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Abstract: Corresponding to the reported features of anti-VEGFR-2-approved compounds, a new 1H-
indole derivative (compound 7) was designed. The inhibitory potential of the designed compound
was revealed via a molecular docking study that showed the appropriate binding. Then, MD
simulation (six studies) over a period of 100 ns was performed to confirm the precise binding and
optimum energy. Additionally, MM-GBSA reaffirmed the perfect binding, exhibiting a total precise
energy of −40.38 Kcal/Mol. The MM-GBSA experiments named the essential amino acids in the
protein–ligand interaction, employing the binding energy decomposition and revealing the diversity
of interactions of compound 7 inside the VEGFR-2 enzyme. As compound 7 is new, DFT experiments
were utilized for molecular structure optimization. Additionally, the DFT results validated the
coherent interaction of compound 7 with the VEGFR-2 enzyme. A good value of drug-likeness of
compound 7 was acknowledged via in silico ADMET studies. Interestingly, the experimental in vitro
prohibitory potential of compound 7 was better than that of sorafenib, demonstrating an IC50 value
of 25 nM. Notably, the strong inhibitory effects of compound 10 against two cancer cell lines (MCF-7
and HCT 116) were established with IC50 values of 12.93 and 11.52 µM, disclosing high selectivity
indexes of 6.7 and 7.5, respectively.

Keywords: 1H-indole; VEGFR-2 inhibitors; molecular docking; MD simulations; MM-GBSA; PLIP;
DFT; ADMET; in vitro antiproliferative

1. Introduction

The WHO has estimated that cancer will become the main cause of death over the
upcoming years. Additionally, they have pointed to the dominance of breast cancer
(according to the discovery of new cancer cases) in 2020, with more than 2.2 million new
cases [1]. Correspondingly, cancer therapy, especially breast cancer, is a challenging area
for medicinal chemists to develop treatments that inhibit the growth of cancer cells by
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interacting with specific molecular targets and subsequently killing them. Tumor growth
and reproduction are associated with increased vascularity (angiogenesis) in cancer cells [2].
Accordingly, anti-angiogenesis mechanisms were considered as one of the potential ways
to combat cancer [3]. The vascular endothelial growth factor (VEGF) pathway plays an
important role in the incidence of angiogenesis [4]. The vascular endothelial growth factor
receptors (VEGFRs) can be divided into three subtypes; VEGFR-1, VEGFR-2, and VEGFR-3.
Among the most valuable targets in cancer management, VEGFR-2 is a transmembrane
tyrosine kinase receptor that is correlated with cell proliferation, division, motility, adhesion,
and angiogenesis [5]. Thus, blocking the VEGFR-2 signaling cascade inhibits cancer cell
proliferation [6]. The fact that cancer cells express VEGFR-2 receptors more than normal
cells has enabled scientists to create safe and selective drugs to combat angiogenesis in
tumor cells without affecting normal cells [7].

Using computers, computational (in silico) chemistry is a scientific approach that ap-
plies theoretical and mathematical basics to address and solve chemical problems. Computa-
tional chemistry is widely used in the pharmaceutical industry for investigating interactions
between potential drugs and biomolecular targets [8]. Our team have synthesized and exam-
ined various compounds that were designed as anti-VEGFR-2, belonging to different classes
such as quinazoline [9–12], nicotinamides [13], benzoxazole [14], pyridine [15] dihydro-
quinolones [16], thiourea-azetidine [17,18], and quinoxaline-2 (1H)-one [19–23], in addition
to thieno [2,3-d]pyrimidine [24]. Furthermore, our team utilized the basics of in silico chem-
istry as a successful tool in molecular design and docking [25,26], structural similarity [27],
toxicity [28], ADMET [29], DFT [30,31], MD [32], and pharmacophore [33] investigation.

We herein employ our former experiences in both of in silico chemistry and drug
discovery to introduce an effective and selective chemotherapeutic 1H-indole derivative
focusing on VEGFR-2.

