy absorbed by the medium at time t and can be further determined as [32]:

Qabs(x, y, z, t) = π f · ε0 · ε′′(T) · E · E∗ = π f · ε0 · ε′(T) · tan δ(T) · E · E∗, (4)

where f denotes the resonant frequency of the microwave; E and E∗ are the electric field
strength and complex conjugate of the electric field strength, respectively; ε′(T) denotes the
relative permittivity; ε′′(T) denotes the relative dielectric loss; and tan δ(T) = ε′′(T)/ε′(T)
is the loss tangent.

During the heating process, boundary heat convection occurs between the medium
and the surrounding air, and the Neumann boundary condition can be obtained according
to Newton’s law of cooling [33]:

n · κ∇T = hc(T − T∞), (5)

where n denotes the unit vector pointing outwards at the surface of the medium, and T∞
denotes the ambient temperature.

2.2. Microwave Heating Temperature Model in TE10 Wave Mode

To simplify the model analysis, the following reasonable assumptions are taken into
account:

• Assumption 1: The volume of the medium and the mass transferred remain constant
during heating.

• Assumption 2: The initial temperature of the medium is uniform.
• Assumption 3: The medium is uniform and isotropic.

During microwave heating, rectangular waveguide cavities and resonant cavities are
two common types of heating equipment. The main difference between the two is that
the resonant cavity has short-circuiting ends (with near-perfect conductors at the end to
enhance electromagnetic resonance) and a circulating water cooling system to protect the
magnetrons. In contrast, the rectangular waveguide cavity does not have short-circuiting
ends and has an absorber at its end to absorb excess microwaves and protect the magnetron.
The walls of rectangular waveguides are typically made of copper, aluminium, or another
metallic material. A hollow waveguide transmits only transverse magnetic (TM) and
transverse electric (TE) waves and does not transmit transverse electromagnetic (TEM)
waves. As the cut-off frequency of the TM wave is higher than that of the TE wave, the
analysis is mainly carried out for the TE wave. During microwave heating, the primary
mode mainly influences the temperature distribution of the medium. Due to the chosen
operating frequency and the waveguide dimensions, the fundamental mode TE10 mode is
the focus of this analysis.

In a rectangular waveguide, the vector component of the TE10 wave can be expressed
as [34]:

Ey = E0 sin
(

πx
x0

)
, (6)

Hx = E0
λ0

λg

√
ε0ε′(T)

µ0
sin
(

πx
x0

)
, (7)
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where E0 denotes the maximum electric field strength at the centre of the waveguide; x0
denotes the width of the waveguide; λ0 denotes the wavelength of the electromagnetic
wave in free space, which is defined as:

λ0 =
c
f

, (8)

where f denotes the microwave frequency, with 2.45 GHz being a common heating fre-
quency; λg denotes the wavelength in the heated material, which can be expressed as:

λg =
λ′g√

1−
(

λ′g/2x0

)2
, λ′g =

λ0√
ε′(T)/2 ·

√√
1 + tan2 δ(T) + 1

, (9)

According to Poynting’s theorem, the power distribution in the heated material can be
expressed as [26]:

Pin =
1
2

∫∫
(Ey × Hx) dxdy. (10)

In Equation (10), Equations (6) and (7) can ben substitued, and yielding:

Pin =
1
4

√√√√ ε′(T)ε0

µ0

(
1−

(
λ0

2x0

)2
)(

E0 sin
(

πx
x0

))2
x0z0, (11)

where z0 is the length of the waveguide. The above analysis shows that the TE10 wave
has only one component and is sinusoidally distributed along the x-axis. The electric field
strength at the ends of the waveguide (x = 0, x = x0) is 0, and the electric field strength
reaches its maximum at the centre of the waveguide (x = x0/2), which is exactly half
the standing wave. The TE10 waves are travelling waves along the z-axis, similar to the
propagation process of TEM waves. The electromagnetic field in the TE10 mode does not
vary in the direction between the broad planes, so a two-dimensional model in the x-z
plane is suitable for analysing the electromagnetic field in rectangular waveguides [15]. In
the Cartesian coordinate system, considering the temperature distribution of the medium
only in the x- and z-axis directions, the transient dissipated power in Equation (4) can be
simplified as:

Qabs(x, z, t) = Qabs(z, t) sin2
(

πx
x0

)
= π f · ε0 · ε′(T) · tan δ(T) · Ez · E∗z · sin2

(
πx
x0

)
, (12)

where Ez and E∗z denote the electric field in the z-axis direction and its conjugate complex,
respectively.

