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Abstract: This paper presents the multi-objective optimization of a crude oil hydrotreating (HDT)
process with a crude atmospheric distillation unit using data-driven models based on bootstrap
aggregated neural networks. Hydrotreating of the whole crude oil has economic benefit compared
to the conventional hydrotreating of individual oil products. In order to overcome the difficulty in
developing accurate mechanistic models and the computational burden of utilizing such models
in optimization, bootstrap aggregated neural networks are utilized to develop reliable data-driven
models for this process. Reliable optimal process operating conditions are derived by solving a
multi-objective optimization problem incorporating minimization of the widths of model prediction
confidence bounds as additional objectives. The multi-objective optimization problem is solved using
the goal-attainment method. The proposed method is demonstrated on the HDT of crude oil with
crude distillation unit simulated using Aspen HYSYS. Validation of the optimization results using
Aspen HYSYS simulation demonstrates that the proposed technique is effective.

Keywords: crude oil refining; crude oil hydrotreating; bootstrap aggregated neural networks; multi-
objective optimization

1. Introduction

Oil and gas are among the most widely utilized natural resources in modern society.
Crude oil is a mixture of different hydrocarbons and small quantities of sulphur, nitrogen,
and some metal elements [1]. Refined oil products provide fuels for modern transportation,
such as automobiles, airplanes, and ships. In addition to being used as fuels, oil products
also provide raw materials for the chemical industry in the production of a wide range
of products with the most well known as various types of plastics. Crude oil needs to be
split into more valuable products by distillation processes in the oil refinery. The purpose
of the oil-refining process is to separate crude oil (raw material) into different types of oil
products, such as light gas oil, jet fuels, light naphtha, kerosene, etc. Figure 1 shows a
flowsheet of a typical crude oil refinery [2,3], which is a complex process containing many
processing units, such as crude distillation units (CDU), reformer units, hydrotreating units
(HDT), fluid catalytic cracking (FCC), vacuum distillation units (VDU), hydrocracking units
(HCU), and others. In addition, there are some offsite facilities, such as tank farms, pipe
systems, traps and depots. Refineries are large and complex processes and consume large
amounts of energy and water.

Crude oil from different oil fields around the world varies in composition as well
as containing undesirable impurities, such as sulphur and nitrogen. The undesirable
impurities in o0il products need to be removed or reduced due to strict environmental
regulations for limiting sulphur and nitrogen contents in oil products. As a matter of fact,
oil products with high sulphur content can lead to corrosion, pollution, and poisoning to
catalyst. Thus, it is important to reduce the sulphur content in oil products. In crude oil
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refineries, the process for reducing sulphur compounds is known as hydrodesulphurization
(HDS) while that for reducing nitrogen compounds is known as hydrodenitrogenation
(HDN) [4]. The hydrodemetallization (HDM) process is responsible for removing nickel
and vanadium contaminants from the heavy feed. The hydrotreating (HDT) process is
employed to remove sulphur, nitrogen, and aromatic saturation compounds [5].
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Figure 1. Flow sheet diagram of a crude oil refinery.

The conventional approach is to apply HDT on some individual oil products. In
order to improve refinery efficiency, a few researchers have investigated applying HDT to
the crude oil instead of individual oil products recently [6,7]. HDT of crude oil is a new
hydrotreating process that has not been extensively reported and it has economic benefit
compared to the conventional HDT process [8]. Jarullah et al. [6] shows that this new
hydrotreating process can significantly improve middle distillate yields. Moreover, the
desulphurization of whole crude oil has the potential to more effectively meet the need of
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environmental legislation for decreasing sulphur content and producing clean fuels in the
refining processes and is expected to become more common in the future [7].

Optimal operating conditions for crude oil HDT process need to be determined in
order to obtain the best process operation performance. A number of process variables
can be considered as the decision variables in the optimization of crude oil HDT process.
Table 1 shows the operating conditions of different HDT technologies applied to different
oil products [9]. The process variables shown in Table 1, pressure (P), temperature (T),
liquid hourly space velocity (LHSV), and hydrogen-to-hydrocarbon (H; /HC) ratio can be
considered as the decision variables in optimizing crude oil HDT process.

Table 1. Operating conditions of various HDT processes [9].

Hydrotreating Process T (°C) Piz (MPa) LHSV (h—1) H,/0il (Nm3/m?)
Naphtha 320 1-2 3-8 60

Kerosene 330 2-3 2-5 80

Gasoil 340 2.5-4 1.5-4 140

VGO 360 5-9 1-2 210

Atmospheric Residue 370-410 8-13 0.2-0.5 >525
Hydrocracking VGO 380430 9-20 0.5-1.5 1000-2000
Vacuum Residue 400-440 12-21 0.1-0.5 1000-2000

Optimizing crude oil HDT processes will require an accurate process model. It is
generally very difficult to obtain accurate mechanistic models for crude oil HDT processes
due to the complexity of the material and process involved. To overcome this difficulty, data-
driven models obtained from process operation data should be utilized. In recent years,
there has been an increasing interest in computational intelligence, particularly in the area of
machine learning, which has contributed significantly to data-driven modelling. Among the
machine-learning tools, neural networks are a very powerful tool for data-driven modelling.
They attempt to mimic the way in which the human brain functions. A neural network
consists of a number of information-processing units named neurons which are arranged
into layers. Neurons in adjacent layers are connected through weighted connections.
During neural network training, the neural network weights are adjusted so that the neural
network can learn the relationship between the input and output data. Advanced versions
of neural networks, such as stacked neural networks, extreme learning machines, and deep
learning, have also been applied to nonlinear process modelling [10-14].