Rationale

Figure 1 demonstrates some reported and FDA-approved VEGFR-2 inhibitors such
as sorafenib I [34], sunitinib II [35], vorolanib III [36], nintedanib IV [37], and toceranib
V [38]. These drugs have four key pharmacophoric features that must exist in any inhibitor
to fit with the VEGFR-2 active site. The four key features are aromatic ring, spacer moiety,
pharmacophore moiety (comprising hydrogen bond donor and hydrogen bond acceptor
atoms), and hydrophobic group [20,39,40].

Regarding sunitinib II, vorolanib III, nintedanib IV, and toceranib V, these drugs
possess 1H-indole derivatives as hetero aromatic structures that can occupy the hinge
region of the VEGFR-2 active site. In all compounds, it was noticed that the 1H-indole
derivatives share three characteristics. (i) The NH group at the 1-position was kept free
without any substitution. (ii) Except nintedanib IV, the 5-position was substituted with
the hydrophobic (fluoro) group. (iii) The 1H-indole moiety was attached to the rest of
the structures at the 3-position. Moreover, sunitinib II, vorolanib III, nintedanib IV, and
toceranib V have an amide moiety as a pharmacophore that binds the DFG motif region
and forms essential hydrogen bonds with Asp1044 and Glu833.

Taking these characteristics into consideration, we designed a modified analog that
kept the main characteristics of the lead compounds (II–V). As appeared in Figure 2, the
designed molecule has a 1H-indole moiety as a hetero aromatic structure that can occupy
the hinge region of the VEGFR-2 active site. The 1H-indole moiety has a free NH group
with a substitution at the 5-position with a hydrophobic methoxy group. In addition, the
1H-indole moiety was attached to the rest of the structures at the 3-position as in the lead
compounds. Furthermore, the designed molecule has an amide moiety as a pharmacophore
that binds the DFG motif region at the VEGFR-2 active site. The linker structure of the
designed compound consisted of an N′-methylene benzohydrazide moiety that can form
hydrophobic and hydrophilic interactions at the gatekeeper region. Finally, a plain phenyl
ring was utilized as a hydrophobic tail in the designed molecule to form a hydrophobic
interaction at the allosteric binding pocket.
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2. Results and Discussion
2.1. In Silico Studies
2.1.1. Docking Study

Molecular docking has been applied as an essential tool in the process of drug design
and discovery for various bioactive compounds [39,40], including antispasmodics [41],
antimicrobials [42], and antimalarials [43]. Compound 7 was docked into the VEGFR-2 ATP
binding site to better understand the pattern by which it bounds to the active site [38–40].
Following the preparation of the downloaded protein (PDB ID: 2OH4, resolution: 2.05 Å),
the native co-crystallized inhibitor was re-docked against the catalytic VEGFR-2 site as a
validation step for the docking protocol. The validation process successfully formed an
RMSD value of 0.79 that indicated the validity of the docking operation (Figure 3).
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The surveillance of interaction types between sorafenib and the VEGFR-2 active pocket
showed that it could form two main types of interactions (Figure 4). The first type was
represented by three H-bonding interactions with the critical amino acids in the VEGFR-2
catalytic site. This includes Cys917 in the hinge region, and Asp1044, and Glu883 in the
DFG motif. The second type of interactions comprised a huge network of π interactions
between sorafenib and the hydrophobic amino acids (Val846, Val914, Val897, Phe1045, and
Cys1043 in the linker region, Leu1033, Leu838, Val846, Phe1045, and Ala864 in the hinge
region, and Leu1017, His1024, Ile890, Ile886, and Leu887 in the hydrophobic pocket).
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Figure 4. Sorafenib binding pattern, (A) 3D and (B) 2D.