The heat balance, in Equation (3), can be reduced to:

ρCp
∂T
∂t

= κ

(
∂2T
∂x2 +

∂2T
∂z2

)
+ Qabs(x, z, t), (13)

By substituting Equation (12) into Equation (13), the heat balance equation can be
further expressed as:

ρCp
∂T
∂t

= κ

(
∂2T
∂x2 +

∂2T
∂z2

)
+ π f · ε0 · ε′(T) · tan δ(T) · Ez · E∗z · sin2

(
πx
x0

)
, (14)
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The inhomogeneous Neumann boundary condition, Equation (5), can be simplified as:

κ · ∂T
∂x

= hc(T − Ta), x = 0,

−κ · ∂T
∂x

= hc(T − Tb), x = x0,

κ · ∂T
∂z

= hc(T − Tc), z = 0,

−κ · ∂T
∂z

= hc(T − Td), z = z0,

(15)

The initial temperature conditions are

T(x, z, 0) = T0(x, z), (16)

According to Equation (12), the transient dissipated power at x = 0 and x = x0 is
Q(0, z, t) = Q(x0, z, t) = 0. Thus, no electromagnetic energy is converted to heat energy
at the interface in the x-axis direction, the temperature of the heated material is the same
as that of the external environment, and there is no thermal convection. Therefore, the
inhomogeneous Neumann boundary condition only needs to be considered in the z-axis
direction, and Equation (15) can be further simplified:

κ · ∂T
∂z

= hc(T − Tc), z = 0,

−κ · ∂T
∂z

= hc(T − Td), z = z0,
(17)

3. Solving for the Temperature Distribution

By substituting the initial temperature condition Equation (16) and the inhomoge-
neous Neumann boundary condition Equation (17) into the heat balance Equation (14),
the temperature domain distribution of the microwave heating medium can be solved
for the TE10 mode. However, due to the constraints of the inhomogeneous Neumann
boundary conditions, the characteristic spectra of the spatial differential operators ∂2T/∂x2,
∂2T/∂z2 are difficult to extract. In addition, the transient dissipated power varies with the
temperature and electric fields and is strongly nonlinear. These problems are difficult to
solve using traditional analytical methods.

The microwave heating model can be divided into an electromagnetic field submodel
and a thermodynamic field submodel that are linked through the dissipated power term.
As the dielectric constant of the material being heated varies with the temperature and
frequency, it is difficult to solve the dissipated power. The physical structure of magnetrons
in microwave heating equipment makes it difficult to shift the resonant frequency; thus, the
solution to the dielectric constant can be simplified by considering only the variation with
temperature. To establish the link between the two submodels, the heating time tmax was
discretized into k time intervals ∆t. In each small interval, the current moment’s dielectric
constant was calculated based on the temperature of the medium at the previous moment
and was considered to be constant, and the transient dissipated power was calculated by
combining the electric field distributions at that moment.

In this subsection, the time discretization, meshing, and circular iteration methods
are utilised to solve the temperature domain distribution of the medium. In Section 3.1,
the discrete transient dissipated power is determined by analysing the distribution of the
electric field. In Section 3.2, the infinite-dimensional heat balance equation is transformed
into a finite-dimensional model. The global temperature distribution is computed by
linearly fitting the discrete transient dissipated power obtained in Section 3.1 to the finite-
dimensional model and using the temperature at the previous time as the initial value.
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3.1. Solving the Electromagnetic Field Submodels

The heating model was meshed, as shown in Figure 1.

Figure 1. Meshing of the heated material.

The medium was evenly divided into M equal parts along the x-axis, with each interval
having a width of ∆x. The medium was evenly divided along the z-axis into N equal parts,
with each interval having a width of ∆z. In each sufficiently small solution domain,
the temperature is considered to be uniformly distributed. Based on the distribution
characteristics of TE10 mode, the electric field distribution in each small solution domain
was first calculated in the z-axis direction; then, the sinusoidal distribution in the x-axis
direction was computed; finally, the electric field distribution in each small solution domain
was determined. To calculate the electric field strength En×m in a small solution domain (n
rows and m columns), the electric field strength En in the nth small solution domain along
the z-axis was calculated and substituted into the following equation:

En×m = En · sin

(
π · mx0

M
x0

)
= En · sin

(π ·m
M

)
, n = 1, 2, . . . , N, m = 1, 2, . . . , M, (18)

Thus, the electric field strength En×m of this small solution domain can be calculated.
The specific method for determining the electric field strength En in the small solution
domain in the z-axis direction is as follows.
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The curl equations of the Maxwell Equations (1) are:

∇× E = −j · 2π f · µ0 · H, (19)