In this work, bootstrap aggregated neural networks are employed to model a crude
oil HDT with the CDU process and then used to optimize the process operation. Simulated
process operation data are obtained from Aspen HYSYS simulation and used for develop-
ing bootstrap aggregated neural network models. Note that simulated process operation
data are used here to represent real plant operation data. When real plant operation data
are available, they can be directly used to build neural network models. The developed
bootstrap aggregated neural network models are then utilized in a multi-objective opti-
mization framework. In order to enhance the reliability of optimization results, minimizing
the widths of model prediction confidence bounds is considered as a further optimization
objective. The multi-objective optimization problem is solved by using the goal-attainment
method. In some cases, even the Aspen HYSYS models are available, and their neural
network surrogate models are often used in the optimization due to the short computation
time of neural network models. This type of surrogate modelling approach has been
getting popular in recent years [15]. A recent study on reducing the computational burden
of mechanistic models using analytical simplifications could enable real-time optimization
with mechanistic models in some cases [16].

The novelty of this study lies in the following two areas. First, reliable data-driven
models are developed from a limited amount of simulated process operation data through
utilizing bootstrap aggregated neural networks. Secondly, a reliable multi-objective op-
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timization framework for a crude oil HDT with the CDU process is developed through
utilizing the model prediction confidence bounds.

This paper is structured as follows: Section 2 provides process description for the crude
oil HDT process with CDU. Also, the crude oil feedstock and products specifications are
given in this section. Modelling of a crude oil HDT with the CDU process using bootstrap
aggregated neural networks is detailed in Section 3. Section 4 presents multi-objective
optimization of the crude oil HDT with the CDU process using the goal-attainment method.
The last section gives some concluding remarks.

2. A Crude Oil HDT Process with CDU
2.1. Process Description

The process flow diagram of crude oil HDT process with CDU is illustrated in Figure 2.
At the beginning, crude oil is taken from storage tanks and is joined by a stream of hydrogen
gas. The mixture is fed to a train of heat-exchangers where they are pre-heated. After
that, the mixture enters the convection and radiation sections of a furnace where they
are heated to the required reaction temperature and then are fed to a reactor containing
catalysts (HBED in Figure 2). The reactor effluent is employed to preheat the charge (crude
oil) by the heat-exchanging system. Then the effluent is cooled in a cooler. Following that,
the mixture of liquid and gases is fed into a high-pressure separator where gases, such as
hydrogen sulphide and unreacted hydrogen, are removed from the liquid. The gases are
then compressed and sent to a vessel whereas the liquid passes to a low-pressure separator
to further remove gases not being removed in the high-pressure separator. After that, the
hydrotreated crude oil is fed to a CDU process. Aspen HYSYS with the Peng—Robinson
fluid package is employed to simulate the process. The CDU is designed to be able to
cope with the maximum crude feed rate considered to prevent column flooding so that the
optimization study will not be affected by the hydraulic limitation. The CDU considered
here has 29 trays with 0.5 m tray spacing.
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Figure 2. HDT for crude oil with CDU.

In general, the function of the crude distillation unit is to distil and split the feedstock
into different types of oil products, such as off gas, naphtha (N), kerosene (K), light gas
oil (LGO), heavy gas oil (HGO), and reduced crude (RC). The hydrotreated crude oil is
preheated in the train of heat-exchangers and then fed to the furnace where it is finally
heated to the required temperature and vaporized. The mixed liquid and vapor charge
flows to the flash zone of the crude distillation tower. Liquid from the flash zone flows
across many stripping trays in the bottom section of the tower. Additionally, stripping
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steam is injected to increase vaporization and reduce volatile content and in this way to
remove lighter compounds. Vapors leaving the flash zone pass through the wash section of
the tower and they are further condensed and fractionated on the trays of a fraction section
with two pump-around sections to yield side-drawn products. The total naphtha leaves
the column via the column top and accumulates in the overhead drum after condensation.
From the overhead drum, part of the naphtha is recycled back to the tower top and the
rest is pumped to the naphtha stabilizer as a product. The side products of the distillation
tower (K, LGO, and HGO) flow to the stripper tower sections where they are individually
steam-stripped to remove dissolved lighter components which are returned to the tower.
Each side product (K, LGO, and HGO) is cooled and sent by pump to the storage tanks.
Finally, RC from the tower bottom is used to preheat the hydrotreated crude oil (charge)
and further cooled by the cooler and then sent to the storage tanks.