Docking results for compound 7 revealed strong binding interactions with the VEGFR-2
enzyme, similar to sorafenib. Simply, compound 7 formed a critical hydrogen bond
with Cys917 via its indole nitrogen, similar to the pyridine nitrogen of sorafenib. The
methoxy group formed a hydrogen bond with Arg1049. Moreover, the amide moiety
(inserted between the two phenyl groups) formed two hydrogen-bonding interactions with
Glu883 and Asp1044 amino acids, similar to those of sorafenib’s urea group. As well, the
central phenyl moiety occupied the linker region to form hydrophobic interactions between
Val897, and Val914. Similar to the 3-trifluoromethyl-4-chlorophenyl moiety of sorafenib,
the hydrophobic allosteric site of the enzyme was occupied with the terminal phenyl group
via interactions with Leu887 and Val897. The binding mode of compound 7 is presented in
Figure 5.
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2.1.2. MD Studies

To study the stability of the compound 7-VEGFR-2 complex (7-VEGFR-2 complex),
we performed an MD simulation for the complex. The trajectory was used to extract the
RMSD (Figure 6A), RMSF (Figure 6B), SASA (Figure 6C), RoG (Figure 6D), the change
in the number of hydrogen bonds (Figure 6E), and the distance between the center of
masses between the compound 7 and VEGFR-2 (Figure 6F). The RMSD of the protein and
7-VEGFR-2 complex shows that the system was changing its conformation in the first half of
the simulation before coming to a stable state, with an average of 5 Å and 5.46 Å, respectively.
On the other hand, the RMSD of compound 7 shows fluctuations in approximately the
first 65 ns, indicating some intrinsic movement of the ligand, before coming to stable
values at around 3.2 Å. The reason for the increase in the RMSD after 50 ns is the large
motion of the L1047:P1066 loop, as shown in the RMSF values. In addition, the terminals
show very large fluctuations, reaching 8 Å. On the other hand, nearly most of the amino
acids have fluctuations of less than 2 Å. The values of SASA (average = 17,370 Å2), RoG
(average = 20.66 Å), and the change in the number of hydrogen bonds (average = 70 bonds)
show that the VEGFR-2 conformation is stable, with no unfolding or folding occurring. The
distance between the center of mass of compound 7 and VEGFR-2 indicates that compound
7 is bound to VEGFR-2 during the simulation, with an average of 8.08 Å.
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2.1.3. MM-GBSA

To measure the strength of binding, the gmx_MMPBSA library was utilized. Figure 7
shows the values of the energy components of MM-GBSA, and their standard deviations.
The binding is mostly due to the van der Waals interaction (an average of −54.8 Kcal/Mol),
followed by electrostatic interactions (an average of −25.07 Kcal/Mol) and a total binding
energy of −40.38 Kcal/Mol. The amino acid contribution to the binding was measured
via the decomposition of MM-GBSA, to know which amino acids are contributing most
to the interaction (Figure 8). Eight amino acids showed a contribution to the binding,
with values of less than −1 Kcal/Mol. L838, V846, K866, L887, V897, V914, C1043, and
F1045 showed binding contributions of −1.07 Kcal/Mol, −1.12 Kcal/Mol, −1.49 Kcal/Mol,
−1.37 Kcal/Mol, −1.27 Kcal/Mol, −1.11 Kcal/Mol, −3.21 Kcal/Mol, and −1.80 Kcal/Mol,
respectively.
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Figure 8. Free binding energy decomposition of amino acids around 10 Å of the 7-VEGFR-2 complex.

To know the numbers and types of interaction, the trajectory was clustered, and for
each cluster, a representative frame was obtained that was used with the PLIP webserver.
Table 1 shows the number and types of interactions for each frame. The predominant
interaction is the hydrophobic interaction in all of the representative frames that support
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the value of the van der Waals component in MM-GBSA analysis. In addition, PLIP outputs
the .pse file that shows the 3D interaction pattern for each representative frame (Figure 9).

Table 1. Variation of interactions between compound 7 and VEGFR-2, as obtained from the PLIP
webserver for the representative frame of each cluster.