∇× H = j · 2π f · ε0 · E, (20)

Equation (19) can be substituted into Equation (20) to obtain the following:

∇×∇× E = −j · 2π f · µ0∇× H = (2π f )2µ0ε0E, (21)

According to∇×∇× E = ∇(∇ · E)−∇2E, Equation (21) can be further expressed as

∇2E + (2π f )2µ0ε0E = 0, (22)

In terms of the electromagnetic boundary conditions, the heated cavity is considered
a perfect conductor and the electromagnetic field component inside the conductor is
considered zero. The electric field along the tangential direction and the magnetic field
along the normal direction at the surface of the heated cavity can be expressed as:

Et = 0, Ht = 0, (23)

The electromagnetic boundary condition at the surface–air interface of the heated
material is expressed as

Et = E′t, Ht = H′t , (24)

where Et and Ht are the electric and magnetic fields on the inner surface of the heated
material, respectively, and E′t and H′t are the electric and magnetic fields on the outer surface
of the heated material, respectively.

When the temperature change in the medium is considered only in the z-axis direction
and heat conduction and heat convection in the other directions are neglected, the wave
Equation (22) can be further simplified as

d2E
dz2 + k2(T)E = 0, (25)

where k(T) is the propagation constant, which can be further expressed as

k(T) =
2π f

c

√
ε(T) (26)

The dielectric constant ε(T) of the medium can be expressed in complex form as

ε(T) = ε′(T)− jε′′(T), (27)

Equation (26) can be expanded, yielding

k(T) = α(T) + jβ(T), (28)

where α(T) and β(T) are the real and imaginary parts of the propagation constant, respec-
tively, which can be further expressed as

α(T) =
ω

c

√√√√√ ε′(T)
(√

1 + tan2 δ(T) + 1
)

2
, (29)
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β(T) =
ω

c

√√√√√ ε′(T)
(√

1 + tan2 δ(T)− 1
)

2
, (30)

When the solution domain is sufficiently small, the impedance mismatch within the
medium can be neglected. We can determine the electric field strength in the discrete
domain (excluding the Nth interval) in the z-axis direction by solving Equation (25)

En = E+
n + E−n = E+

n−1e(jα(Tn−1)−β(Tn−1))∆z + E+
n+1e(jα(Tn)−β(Tn))∆z, n = 1, 2, . . . , N − 1, (31)

where E+
n and E−n are the incident and reflected electric field strengths in the nth solved

domain, respectively. The Nth smallest solution domain has an interface between the
medium and the air, and the relationship between the incident and reflected electric fields
can be obtained by solving for the reflection coefficient. The reflection coefficient between
the medium and the air is

Γ = 1 +
1−

√
ε(TN)

1 +
√

ε(TN)
, (32)

By solving Equations (31) and (32), we can obtain the electric field strength En in the
z-axis direction for any small solution domain. This value can then be substituted into
Equation (18) to obtain the electric field strength En×m in two dimensions for any small
solution domain. The electric field strength and dielectric constant of the small solution
domain are substituted into the following equation:

∆Qabs(n, m, t) = π f · ε0 · ε′(T) · tan δ(T) · En×m · E∗n×m, (33)

Thus, the transient dissipated power value ∆Qabs(n, m, t) can be calculated for this
solution domain.

3.2. Solving the Thermodynamic Field Submodels

The transient dissipated power values ∆Qabs(n, m, t) for each small solution domain
were calculated in the previous subsection; however, the infinite-dimensional thermal
equilibrium PDE, as shown in Equation (14), is the primary factor preventing the direct
design of the controller. In this subsection, the infinite-dimensional PDE is transformed
into a finite-dimensional ODE based on the time discretization and meshing in the previous
section, and the temperature distribution is determined.

We can apply reasonable assumptions. When the solution domain in the x-axis direc-
tion is sufficiently small, the temperature difference between adjacent solution domains
is very small, and heat conduction and heat convection can be ignored. We consider each
solution domain (x = 1,2, . . . ,M) in the x-axis direction to be independent and determine
their temperature distributions in turn. In the calculation of each solution domain, x is
considered a constant, and the heat balance Equation (13) can be written as

ρCp
∂T
∂t

= κ
∂2T
∂z2 + Qabs(z, t), (34)

While Equation (34) is only the PDE in the z-axis direction, it is still infinite-dimensional.
One paper [25] defined the variable

k1 =
κ

ρCp
, k2 =

1
ρCp

, e′ =
hc

κ
(T − Tc), f ′ = −hc

κ
(T − Td), (35)
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The eigenvalues and eigenfunctions of the spatial differential operator can be extracted
with intermediate variables:

λi =


0, i = 0,

−
(

iπ
z0

)2
, i = 1, 2, · · · , ∞.