2.2. Feed and Products Specifications

Generally, there are specific chemical and physical properties for each type of crude
oil. These characteristics include refinery-related specifications, such as PONA analysis,
specific gravity, pour point, kinematic viscosity, and sulphur and nitrogen contents. The
data involved in a petroleum assay includes yields produced from the physical distillate
and residue properties [17]. The feed and product specifications are given in Table 2 [18]
and Table 3, respectively. In this work, the products’ specifications were taken from the
Midland Refineries Company (Daura Refinery). Crude oil products and the ranges of
hydrocarbons in each fraction are illustrated in Table 4 [19].

Table 2. Petroleum Essay.

No. Property Bulk Value
1 Sulphur By (Wt.%) 2.63

2 Std Liquid Density (kg/m?3) 867.5162
3 Watson K 11.4279

4 Pour Point (°C) 21.8696
5 Total Acid Number (mg KOH/g) 0.171

6 Kinematic Viscosity (cSt)@ 20 (°C) 13.0798
7 Kinematic Viscosity (cSt)@ 37.78 (°C) 7.7831

8 Kinematic Viscosity (cSt)@ 37.78 (°C) 7.7831

9 Kinematic Viscosity (cSt)@ 50 (°C) 5.697

10 Kinematic Viscosity (cSt)@ 60 (°C) 4.5238

11 Kinematic Viscosity (cSt)@ 80 (°C) 2.9883

12 Kinematic Viscosity (cSt)@ 100 (°C) 2.0967
13 NaCl By (Wt.%) 0.002

14 Mercaptan Sulphur By (Wt.%) 0.0217

15 Conradson Carbon By (Wt.%) 6.0699

16 Asphaltene By (Wt.%) 2.3412
17 Nickel By (Wt.%) 0.0008

18 Vanadium By (Wt.%) 0.0037

19 Iron By (Wt.%) 0.0001

20 Gross Heating Value (kJ/kg) 44,157.58
21 Net Heating Value (k] /kg) 41,482.25
22 Cut Yield By (Wt.%) 100

23 Cut Yield By (Vol.%) 100

24 Nitrogen By (Wt.%) 0.1113
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Table 2. Cont.
No. Property Bulk Value
25 Paraffins By (Vol.%) 30.5540
26 Naphthenes By (Vol.%) 40.8213
27 Arom By (Vol.%) 28.6245
28 N + 2A (%) 98.0705
29 Smoke Pt (m) 0.0156
30 Freeze Point (°C) 79.3312
31 Basic Nitrogen By (Wt.%) 0.0378
32 Cloud Point (°C) 38.6010
33 CtoH Ratio By Wt 6.6651
Table 3. Crude distillation products.
Cut Yield Opeatfic " Flash Point Color TBP
Oils (Wt.%) VoY €0 0
15°C
Fuel gases 0.01 - - - -
LPG 0.12 - - - -
LN 8.98 0.665-0.680 - - 35-120
HN 12.40 0.735-0.750 - - 90-178
Ker 10.80 0.785-0.800 40 min. 30 min. 135-250
LGO 17.70 0.825-0.840 70 min. 0.5 max. 200-350
HGO 3.68 0.880-0.890 90 min. 2.5 max. 335-355
RC 46.31 0.965-0.980 120 min. - 355+

Table 4. Crude oil hydrocarbon ranges.

Petroleum Products Carbon Range
Fuel gases C1-C,

LPG C3—Cy

LN and HN C5—C12

Ker C12—Cyg

LGO and HGO C12-Coo
Lubricating oil C0—Cso

RC >Csxg

3. Modelling of the Crude Oil HDT Process with CDU Using Bootstrap Aggregated
Neural Networks

HDT process optimization should be carried out in order to enhance process efficiency.
Accurate process models are essential for process optimization. Process models can be
broadly divided into mechanistic models and data-driven models. The development of
detailed mechanistic models is typically very time-consuming. Furthermore, optimiza-
tion using mechanistic models in the form of differential and algebraic equations is also
computationally demanding. In some cases, where even a mechanistic model is available,
data-driven surrogate models are used in process optimization [15,20]. In building such
data-driven surrogate models, detailed mechanistic models are used to simulate process
operation under various operating conditions and the simulated process operation data
are used in the development of data-driven surrogate models which are computationally
efficient in solving process optimization problems.

The goal of HDT of crude oil with the CDU scheme is to minimize undesirable
impurities, for instance, sulphur and some other compounds in the treated kerosene
produced from the main atmospheric column. To overcome the difficulties in developing
detailed mechanistic models, as well as using them in process optimization, neural network
models are developed from process operation data. An Aspen HYSYS-based process
simulator was used to produce various process operation data under different operating
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conditions of the HDT of crude oil with the CDU process. When sulfficient plant operation
data are available, then data reconciliation can be applied so that the Aspen HYSYS can
match with real plant operation data [21]. Then, the data were utilized to construct neural
network models. It should be noted that when real plant operation data are available, then
they can be directly used in building neural network models.