Cluster
Number

No. of Hydrogen
Bonds

Amino Acids in the
Receptor

No. of Hydrophobic
Interactions Amino Acids in the Receptor

C1 3 K866–E915–D1044 6 I886–L887–I890–L1017–L1033–F1045

C2 3 K866–E915–D1044 4 I886–I890–L1017–L1033

C3 3 K866–E915–D1044 7 I886–I890 (2)–F916–L1017–D1044–F1045
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2.1.4. Density Functional Theory (DFT)
Molecular Structure Optimization

The nucleophilic attack of N-(4-(hydrazinecarbonyl)phenyl)benzamide to 5-methoxy-
1H-indole-3-carbaldehyde results in a Schiff base formation through the imine bond (C11-
N13). The optimized structure of the formed Schiff base compound is represented in
Figure 10. As shown in Figure 10, the imine bond length was found to be 1.28577 Å, while
the (C9C11N13) and (C11N13C14) angles were found to be 118.21◦ and 129.37◦, respectively.
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Quantum Chemistry Calculations

The quantum chemistry calculations have been employed as a successful tool in the
discovery of active compounds targeting various diseases such as prostate cancer [44],
inflammation [45], and malignant glioblastoma [46]. The quantum chemistry calculations
were conducted using the Gaussian(R) 09 program at the B3LYP level, together with the
6-311++G(d,p) basis set and the density functional theory (DFT) approach. As depicted
in Figure 11, the electronic density of the highest occupied molecular orbital (HOMO) is
localized on the heteroaromatic ring system, while in the lowest unoccupied molecular
orbital (LUMO), the electronic density is located over the central linker and phenylben-
zamide moieties. Frontier molecular orbital (FMO) theory suggested that HOMO serves
as a donor, and LUMO serves as an acceptor for electrons. Both HOMO and LUMO have
important roles in electronic investigations, and are essential to modern molecular biology
and biochemistry when using quantum chemical calculations. A molecule is thought to be
softer and more chemically reactive when its energy gap is small. A molecule is assumed to
have greater chemical hardness and to be more stable when it has a large energy gap. The
FMO gives very significant evidence for the stability, utilizing the difference in the energy
(Egap) of the frontier orbitals. Chemical quantum parameters are related to the inhibition
efficiency of compound 7, such as the chemical potential (µ), global hardness (η), maximal
charge acceptance (∆Nmax), and energy change (∆E); global softness (σ), electronegativity
(χ), electrophilicity index (ω), ionization potential (IP), and electron affinity (EA) were
calculated according to the equations of Koopmans’ theory (Table 2) (the equations were
detailed in Supporting Data).
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Table 2. The DFT calculated global reactivity parameters for comp. 7.

IP EA µ (eV) χ (eV) η (eV) σ (eV) ω (eV) Dm (Debye) TE (eV) ∆Nmax ∆E (eV)

−6.055 −1.857 −3.956 3.956 2.099 0.476 16.421 6.472 −37,323.8 1.885 −16.421

Global quantum parameters, as well as the dipole moment (Dm) and the total ground
state energy (TE), are calculated and summarized in Table 2. The results refer to the ability
of comp. 7 to act as an inhibitor against VEGFR-2. For a system in equilibrium, the product
of the density of states and probability distribution function gives the number of occupied
states per unit volume for a given energy. This number is frequently used to study a
variety of physical properties of materials. The total density of state analysis has been
calculated and analyzed. The results confirmed the small energy gap of the compound
under investigation, as depicted in Figure 12, which confirmed the reactivity of compound 7.
When the Egap of the border orbitals reduces, the inhibitor’s efficiency increases [47].
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311++G(d,p).

The Electron Density Maps

The reactivity strength of compound 7 can be predicted using DFT calculations based
on the electron density of the donor atoms. The total electron density (TED) map, in
Figure 13; represents the whole molecule’s electron density. The red regions refer to the
high electronegativity chemical sites, which are the O atoms of two carbonyls and methoxy
groups in the investigated compound. Such active sites aid with electrophilic attack by
amino acids (Cys917 and Glu833). In addition, the yellow-colored regions refer to atoms
having a moderate electronegativity and that may form hydrophobic interactions, while
the blue zones point to the most favorable positive regions, which accept electrons from the
donor atoms of amino acids [48]. The electropositive regions are concentrated over the N-H
groups. Such findings explain the nucleophilic attack of amino acids (Cys917 and Glu833)
onto the NH groups of the 1H-indol and amide moieties, respectively. Furthermore, the
possibility of hydrophobic interactions by the 1H-indol moiety, the central phenyl group,
and the terminal hydrophobic phenyl group was supported by the yellow zones at these
functional groups. The electrostatic surface potential (ESP) reveals the inhibition orientation
of the molecule on the electrophilic amino acids (Figure 13), which is in the same orientation
as the carbonyl and methoxy groups.
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2.1.5. ADMET Profiling Study