φi(z) =


1
2

, i = 0,

cos
iπz
z0

, i = 1, 2, · · · , ∞.

(36)

The infinite-dimensional PDE can be transformed into an infinite-dimensional ODE,
which can then be transformed into a finite-dimensional ODE using Galerkin’s truncation method:

˙̄Θs(t) = As · Θ̄s(t) + Bs · u(t) + Gs, (37)

Θs(z, t) = Cs · Θ̄s(t), (38)

Ts(z, t) = Θs(z, t) + (
f ′ − e′

2z0
z2 + e′z), (39)

where v is the order of the finite dimension,

Θ̄s(t) = [Θ̄0(t), Θ̄1(t), . . . , Θ̄v(t)]
T,

As = k1 · diag(λ0, λ1, . . . , λv),

Bs · u(t) = k2
2
z0

∫ z0

0
Qabs(z, t)[φ0(z), . . . , φv(z)]

Tdz,

Gs = k1
2
z0

∫ z0

0

f ′ − e′

z0
k1[φ0(z), . . . , φv(z)]

Tdz,

Cs = [2φ0(z), φ1(z), . . . , φv(z)],

Θ̄s(0) =
2
z0

∫ z0

0
Θ(z, 0)[φ0(z), . . . , φv(z)]

Tdz.

Galerkin’s truncation is a method for mapping the temperature and energy distribu-
tions to a functional global space. The transient dissipated power must be continuously dif-
ferentiable during the calculation; a linear fit for the transient dissipated power is required
in each solution domain. The results of the linear fit are substituted into Equations (37)–(39),
and the temperature at the previous time is used as the initial value at the current time to
calculate the temperature distribution in each solution domain. The electromagnetic field
submodel introduced in Section 3.1 calculates the dielectric constant and electric field dis-
tribution based on the temperature distribution at the current moment, then calculates the
transient dissipated power. The thermodynamic field submodel introduced in Section 3.2
calculates the temperature distribution based on the transient dissipated power. The model
is iterated until the maximum heating time tmax is reached.

Algorithm 1 shows the method used to solve the microwave heating temperature
distribution based on the circular iterative method.
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Algorithm 1: Algorithm for solving the microwave heating temperature distribution of the TE10
mode.

1: The thermodynamic and electromagnetic parameters, i.e., the initial temperature T0(x, z),
density ρ, specific heat capacity Cp, thermal conductivity κ, and dielectric constant ε(T), are
initialised.

2: The entire solution space is meshed into a finite number of solution domains.
3: Based on Equations (18), (31) and (32) and the permittivity of each solution domain, the electric

field distribution is calculated.
4: Substituting into Equation (33), the transient dissipated power values are obtained for each

solved domain ∆Qabs(n, m, t).
5: Each solution domain ∆x in the x-axis direction is considered as a group, and the transient

dissipated power in the z-axis direction within the same group are linearly fitted to obtain an
explicit expression.

6: The global temperature distribution is calculated by substituting the explicit dissipative power
expressions into Equations (37)–(39).

7: The temperature at the current moment is used as a basis to update the dielectric constant of
each solution domain.

8: Update t = t + ∆t. If the maximum heating time is reached, end the loop; otherwise, return to
Step 3.

4. Results and Analysis

In this subsection, MATLAB numerical simulations are used to validate the proposed
method of solving the microwave heating temperature distribution of the TE10 mode, and
the results are compared with accurate FEM calculation results. The medium being heated
is a potato; in this medium, the dielectric constant varies with the temperature, as expressed
by [17,35]:

ε(T) = −6.4× 10−3T2 + 2× 10−1T + 56.8− j
(
−1× 10−4T2 − 1.08× 10−1T + 16.1

)
, (40)

the density ρ = 1050 kg/m3, the specific heat capacity Cp = 3640 J/(kg ·K), and the thermal
conductivity κ = 0.648 W/(m ·K). A schematic diagram of a rectangular waveguide heating
a potato is shown in Figure 2, assuming that the potato fills the entire waveguide.

Figure 2. Schematic diagram of a heated potato in a rectangular waveguide.