As the main purpose of the developed neural network models is for process optimiza-
tion, the neural network inputs and outputs should be selected so that they can be used
in process optimization, i.e., they should be related to the optimization objective function
and decision variables. In this work, the neural network inputs are selected as the flow
rates of crude oil and hydrogen, and the pressure and temperature of the reactor. These are
important process operation variables and can be measured and adjusted during process
operation. The neural network outputs are selected as the contents of sulphur and nitrogen
in the kerosene produced from the CDU, which will be minimized in the optimization
problem. In this work, two neural network models are developed and they are represented
by the following equations:

S = f1(x1, x2, X3, X4) @
N = f(x1, X2, X3, X4) 2)

where S and N are the contents of sulphur and nitrogen, respectively, in the kerosene
produced from the CDU, and x; to x4 are, respectively, flow rates of crude oil and hydrogen,
reactor pressure, and temperature.

The development of neural network models for predicting sulphur and nitrogen
contents in the treated kerosene comprise four essential steps. The first step is the collection
of data for model building. The second step is data normalization and data partition into
training data, testing data, and unseen validation data. The third step is to select the
structure of neural networks, such as the number of hidden neurons, layers, and the type
of transfer functions. The fourth step is the training and validation of the neural networks.

In this study, 197 data samples are generated from the Aspen HYSYS simulation of a
crude oil HDT process with CDU to develop neural network models. The data samples
are generated by varying the crude oil flow rate, hydrogen flow rate, and reactor pressure
and temperature within their constraints and they cover the range of inputs over which the
optimization is carried out. The lower and upper bounds of these variables are given in
Table 5. To represent the practical situations where process operation data are limited, a
relatively small amount of simulated plant operation data are produced through simulation.
To address the issue of different magnitudes in the model input and output variables, all
input and output data are scaled to zero mean and unit variance before they are used
in network training. In order to represent practical situations, simulated measurement
noises are added to the simulated plant operation data. The simulated measurement
noises follow normal distribution with zero means. In this study, the standard deviations
for the measurement noises on feed flow rate, H, molar flow rate, reactor pressure and
temperature, and sulphur and nitrogen contents are, respectively, 0.3 m3/h, 1.5 kgmole/h,
0.5 bar, 0.3 °C, 0.003 Wt.%, and 1.5 ppmwt. Note that these measurement noises are only
added to the outputs from the Aspen HYSYS simulation, not to any inputs to the Aspen
HYSYS simulation. The data are split into three groups: training data (56%), testing data
(23%), and unseen validation data (21%). The networks are trained on the training data. The
testing data are utilized for the determination of network structure and early termination
of the training process to avoid over-fitting. The final developed model is evaluated on
the unseen validation data. As mentioned earlier, the simulated process operation data
represent the practical situations where the available process operation data may not be
abundant. Therefore, a relatively large portion of the data are used as training data. On the
other hand, if the neural network models are used as surrogate models for the mechanistic
model (Aspen HYSYS model), then plenty of data can be generated and a large portion of
the data should be used as testing and validation data.
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Table 5. The lower and upper bounds of the process operation variables.
Variables Units Lower Bounds Upper Bounds
crude oil flow rate m3/h 40 70
hydrogen flow rate kgmole/h 700 1000
reactor pressure bar 70 130
reactor temperature °C 330 380

Predicted Sulphur Content (Wt.%)

+training and testing data; o:unseer

n validation data

3.1. Single Neural Network Models

In this work, single neural network models are developed first for the purpose of
comparison. The networks have a single hidden layer as a single hidden layer network
can approximate any continuous nonlinear function [22]. The activation function in the
hidden neurons is the sigmoid whereas that in the output layer is the linear activation
function. The networks are trained using the Levenberg-Marquardt training algorithm
with regularization and early stopping to avoid over-fitting. During the process of network
training, network errors on the testing data are continuously monitored and training is
terminated when testing errors stop decreasing. The initial network weights are taken
as random values uniformly distributed in the range (—0.1, 0.1), and the regularization
parameter is selected as 0.1. The number of hidden neurons is determined by trying a
number of neural networks with a range of hidden neurons (from 2 to 30) and examining
their sum of squared errors (SSE) on the testing data. The network with the least SSE
on the testing data is considered as having the appropriate number of hidden neurons.
Figure 3 depicts the neural network model performance on the training, testing, and unseen
validation data for modelling the contents of sulphur and nitrogen in treated kerosene from
the HDT of crude oil with CDU. It can be seen that there are a few noticeable errors on the
unseen validation data although model errors on training and testing data seem to be small.
This indicates that single neural network models are not very accurate.

+training and testing data; o:unseen validation data

T

T T

Predicted Nitrogen Content (ppmwt)

Actual Sulphur Content (Wt.%) Actual Nitrogen Content (ppmwt)

() (b)

Figure 3. Network model performance on the training, testing, and validation data for sulphur
content (a) and nitrogen content (b).