Sorafenib was used as a reference molecule, as the ADMET variables were investigated
for compound 7 with Discovery studio 4.0 software. Both compound 7 and sorafenib
showed remarkable similarities according to the ADMET results (Figure 14), showing a
very low potential to pass the BBB, and good levels of intestinal absorption in addition
to low and very low aqueous solubility levels, respectively. Similarly, both molecules
presented a non-inhibitory potential against the cytochrome P-450 and CYP2D6, and
revealed more than 90% binding percentage with plasma protein.
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2.1.6. In Silico Toxicity Studies

In the presented study, five parameters of toxicity were estimated computationally, in
accordance with the toxicity models built in the Discovery studio software. The employed
models are; the rat-female FDA rodent carcinogenicity (RF-FDA-C) that predicts if the
examined compound is carcinogenic or not, carcinogenic potency TD50 in a mouse model
(TD50-M), maximum tolerated dose in rats (MD-R), rat oral LD50 (R-O- LD50), and rat
chronic LOAEL (LOAEL-C), in addition to skin and eye irritancy. Table 3 demonstrates the
expected general safety of compound 7 against sorafenib.

Table 3. In silico toxicity studies of compound 7 and reference molecule.

Comp. RF-FDA-C TD50-M
(mg/kg/day)

MD-R
(g/kg)

R-O-LD50
(g/kg)

LOAEL-C
(g/kg)

Skin
Irritancy Eye Irritancy

Compound 7
Non-Carcinogen

15.480 0.486 0.874 0.136 Non-Irritant Mild

Sorafenib 19.236 0.089 0.823 0.005 Non-Irritant Mild

2.1.7. Molecular Similarity
Similarity Check Using Physical Properties

A molecular similarity study using Discovery studio software was conducted to check
the structural similarity between the synthesized compound and the FDA-approved 1H-
inole derivatives (sunitinib II, vorolanib III, nintedanib IV, and toceranib V). This technique
depends on many molecular properties to assess the structural similarity. These properties
include the partition coefficient (ALog p) [49], molecular weight (M. Wt) [50], H-bond
donors (HBA) [51], H-bond acceptors (HBD) [52], rotatable bond number [53], number
of rings along with aromatic rings and minimum distance [54], as well as the molecular
fractional polar surface area (MFPSA) [55]. Table 4 showed the different values for each
tested compound, while Figure 15 showed the degree of similarity.
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Table 4. Molecular properties of the tested FDA-approved drug and the synthesized compound 7.

Comp. ALog p M. Wt HBA HBD Rotatable
Bonds Rings Aromatic

Rings MFPSA Minimum
Distance

Toceranib V 2.761 396.458 3 3 5 4 2 0.191 1.12

Compound 7 3.745 412.441 4 3 6 4 4 0.233 0.00

Sunitinib II 2.997 398.474 3 3 7 3 2 0.179 1.35

Nintedanib IV 4.392 539.625 7 2 8 5 4 0.178 1.83

Vorolanib III 1.671 439.483 3 3 3 4 2 0.213 1.31
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Figure 15. Molecular similarity study between the synthesized compound (green ball) and the FDA-
approved 1H-inole derivatives (sunitinib, vorolanib, nintedanib, and toceranib). The red ball refers to
toceranib (the most similar compound). The blue balls refer to sunitinib, vorolanib, and nintedanib
(the less similar drugs).

The results revealed that toceranib V has the highest degree of similarity with the
synthesized compound 7.