The feeding microwave frequency is 2.45 GHz. The size of the heated potato is
x0 = 82 mm and z0 = 80 mm. We consider homogeneous boundary conditions, an initial
temperature of 20 ◦C, a heating time of tmax = 10 s, and an initial incident electric field of
E0 = 500 V/cm with zero phase. The discrete transient dissipated power values using a
5th-order polynomial linear fit. The heating time tmax is discretised as ∆t = 1 s. During
spatial meshing, each small solution domain has values of ∆x = 0.10 mm in the x-axis
direction and ∆z = 0.10 mm in the z-axis direction. The method proposed in this paper
calculates the temperature distribution inside the potato after 10 s of heating, as shown
in Figure 3. The same heating model was constructed using the FEM based COMSOL
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Multiphysics simulation software, with a width of 43.2 mm and all other parameters being
the same, and the results are shown in Figure 4.

Figure 3. Calculation results of the proposed method.

Figure 4. Finite element method (FEM) calculation results. (a) Temperature distribution of the mate-
rial in a rectangular waveguide. (b) Temperature distribution in the vertical sections. (c) Temperature
distribution in the horizontal section. (d) Temperature distribution in the central vertical section.

Figures 3 and 4 show that the proposed method is consistent with the FEM calcu-
lation results, indicating that the proposed method effectively predicts the temperature
domain distribution of the heated medium. The temperature values reach their maximum
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at x = 41 mm and are distributed along the x-axis in a half-sine period square. The tem-
perature values decay exponentially along the z-axis, which is consistent with Lambert’s
theorem [26]. When z ≥ 30 mm, the temperature of the medium is close to room tempera-
ture. The temperature distribution at the 10th s for different values of x (i.e., 21, 41, 51, and
71 mm) and z (i.e., 0, 20, 40, and 60 mm) is shown in Figures 5 and 6.
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x = 41 mm, FEM
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Figure 5. The temperature distribution when x is 21, 41, 51, and 71 mm.
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Figure 6. The temperature distribution when z is 0, 20, 40, and 60 mm.

Figures 5 and 6 show that the error between the proposed method and the FEM is
smaller at the centre of the x-axis. As the distance from the centre of the x-axis increases,
the calculation error increases; however, the proposed method can still approximate the
temperature distribution inside the medium. The results show that the proposed model can
accurately predict the temperature distribution at the central location and can effectively
prevent thermal runaway. The proposed model considers only the steady-state propagation
of the TE10 mode, neglecting other forms of the electromagnetic field modes. Therefore,
in the FEM calculation process, the effect of other electromagnetic field modes leads to a
slightly higher value than that obtained with the proposed method.
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To further validate the proposed model, the temperature distribution of the whole
solution process was analysed. The global temperature distribution at the centre of the
x-axis (x = x0/2) is shown in Figures 7 and 8.
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Figure 7. The global temperature distribution calculated by the proposed method at x = x0/2.
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Figure 8. The global temperature distribution calculated by the FEM at x = x0/2.

Figures 7 and 8 show that the results of the two calculation methods are very similar.
The rate of the temperature change inside the medium is strongly nonlinear over time. This
result occurs because the dielectric constant of the medium changes with the temperature,
which, in turn, affects the electric field strength. On the basis of Figures 7 and 8, the
numerical results of the two methodologies are further compared. The temperature versus
time curves at different depths (z = 0, 20, 40, and 60 mm) are shown in Figure 9. The
temperature distributions in the z-axis direction at different moments (t = 2, 4, 6, and 8 s)
are shown in Figure 10.
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Figure 9. Comparison of the temperature variation results with time at different depths.
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Figure 10. Comparison of the temperature distributions in the z-axis direction at different moments.

The comparison results in Figures 9 and 10 demonstrate that the two numerical calcu-
lations are consistent. Although there is a slight error, the global temperature distribution
and the rate of change in temperature with time effectively describe the overall microwave
heating process. The numerical results demonstrate that the proposed microwave heating
model of the TE10 mode can be used to effectively predict temperature changes inside the
media during heating processes.