3.2. Bootstrap Aggregated Neural Networks

The developed neural network models to be used in the optimization of crude oil
hydrotreating with CDU are required to be accurate and reliable. The drawback of a
single neural network is the lack of generalization when applied to unseen validation data.
In other words, a single neural network giving good performance on the training data,
however, can give poor performance on the unseen validation data which is not utilized
in network training [23]. Different methods have been used to improve neural network
generalization, such as network training with regularization [24], Bayesian learning [25],
and aggregating multiple neural networks [26-28]. It was noticed that the approach of
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aggregating multiple neural networks usually provides better performance than other
techniques [29,30].

A simple diagram of bootstrap aggregated neural networks is illustrated in Figure 4,
where several neural networks are developed to model the same relationship between
model inputs and outputs and are then aggregated together [31,32].

o -
X % v
o~

Figure 4. A bootstrap aggregated neural network.

The bootstrap aggregated neural network can be represented as:

fx) = Y wifi(x) 3)

where f(x) is the bootstrap aggregated network model, f;(x) is the ith neural network
model, w; is the aggregating weight for the ith neural network, # is the number of networks
included in the aggregated networks, and x is a vector of model inputs.

In this study, each of the developed bootstrap aggregated neural network contains
35 single hidden layer networks. The original training and testing data are put together and
re-sampled via bootstrap re-sampling with replacement to generate 35 replications of the
original data. Each resampled data set is then randomly partitioned into training data (70%)
and testing data (30%). A single hidden layer neural network is developed on each set of
resampled data. These networks are trained by utilizing the Levenberg-Marquardt training
method with regularization and early stopping. The initial network weights are taken
as random values uniformly distributed in the range (—0.1, 0.1), and the regularization
parameter is selected as 0.1. Cross-validation is used to determine the number of hidden
neurons in each individual network. In this study, 29 networks with the number of hidden
neurons ranging from 2 to 30 are trained on the training data and then tested on the testing
data. The network giving the smallest SSE on the testing data is considered as having the
appropriate number of hidden neurons. The number of hidden neurons determined for the
35 single neural networks for sulphur and nitrogen contents are shown in Figure 5. Then,
these 35 neural networks are aggregated, instead of choosing the “best” individual neural
network. Finally, the combined prediction from the 35 neural networks is taken as the final
model prediction [28].

Figure 6 shows the mean squared errors (MSE) of the individual networks for predict-
ing sulphur content on the training, testing, and unseen validation data. It can be seen that
the single networks provide inconsistent performance on the training, testing, and unseen
validation data. For example, the MSE on the validation data by the 12th network (0.0342) is
the second largest. On the other hand, the same network gives better performance (0.0200)
than many of the single networks on the training and testing data. This demonstrates that
the single neural network models are not reliable.
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Figure 5. Number of hidden neurons of single neural networks for sulphur content (a) and nitrogen
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Figure 6. Errors of signal neural networks for estimating sulphur content.

Figure 7 shows the MSE of bootstrap aggregated neural networks when stacking
different numbers of networks in predicting sulphur content on the training, testing, and
unseen validation data. The first bar in both plots in Figure 7 is the first single neural
network shown in Figure 6, the second bar represents aggregating the first two single
neural networks in Figure 6, and the last bar in Figure 7 represents aggregating all the
single neural network models in Figure 6. It can be seen from Figure 7 that the MSE values
on the training, testing, and unseen validation data decrease with the number of networks
being aggregated and then remain stable. This clearly indicates that bootstrap aggregated
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Predicted Sulphur Content (Wt.%)

neural networks are more reliable and give more accurate model prediction performance
than individual neural networks.
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Figure 7. Errors of stacked neural networks for estimating sulphur content.

Figure 8 shows the bootstrap aggregated neural network model predictions and actual
values for sulphur and nitrogen contents on the training and testing data, and the unseen
validation data. The training and testing data are represented by ‘+’, and the unseen
validation data are represented by ‘o’. It can be seen from both plots in Figure 8 that
the model predictions correlate well with the true values for most of the samples. The
bootstrap aggregated neural network model prediction performance is better than that
of single neural networks shown in Figure 3. For the sulphur prediction model, there
are a few samples with large errors when the sulphur content is high. This is probably
due to fewer training samples in this region. However, as the optimization objective is to
minimize sulphur content, the large error at the high sulphur content region has no impact
on the optimization.

+raining and testing data; o:unseen validation data
+ 1 0|
194 °F %
4 e ’\+ -
% w |
Actual Sulphur Content (Wi.%) ActualNirogen Content (pprwt)
(a) (b)

Figure 8. Stacked networks prediction and real values for sulphur content (a) and nitrogen content (b).
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Figure 9 shows the MSE values of single neural networks for the prediction of nitrogen
content on the training, testing, and unseen validation data. It can be seen from this figure
that the 10th network gives much worse performance than any other networks on all the
data sets. Thus, this network is removed. Note that the deletion of this network is purely
based on its very poor performance on the training and testing data. Figure 10 shows the
performance of the remaining networks. The performance of individual networks on the
training and testing data is not in agreement with that on the unseen validation data. It
can be seen from Figure 10 that the second network gives better performance than the
third network on the training and testing data. However, its performance on the unseen
validation data is worse than that of the third network. This clearly shows that the single
networks are not reliable.