Flexible Alignment

The 3D flexible alignment was studied for compound 7 and toceranib. The produced
figure indicated a high degree of similarity between these compounds. Each feature in
the tested compounds takes the same orientation of the corresponding one. In detail, the
5-fluoroindolin-2-one, central phenyl, amide, and terminal phenyl moieties of compound 7
showed the same orientations as 5-methoxyindolin-2-one, 2,4-dimethyl-1H-pyrrole, amide,
and 1-ethylpyrrolidine moieties of toceranib, respectively (Figure 16).
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2.2. Chemistry

To authenticate the design and the interesting results of the computational studies,
the targeted lead compound was synthesized according to Scheme 1. The commercially
available material (4-aminobenzoic acid 1) was first refluxed with methanol and sulfuric
acid in accordance with the reported procedure, to afford methyl 4-aminobenzoate 2.
Benzoylation of methyl 4-aminobenzoate 2 was achieved in an ice bath via dropwise
addition of benzoyl chloride 3 in DCM in the presence of TEA, to afford compound 4.
Refluxing compound 4 with hydrazine hydrate in ethanol afforded the corresponding acid
hydrazide derivative 5. A mixture of the acid hydrazide derivative 5 and 5-methoxy-1H-
indole-3-carbaldehyde 6 was refluxed in absolute ethanol and a few drops of glacial acetic
acid, to afford the final target compound 7.

The structure of compound 7 (Figure 17) was validated using spectral analysis. The
IR spectrum showed absorption bands at 3287 cm−1, and 1645 cm−1 attributed to NH
and the amidic carbonyl group, respectively. Moreover, 1H NMR spectra showed singlet
signals around δ 11.48 and 10.53 ppm, corresponding to the indole NH and the two amidic
NH protons. In addition, an up-field sharp singlet signal corresponding to OCH3 protons
appeared at δ 3.82 ppm. The three protons (6, 7, and 9) of the phenyl ring of the 1H-indol
moiety resonated at δ 7.36 (d, J = 8.8 Hz), 6.88 (dd, J = 8.8, 2.4 Hz), and 7.79 (d, J = 2.4 Hz),
respectively. At the same time, proton 2 was presented as a sharp singlet, peaking at δ
8.01. The characteristic proton, 10, resonated clearly as a sharp singlet signal at δ 8.62.
Regarding the di para-substituted protons, protons (19, 21) and (18, 22) resonated at δ
7.58 (d, J = 8.2 Hz) and 7.99 (d, J = 8.2 Hz), respectively. Finally, the aromatic protons of
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the benzamide moiety resonated at the overlapped areas of 7.68 and 7.96. Matching such
findings, the 13C NMR spectra showed characteristic peaks corresponding to the two C=O
and OCH3 groups around δ 166.34, 162.36, and 55.80 ppm, respectively. The carbons (2, 3, 4,
5, 6, 7, 8, and 9) of the phenyl ring of the 1H-indol moiety resonated at δ (128.3, 112.8, 125.4,
130.4, 112.7, 111.9, 154.8, and 104.6, respectively). The characteristic carbon, 10, resonated at
δ 154.2. The di para-substituted carbons (19, 21) and (18, 22) resonated at δ 119.9 and 128.2,
respectively. The aromatic carbons (26, 27, 28, 29, 30, and 31) of the benzamide moiety
resonated at δ (135.1, 128.2, 128.9, 132.5, 128.9, and 128.2, respectively).
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Figure 17. Chemical structure of compound 7.

2.3. Biological Examinations
2.3.1. VGFER-2 Inhibition

We assessed the in vitro inhibitory potential of compound 7 against VEGFR-2 in
comparison to sorafenib, to verify our design, and the several computations conducted
that indicated the high affinity of compound 7 for binding to and inhibiting the VEGFR-2
enzyme. Compound 7 showed significant inhibitory activity in vitro (an IC50 value of
25 nM) that was lower than that of sorafenib (35 nM). The in vitro results showed that the
compound had a great potential to inhibit VEGFR-2, affirming the in silico studies.