5. Conclusions

In this paper, a finite-dimensional microwave heating model of the TE10 mode was
constructed to approximate the global temperature distribution of a medium with a
temperature-dependent dielectric constant. The proposed method overcomes the draw-
backs of the conventional microwave heating model of infinite dimensionality and is
universally applicable to nonmagnetic media (e.g., potato, SiC and Debye media). The con-
ventional microwave heating model and the vector distribution characteristics of the TE10
mode in a rectangular waveguide cavity are analysed, thus simplifying the conventional
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heating model and constructing a two-dimensional spatial transient dissipated power
expression, infinite-dimensional heat balance equation, boundary conditions and initial
conditions. For the temperature dependence of the dielectric constant, the heating time is
discretized into multiple time domains, and the dielectric constant is considered constant
in each time domain. The heating medium is meshed into a finite number of discrete
domains. The electric field intensity in each discrete domain is determined by solving
Maxwell’s equations, and the transient dissipated power is calculated. The transient dissi-
pated power in the discrete domain is linearly fitted to a finite-dimensional thermodynamic
field ODE model (obtained by downscaling the traditional PDE model by the modified
spectral Galerkin’s method) to calculate the transient temperature distribution, and the
global temperature distribution of the microwave heating is obtained with a circular itera-
tive method. Finally, the temperature distributions of a material that was heated for 10 s
obtained with the proposed finite-dimensional method and the infinite-dimensional FEM
are compared, with all parameters being equal. We also compared the results of the solution
during the heating process. The comparison results verify the accuracy and validity of
the proposed method for predicting the microwave heating temperature distribution of
the TE10 mode. This method provides a solid basis for preventing thermal runaway and
designing microwave heating controllers.

Author Contributions: Conceptualization, B.Y., H.H., L.Z. and H.J.; methodology, B.Y. and H.H.;
software, H.H. and H.J.; validation, B.Y. and H.H.; formal analysis, B.Y. and L.Z.; investigation,
H.H., L.Z. and H.J.; resources, H.H.; data curation, H.H.; writing—original draft preparation, H.H.;
writing—review and editing, H.H.; visualization, H.H.; supervision, B.Y.; project administration, B.Y.;
funding acquisition, B.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (61863020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data and models generated or used during the study appear in the
submitted article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing-A review. Food Res. Int. 2013, 52, 243–261. [CrossRef]
2. Omran, M.; Fabritius, T.; Yu, Y.W.; Heikkinen, E.P.; Chen, G.; Kacar, Y. Improving zinc recovery from steelmaking dust by

switching from conventional heating to microwave heating. J. Sustain. Metall. 2021, 7, 15–26. [CrossRef]
3. Tang, L.; Wang, J.; Zhang, B.; Li, C.; Jin, H.H. Remarkable microwave heating performance of MWCNTs/polypropylene

composites verified by electromagnetic-thermal coupling experiment and simulation. Compos. Sci. Technol. 2022, 223, 109428.
[CrossRef]

4. Palma, V.; Barba, D.; Cortese, M.; Martino, M.; Renda, S.; Meloni, E. Microwaves and heterogeneous catalysis: a review on
selected catalytic processes. Catalysts 2020, 10, 246. [CrossRef]

5. Luo, W.; Huang, S.Y.; Liu, Y.H.; Peng, H.; Ye, Y. Three-dimensional mesostructure model of coupled electromagnetic and heat
transfer for microwave heating on steel slag asphalt mixtures. Constr. Build. Mater. 2022, 330, 127235. [CrossRef]

6. Tamang, S.; Aravindan, S. Joining of dissimilar metals by microwave hybrid heating: 3D numerical simulation and experiment.
Int. J. Therm. Sci. 2021, 172, 107281. [CrossRef]

7. Bhattacharya, M.; Basak, T. A review on the susceptor assisted microwave processing of materials. Energy 2016, 97, 306–338.
[CrossRef]

8. Shang, X.B.; Zhai, D.; Chong, C.Y.; Zhang, F.C.; Wei, C.; Chen, J.R.; Liu, M.H.; Peng, J.H. Electromagnetic waves transmission
performance of alumina refractory ceramics in 2.45 GHz microwave heating. Ceram. Int. 2019, 45, 23493–23500. [CrossRef]

9. Dinani, S.T.; Feldmann, E.; Kulozik, U. Effect of heating by solid-state microwave technology at fixed frequencies or by frequency
sweep loops on heating profiles in model food samples. Food Bioprod. Process. 2021, 127, 328–337. [CrossRef]

10. Yakata, R.; Sonobe, S.; Asakuma, Y.; Hyde, A.; Phan, C.; Sen, T.K. Characterization of heating behaviour of a microwave reactor
during mixing. Therm. Sci. Eng. Prog. 2022, 29, 101206. [CrossRef]

11. Wang, C.R.; Yao, W.; Zhu, H.C.; Yang, Y.; Yan, L.P. Uniform and highly efficient microwave heating based on dual-port
phase-difference-shifting method. Int. J. Microw. Comput. Eng. 2021, 31, e22784. [CrossRef]

http://doi.org/10.1016/j.foodres.2013.02.033
http://dx.doi.org/10.1007/s40831-020-00319-x
http://dx.doi.org/10.1016/j.compscitech.2022.109428
http://dx.doi.org/10.3390/catal10020246
http://dx.doi.org/10.1016/j.conbuildmat.2022.127235
http://dx.doi.org/10.1016/j.ijthermalsci.2021.107281
http://dx.doi.org/10.1016/j.energy.2015.11.034
http://dx.doi.org/10.1016/j.ceramint.2019.08.055
http://dx.doi.org/10.1016/j.fbp.2021.03.018
http://dx.doi.org/10.1016/j.tsep.2022.101206
http://dx.doi.org/10.1002/mmce.22784