MSE (training and testing)

MSE (validation)

0 5 10 15 20 25 30 35
Network No.

Figure 9. Errors of signal neural networks for estimating nitrogen content (35 networks).

0.02 p T \ \ T

0.01 - 1

MSE (training and testing)

0.005

MSE (validation)

0 5 10 15 20 25 30 35
Network No

Figure 10. Errors of signal neural networks for estimating nitrogen content (34 networks).

Figure 11 shows the MSE values of predicting nitrogen content on the training, testing,
and unseen validation data by aggregating several numbers of single neural networks. In
Figure 11, the first bar in both plots is the first single network in Figure 10, the second
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bar is aggregating the first two single networks in Figure 10, and the last bar represents
aggregating all the single neural network models in Figure 10. It can be seen from Figure 11
that aggregated networks produce consistent performance on the training and testing
data and on the unseen validation data. The MSE values of bootstrap aggregated neural
networks decrease and remain stable on the training, testing, and unseen validation data as
more networks are aggregated. Furthermore, it can be observed that bootstrap aggregated
neural networks are more accurate and reliable than single neural networks. Figures 7
and 11 indicate that model errors level off after combining about 10 networks. Although
combining more networks does not further improve model accuracy, the estimation of
model prediction confidence bounds (to be discussed in Section 3.3) would not be accurate
if too few networks are used.

o
o
¥
i
J

MSE (training and testing)
o
o

0.005

MSE (validation)

0 5 10 15 20 25 30 35
Number of Networks

Figure 11. Errors of stacked neural networks for estimating nitrogen content.

3.3. Neural Network Model Prediction Confidence Bounds

One major advantage with the use of bootstrap aggregated neural networks is that
model prediction confidence bounds can be easily estimated from the predictions of in-
dividual neural networks [31]. Confidence bounds reveal how confident the associated
prediction is.

The standard error of the individual network predictions can be estimated as:

oo = {3 DL L) -y | @

where 1 is the number of neural networks in the aggregated neural network and
y(x) =L} fi(x)/n. The 95% confidence bounds for the prediction corresponding to an
input x is estimated as y(x) £ 1.960,. A lower o, i.e., a narrower confidence bound, means
that the model prediction is more reliable.

Figure 12a,b show the 95% model prediction confidence bounds for predicting sulphur
and nitrogen contents on the unseen validation data by aggregated neural network models,

“u_

respectively. The actual values are represented by “0”, the predicted values from the
aggregated network models are represented by “+”, and 95% confidence intervals are
represented by the green dashed lines. When the confidence bounds are tight, the reliability
of the model predictions will be high. It can be seen that model predictions using bootstrap
aggregated models are quite close to the real values for most of the samples. Furthermore,

the confidence bounds are quite narrow for most of the samples indicating reliable model
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predictions. It can be concluded that the bootstrap aggregated neural network models for
sulphur and nitrogen contents give very good performance.

o:actual values; +:predictions; --:95% confidence bounds
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Figure 12. Stacked neural network predictions of sulphur content (a) and nitrogen content (b) on the
unseen validation data.

4. Multi-Objective Optimization of the Process Using the Goal-Attainment Technique

Multi-objective optimization is a field of multiple criteria decision-making, which
is concerned with mathematical optimization problems with conflicting objectives [33].
A single objective function in many cases with various constraints cannot adequately
represent the multi-criteria decision-making problem, such as balancing results between
profit and energy costs [34]. When the number of objectives rises, trade-offs become
complicated. Multi-objective optimization includes minimizing or maximizing various
objectives which are subject to a number of constraints. It is concerned with the creation of
non-inferior solutions which are also named as efficient or Pareto optimum solutions [35].
According to a formal definition provided by [36], “a non-inferior solution is one in which
no decrease can be obtained in any of the objectives without causing a simultaneous
increase in at least one of the other objectives”. A non-inferior solution is also known as
Pareto front or Pareto optimal.

Some common methods for multi-objective optimization include: goal-attainment,
minimax, and multi-objective genetic algorithm. In this study, the multi-objective opti-
mization problem for the crude oil hydrotreating process with the crude distillation unit is
solved using the goal-attainment method.

4.1. Goal-Attainment Method

The goal-attainment method is a powerful tool which can be used to find the best solu-
tion in a multi-objective optimization problem. In this method, the decision-maker specifies
a goal for each of the objectives. This method includes a set of goals
F(x) = [F(x), F(x), F3(x),..., Fx(x)] which are associated with a set of objectives
Y(x) = Mx ) Yo (x), Ya(x),..., Yu(x)]. Also, a set of weighting factors

W(x) = [Wy(x), Wa(x), W3(x),..., Wu(x)] is used to control the degree of goal achieve-
ment [37]. Figure 13 shows the goal -attainment method with two objectives, Y1 and Y>.
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Figure 13. The goal-attainment method for a two-dimensional problem.