2.3.2. Cytotoxicity

To analyze the application of compound 7’s VEGFR-2 inhibitory potential against
cancer, in vitro cytotoxicity studies were conducted using human breast cancer MCF-7, and
colon cancer HCT 116 cell lines, with sorafenib as a reference. Table 5 and Figure 18 show
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that compound 7 could inhibit the growth of the MCF-7 and HCT 116 cell lines, exhibiting
IC50 values of 12.93 and 11.52 µM, respectively, in comparison with sorafenib’s anticancer
potentialities against the same cell lines (4.32 and 7.28 µM, respectively).

Table 5. VGFER-2 inhibition and cytotoxicity of compound 7 and sorafenib.

MCF-7 IC50 (µM) HCT 116 IC50 (µM) VEGFR IC50 (nM)

Compound 7 12.93 ± 0.54 11.52 ± 0.70 25 ± 1.29

Sorafenib 4.32 ± 0.33 7.28 ± 0.53 35 ± 1.34
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2.3.3. Safety Evaluation

Against normal human cells, W138 cell lines, compound 7 was administered to test
its toxicity and to determine its selectivity against cancer cell lines. Notably, compound 7
showed a very high level of safety, manifesting an IC50 of 87.26 µM. The obtained selectivity
indexes (SI) of compound 7 against MCF-7 and HCT 116 cancer cell lines were very high,
at 6.7 and 7.5, respectively.

3. Conclusions

A new 1H-indole-derived lead compound has been designed, which keeps the charac-
teristic VEGFR-2 prohibition features. The binding potential of the lead compound was
suggested by docking experiments. Interestingly, accurate binding with the VEGFR-2
active pocket was verified through MD simulations (six studies), MM-GBSA (three studies),
and DFT (three studies). Additionally, ADMET studies declared the lead compound’s
drug-likeness. Consequently, the designed lead compound was synthesized and tested for
in vitro VEGFR-2 prohibition, cytotoxicity, and safety. Compound 7 exhibited a prohibitory
effect against VEGFR-2, with an IC50 value of 25 nM (lower than that of sorafenib, 35 nM),
besides a promising antiproliferative potential against MCF-7 and HCT 116 cell lines, with
very low IC50 values of 12.93 and 11.52 µM, as well as high selectivity indexes of 4.32 and
7.28 µM, respectively.
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4. Experimental
4.1. In Silico Studies
4.1.1. Docking Studies

Molecular docking was conducted for compound 7 against VEGFR-2 [56,57], using
MOE2014 software. A thorough outline has been provided in the Supplementary Data.

4.1.2. MD Simulation

The CHARMM-GUI web server was employed, and GROMACS 2021 was used as an
MD engine. A thorough outline has been provided in the Supplementary Data.

4.1.3. MM-GBSA

The Gmx_MMPBSA package was used. A thorough outline has been provided in the
Supplementary Data.

4.1.4. DFT

Gaussian 09 and GaussSum3.0 programs were used. A thorough outline has been
provided in the Supplementary Data.

4.1.5. ADMET Studies

An ADMET profile was determined using Discovery Studio 4.0 [58,59]. A thorough
outline has been provided in the Supplementary Data.

4.1.6. Toxicity Studies

The toxicity profile was determined using Discovery Studio 4.0 [60]. A thorough
outline has been provided in the Supplementary Data.

4.2. Chemistry

The solvents and fine chemicals used in the synthesis of the target molecule were
purchased from Sigma-Aldrich at a purity above 99%. All chemicals and apparatuses
used in this section are illustrated in the Supplementary Data. Compounds 2 and 4 were
synthesized according to the previously reported methods [61].

4.2.1. General Procedure for the Synthesis of Compound 5

To a solution of ester derivative 4 (0.002 mol) in in absolute ethanol (20 mL), hydrazine
hydrate 85% (0.01 mol) was added dropwise with continuous stirring. The mixture was
heated with gentle reflux for 2 h. After completion of the reaction, the mixture was
cooled. The formed precipitate was filtered, dried, and recrystallized from ethanol to give
compound 4.
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the reaction was completed. The obtained powder was collected and recrystallized from
ethanol to furnish the pure form of compound 7.

(Z)-N-(4-(2-((5-Methoxy-1H-indol-3-yl)methylene)hydrazine-1-carbonyl)phenyl) benzamide.
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