Processes 2022, 10, 1377 17 of 17

12. Su, T.Y.; Zhang, W.Q.; Zhang, Z.J.; Wang, X.W.; Zhang, S.W. Energy utilization and heating uniformity of multiple specimens
heated in a domestic microwave oven. Food Bioprod. Process. 2022, 132, 35–51. [CrossRef]

13. Pitchai, K.; Birla, S.L.; Subbiah, J.; Jones, D.; Thippareddi, H. Coupled electromagnetic and heat transfer model for microwave
heating in domestic ovens. J. Food Eng. 2012, 112, 100–111. [CrossRef]

14. Acevedo, L.; Uson, S.; Uche, J. Numerical study of cullet glass subjected to microwave heating and SiC susceptor effects. Part I:
Combined electric and thermal model. Energ. Convers. Manag. 2015, 97, 439–457. [CrossRef]

15. Jing, X.D.; Wen, H.; Xu, Z.H. Temperature field simulation of polyolefin-absorber mixture by FDTD-FDM model during microwave
heating. Chin. J. Chem. Eng. 2020, 28, 2900–2917. [CrossRef]

16. Lou, B.W.; Sha, A.M.; Barbieri, D.M.; Liu, Z.Z.; Zhang, F. Microwave heating properties of steel slag asphalt mixture using a
coupled electromagnetic and heat transfer model. Constr. Build. Mater. 2021, 291, 123248. [CrossRef]

17. Ye, J.H.; Xia, Y.; Yi, Q.Y.; Zhu, H.C.; Yang, Y.; Huang, K.M.; Shi, K.B. Multiphysics modeling of microwave heating of solid samples
in rotary lifting motion in a rectangular multi-mode cavity. Innov. Food Sci. Emerg. 2021, 73, 102767. [CrossRef]

18. Zhou, J.; Yang, X.Q.; Chu, Y.; Li, X.; Yuan, J.P. A novel algorithm approach for rapid simulated microwave heating of food moving
on a conveyor belt. J. Food Eng. 2020, 282, 110029. [CrossRef]

19. Yi, Q.Y.; Lan, J.Q.; Ye, J.H.; Zhu, H.C.; Yang, Y.; Wu, Y.Y.; Huang, K.M. A simulation method of coupled model for a microwave
heating process with multiple moving elements. Chem. Eng. Sci. 2021, 231, 116339. [CrossRef]

20. Ye, J.H.; Lan, J.Q.; Xia, Y.; Yang, Y.; Zhu, H.C.; Huang, K.M. An approach for simulating the microwave heating process with a
slow-rotating sample and a fast-rotating mode stirrer. Int. J. Heat Mass Tran. 2019, 140, 440–452. [CrossRef]

21. He, J.L.; Yang, Y.; Zhu, H.C.; Li, K.; Yao, W.; Huang, K.M. Microwave heating based on two rotary waveguides to improve
efficiency and uniformity by gradient descent method. Appl. Therm. Eng. 2020, 178, 115594. [CrossRef]

22. Teimoori, K.; Cooper, R. Multiphysics study of microwave irradiation effects on rock breakage system. Int. J. Rock Mech. Min.
2021, 140, 104586. [CrossRef]

23. Upadhyay, S.; Rai, K.N. A new iterative least square Chebyshev wavelet Galerkin FEM applied to dual phase lag model on
microwave drying of foods. Int. J. Therm. Sci. 2019, 139, 217–231. [CrossRef]

24. Zhong, J.Q.; Liang, S.; Xiong, Q.Y. Improved receding horizon H-infinity temperature spectrum tracking control for Debye media
in microwave heating process. J. Process Contr. 2018, 71, 14–24. [CrossRef]

25. Zhong, J.Q.; Liang, S.; Yuan, Y.P.; Xiong, Q.Y. Coupled electromagnetic and heat transfer ODE model for microwave heating with
temperature-dependent permittivity. IEEE T. Microw. Theory 2016, 64, 2467–2477. [CrossRef]

26. Zhong, J.Q.; Liang, S.; Xiong, Q.Y.; Yuan, Y.P.; Zeng, C. Approximate microwave heating models for global temperature profile in
rectangular medium with TE10 mode. J. Therm. Anal. Calorim. 2015, 122, 487–495. [CrossRef]