It can be seen from Figure 13 that the goal point P is defined by goals (Y;" and Y;")
corresponding to the two objectives Y and Y5, respectively, while the weighting factors W
determines the direction of search from the goal point P to the feasible space a(y). The set
of nonlinear solutions can be obtained by changing W over aduring the optimization.

In this work, the multi-objective optimization problem deals with three process opera-
tion objectives, namely, minimization of sulphur content, minimization of nitrogen content,
and maximization of production rate. Four decision variables are selected and they are
feedstock flow rate, Hy molar flow rate, reactor temperature, and pressure. These four
decision variables are also the neural network model inputs.

The multi-objective optimization problem considered in this paper can be represented
as follows:

S
Y=|N ©)
—f
e
s.t.
Yi(x)-W;y < F i=1,2,3 (6)

LBi <x < UBi i=1,234
Equations (1) and (2)

In the above equation, Y is a vector of the objectives, S and N are, respectively, the
predicted contents of sulphur and nitrogen in the kerosene produced from the CDU, f is the
crude oil feed rate, x = [x1, xp, X3, X4] is a vector of decision variables which are the neural
network model inputs, LB; and Ub; are the lower and upper bounds for x; respectively and
are given in Table 5, W; is the weighting factor for the ith objective, v is a slack variable,
and F; is the desired goal for the ith objective. The three objectives in Equation (5) are
minimizing the contents of sulphur and nitrogen in the kerosene product, and maximizing
the refinery throughput.

Table 6 shows two cases of the multi-objective optimization results for two sets of
goals. In Case 1, the goals for sulphur content, nitrogen content, and feed flow rate were
selected as 0.04 Wt.%, 140.0 ppmwt, and 70 m?/h, respectively. The weighing factors
(W) were selected as 0.5, 5.0, and 0.1 for sulphur content, nitrogen content, and feed flow
rate, respectively. A smaller weighting means the associated goal is more important. As
can be seen from Table 6 (Case 1), all the three goals have been met according to neural
network model predictions. The neural network predicted sulphur and nitrogen contents
are 0.0329 Wt.% and 140.0 ppmwt, respectively. However, when the optimal process
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operating conditions are implemented on HYSYS simulation, the actual sulphur content
decreases to 0.0300 Wt.% and the actual nitrogen content increases to 143.0 ppmwt. In
Case 2, the goals for sulphur content, nitrogen content, and feed flow rate were selected as
0.03 Wt.%, 130.0 ppmwt, and 70 m? /h, respectively. The weighing factors (W) for sulphur
content, nitrogen content, and feed flow rate are kept the same as those in Case 1. It can
be seen from Table 6 (Case 2) that all the three goals have been met according to neural
network model predictions. The neural network predicted sulphur and nitrogen contents
are 0.0292 Wt.% and 130.0 ppmwt, respectively. On the other hand, when the optimal
process operating conditions are implemented on HYSYS simulation, the real sulphur and
nitrogen contents increase to 0.0300 Wt.% and 134.5 ppmwt, respectively.

Table 6. Multi-objective optimization results without confidence bounds.

Stacked Absolute

Case Goals Cp(S) Cp(N) w x Network HYSYS Error

0.04 0.5 70 $:0.0329 S:0.0300 0.0029

! 140 00177 0.0149 5 80266 | N:140.0000 N:143.0000  3.0000
—70 01 123.89
377.68

0.03 0.5 70 S:0.0292 S: 0.0300 0.0008

2 130 0.0168 00171 5 802.83 N:130.0000 N:134.5000  4.5000
—70 0.1 125.99
377.60

The actual nitrogen content exceeds its goal value in both cases. This performance
degradation is due to the model plant mismatch. The absolute errors shown in Table 6 are
calculated as the difference between bootstrap aggregated neural network predictions and
HYSYS simulation.

4.2. Reliable Multi-Objective Optimization through Incorporating Model Prediction
Confidence Bounds

The reliability of optimization results is affected by the reliability of model predictions.
If the model predictions are not reliable, then the optimization results based on these
predictions are not likely to be reliable. Incorporating model prediction reliability in the
optimization objectives could improve the reliability of optimization results. In order to
improve the reliability of multi-objective optimization, minimization of the widths of model
prediction confidence bounds is incorporated as additional optimization objectives. The
reliable multi-objective optimization problem is given as follows:

7)
Cp(S)
Cy(N)

min‘y
Xy
s.t.
Yi(x) -Wjy < FFi=1,2345
LB; <x;< UB;i=1,2 3,4
Equations (1) and (2)

®)

where Cp,(S) and Cy(N) are the widths of model prediction confidence bounds for sulphur
and nitrogen contents, respectively. The purpose of minimizing the width of model predic-
tion confidence bounds is to make the model prediction more reliable leading to reliable
optimization results. The goals and weights specify the relative importance of various
process objectives and model prediction reliability.
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Tables 7 and 8 show the optimization results and HYSYS simulation by incorporating
model prediction confidence bounds in the optimization objectives for Case 1 and Case
2, respectively. As can be seen from these tables, the goals for sulphur content, nitrogen
content, and feed flow rate are kept the same as those in the corresponding cases in Table 6.
Two additional goals on the widths of model prediction confidence bounds for sulphur and

nitrogen contents are added here.

Table 7. Multi-objective optimization results with confidence bounds (Case 1).

Run Goals %% x Stacked HYSYS Absolute Error
Network
S: 0.0294
. 104%4 5065 69.9993 N: 132.6498 S: 0.0300 0.0006
70 01 ?gz-gg Cp(S): 0.0165 N: 137.7000 5.0502
001 10 et Cp(N): 0.0165
0.01 1.0
S: 0.0294
) 1(’4%4 5065 69.9987 N: 132.6510 S: 0.0300 0.0006
70 01 ?gégg Cp(S): 0.0165 N: 137.7000 5.0490
001 05 et Cp(N): 0.0165
0.01 0.5
S:0.0322
3 104%4 5065 69.9922 N: 139.5789 S:0.0300 0.0022
70 01 ?g(l)-gg Cp(S): 0.0139 N: 132.6000 6.9789
001 0.05 e Cp(N): 0.0139
0.01 0.05
Table 8. Multi-objective optimization results with confidence bounds (Case 2).
Run Goals w x Stacked HYSYS Absolute Error
Network
S: 0.0294
. {)3'%3 5065 69.9993 N: 132.0352 S:0.0300 0.0006
' 802.81 Cy(S): 0.0170 N: 134.1000 4.0648
0.01 1.0 377.74 LA
0.01 1.0
S: 0.0294
) 33%3 5065 69.9986 N: 130.0704 S:0.0300 0.0006
' 802.81 Cp(S): 0.0170 N: 137.7000 4.0296
0.01 0.5 377.74 LA
0.01 0.5
S: 0.0304
3 35%3 5065 69.9878 N: 130.6100 S:0.0300 0.0004
: 836.62 Cp(S): 0.0160 N: 127.0000 3.6100
—70 0.1 122.27 Cp(N): 0.0160
0.01 0.05 378.00 LA
0.01 0.05

When solving the multi-objective optimization problem, it is expected that different
optimal operating policies will be obtained from different goals and weightings. It can be
seen from Table 7 (Case 1) that, as the weightings on model prediction confidence bounds
are further reduced (i.e., making the model reliability more important) in run 3, model
prediction reliability is improved leading to much less actual nitrogen content. The nitrogen
content has been reduced from 143.0 ppmwt in all runs in Table 7 (Case 1) in the real process
(HYSYS simulation). Table 8 (Case 2) shows that the weightings on model prediction confi-
dence bounds are also further reduced in run 3 and model prediction reliability is improved
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leading to much fewer absolute errors between the bootstrap aggregated neural network
model and HYSYS model. The nitrogen content has been reduced from 134.5 ppmwt to
127.0 ppmwt in run 3 in Table 8 (Case 2) in the real process (HYSYS simulation). This reveals
the improved reliability of the proposed reliable multi-objective optimization method. As
can be seen from run 3 in Table 8 (Case 2), the bootstrap aggregated neural network model
predicted values for sulphur and nitrogen contents are closer to the true values compared
to those in Table 6 (Case 2). It can be concluded that run 3 in Table 8 (Case 2) can be selected
as the best optimum case with confidence bounds.

Table 9 compares the base case and the optimum cases of the operating conditions for
HDT of crude oil with CDU. The optimal case 1 is run 3 in Table 7, while the optimal case 2
is run 3 in Table 8. It can be seen that the crude oil charge is increased significantly from
55 m3/h in the base case to about 70 m3/h in the optimum cases 1 and 2. Optimal case 2
has slightly higher sulphur and nitrogen removal than optimal case 1.

Table 9. Comparison of the base case and the optimum cases.

Cases

Feed
(m3/h)

H, Molar Flow Pressure Temperature S Removal N Removal
(kgmole/h) (bar) (@) (Wt.%) (Wt.%)

Base
Optimum 1
Optimum 2

55.00
69.65
69.99

800.00 90.00 375.00 85.32 88.08
865.01 120.78 376.42 88.63 88.18
836.62 122.27 378.00 88.64 88.63
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5. Conclusions

Modelling and multi-objective optimization of a crude oil hydrotreating process with a
crude distillation unit using bootstrap aggregated neural networks is studied in this paper.
Hydrotreating of whole crude oil is a new process with economic advantages compared
to hydrotreating of individual oil products. Bootstrap aggregated neural networks are
employed in this work to improve the reliability and accuracy of data-driven non-linear
models. Bootstrap aggregated neural networks can also provide model prediction confi-
dence bounds based on the individual neural network predictions. Minimization of the
widths of model prediction confidence bounds is incorporated as additional optimization
objectives. It is shown that reliable optimization results are obtained by incorporating
model prediction confidence in the optimization objectives. The modelling and optimiza-
tion results are validated using Aspen HYSYS simulation.
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