27. Meng, Q.; Lan, J.Q.; Hong, T.; Zhu, H.C. Effect of the rotating metal patch on microwave heating uniformity. J. Microw. Power
Electromagn. Energy 2018, 52, 94–108. [CrossRef]

28. Xiong, G.C.; Zhu, H.C.; Huang, K.M.; Yang, Y.; Fan, Z.P.; Ye, J.H. The impact of pins on dual-port microwave heating uniformity
and efficiency with dual frequency. J. Microw. Power Electromagn. Energy 2020, 54, 83–98. [CrossRef]

29. Yang, B.; Sun, J.; Li, W.; Peng, J.H.; Li, Y.L.; Luo, H.L.; Guo, S.H.; Zhang, Z.M.; Su, H.Z.; Shi, Y.M. Numerical modeling dynamic
process of multi-feed microwave heating of industrial solution media. J. Cent. South Univ. 2016, 23, 3192–3203. [CrossRef]

30. Halim, S.A.; Swithenbank, J. Simulation study of parameters influencing microwave heating of biomass. J. Energy Inst. 2019, 92,
1191–1212. [CrossRef]

31. Llave, Y.; Kambayashi, D.; Fukuoka, M.; Sakai, N. Power absorption analysis of two-component materials during microwave
thawing and heating: Experimental and computer simulation. Innov. Food Sci. Emerg. 2020, 66, 102479. [CrossRef]

32. Liao, Y.H.; Wu, Z.Y.; Feng, X.P. Characteristics of heating process in microwave applicators with elements in periodic motion. Int.
J. Microw. Comput. Eng. 2019, 29, e21641. [CrossRef]

33. Zhang, M.; Jia, X.B.; Tang, Z.X.; Zeng, Y.X.; Wang, X.J.; Liu, Y.; Ling, Y.Q. A Fast and Accurate Method for Computing the
Microwave Heating of Moving Objects. Appl. Sci. 2020, 10, 2985. [CrossRef]

34. Klinbun, W.; Rattanadecho, P.; Pakdee, W. Microwave heating of saturated packed bed using a rectangular waveguide (TE10
mode): Influence of particle size, sample dimension, frequency, and placement inside the guide. Int. J. Heat Mass Tran. 2011, 54,
1763–1774. [CrossRef]

35. Zhu, H.C.; He, J.B.; Hong, T.; Yang, Q.Z.; Wu, Y.; Yang, Y.; Huang K.M. A rotary radiation structure for microwave heating
uniformity improvement. Appl. Therm. Eng. 2018, 141, 648–658. [CrossRef]

http://dx.doi.org/10.1016/j.fbp.2021.12.008
http://dx.doi.org/10.1016/j.jfoodeng.2012.03.013
http://dx.doi.org/10.1016/j.enconman.2015.03.053
http://dx.doi.org/10.1016/j.cjche.2020.06.004
http://dx.doi.org/10.1016/j.conbuildmat.2021.123248
http://dx.doi.org/10.1016/j.ifset.2021.102767
http://dx.doi.org/10.1016/j.jfoodeng.2020.110029
http://dx.doi.org/10.1016/j.ces.2020.116339
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.06.017
http://dx.doi.org/10.1016/j.applthermaleng.2020.115594
http://dx.doi.org/10.1016/j.ijrmms.2020.104586
http://dx.doi.org/10.1016/j.ijthermalsci.2019.01.035
http://dx.doi.org/10.1016/j.jprocont.2018.08.007
http://dx.doi.org/10.1109/TMTT.2016.2584613
http://dx.doi.org/10.1007/s10973-015-4713-y
http://dx.doi.org/10.1080/08327823.2018.1440341
http://dx.doi.org/10.1080/08327823.2020.1755481
http://dx.doi.org/10.1007/s11771-016-3385-5
http://dx.doi.org/10.1016/j.joei.2018.05.010
http://dx.doi.org/10.1016/j.ifset.2020.102479
http://dx.doi.org/10.1002/mmce.21641
http://dx.doi.org/10.3390/app10082985
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.01.015
http://dx.doi.org/10.1016/j.applthermaleng.2018.05.122

	Introduction
	Microwave Heating Temperature Model
	Conventional Microwave Heating Temperature Model
	Microwave Heating Temperature Model in  TE10 Wave Mode

	Solving for the Temperature Distribution
	Solving the Electromagnetic Field Submodels
	Solving the Thermodynamic Field Submodels 

	Results and Analysis
	Conclusions
	References

