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Abstract: Medical materials are the most important, fundamental resources necessary for emergency
relief of major infectious disease disasters. The scientific and optimal allocation of emergency medical
materials is the key to reducing casualties and losses in epidemic regions, and to improving the
effectiveness and efficiency of rescue operations. In response to the cross-border characteristics of
major infectious diseases, the imbalance of material storage, and the differences of supply across
regions, a multi-objective optimization model for a multi-regional collaborative allocation of emer-
gency medical materials was developed. Then, an improved adaptive genetic algorithm (IAGA) was
designed and applied to solve the proposed model. Finally, a case study of the collaborative response
to the COVID-19 epidemic in the Yangtze River Delta of China was conducted for model verification.
The results show that collaborative allocation can improve the material satisfaction rate at demand
points, especially under peak demand pressure during the early stage of the response, and can meet
all material needs at all demand points in the shortest possible amount of time. The proposed model
can achieve the effective integration and mutual sharing of emergency materials across regions, and
improve the efficiency of emergency material utilization and rescue efforts. The material allocation
scheme considers the difference coefficients in different regions, which is conducive to enhancing the
flexibility of decision-making and the practical applicability of collaborative allocation operations.
A comparative analysis of the algorithms shows that the proposed IAGA is an effective method for
managing large-scale multi-regional emergency material allocation optimization problems, as it has
higher solving efficiency, better convergence, and stronger stability.

Keywords: emergency medical materials; collaborative allocation; multiple regions; IAGA; COVID-19;
Yangtze River Delta of China

1. Introduction

Major infectious disease outbreaks have occurred in all corners of the globe in recent
years, including the SARS virus in 2003, H1N1 influenza in 2009, the Ebola epidemic in West
Africa in 2014, and the global COVID-19 emergency, which began in 2019. These diseases
have caused severe casualties and economic and property losses, seriously impacting entire
societies [1,2]. The governments of many countries have attached great importance to the
emergency management of large-scale infectious diseases [3].

Infectious disease outbreaks tend to be unexpected, sudden, and largely unavoidable.
However, their impacts and losses can be significantly reduced by an effective allocation
plan for emergency medical materials [4,5]. The fundamental objective of emergency man-
agement operations in response to major infectious diseases is to minimize the casualties
and losses in the epidemic region. In the epidemic response and rescue process, emergency
medical materials play a vital role in reducing casualties and infections in the affected
region and in improving the effectiveness and efficiency of disease treatment, in general [6].
Compared with traditional intraregional resource allocation problems, the cross-regional
collaborative allocation of emergency materials constitutes a new research topic. There
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are many inherent challenges to the cross-regional collaborative allocation of emergency
medical materials for responding to major infectious diseases. Due to the suddenness of
major infectious diseases and the speed of their spread, a large amount of time-sensitive
and non-substitutable medical rescue supplies must be swiftly distributed after the out-
break; but in practice, different types of materials tend to be unevenly distributed, and the
storage and availability of these materials widely differ across different regions or cities [7].
Furthermore, different infectious diseases have disparate incubation periods, making it im-
possible to accurately and immediately obtain relevant information regarding the medical
materials necessary for emergency response. The spread of a major infectious disease can
easily cross political, functional, and geographic boundaries, rendering traditional crisis
response strategies incapable of reaching the desired effects across borders due to structural
obstacles [8]. Therefore, in this context, the formulation of a scientific and reasonable
multi-regional collaborative optimization emergency medical material allocation plan to
maximize the utilization efficiency and effectiveness of medical materials during a major
infectious disease epidemic is a practical problem that urgently needs to be solved.

Many previous researchers have explored the issue of medical material allocation in
emergency logistics scenarios in recent years, as the frequency and severity of disasters
have continued to increase [9]. Emergency medical materials are different from general
goods in that they have uncertain demand characteristics, tight delivery deadlines, and
low substitutability [6]. Most of the existing research is concerned with constructing
and solving models to support decision-making regarding emergency medical material
allocation [10–13]. For example, Pan et al. [14] proposed a model for allocating emergency
medical materials according to injury severity, and validated their method based on an
earthquake disaster. Li and Zheng [15] constructed an integrated optimization model that
accounts for emergency repair scheduling in earthquake disaster-affected road networks
and the allocation of rescue materials. The capacity of the proposed model to improve
emergency rescue performance was verified based on the Wenchuan earthquake. Chen
et al. [16] proposed an anti-influenza drug allocation optimization method based on de-
mand predictions. Arora et al. [17] considered maximum success rate as the goal in an
emergency medical material allocation scenario, and proposed an allocation model based
on cost constraints. Büyüktahtakın et al. [18] established an optimization model for emer-
gency material allocation site selection based on the 2014 Ebola epidemic in West Africa.
Tallon et al. [19] presented that, after the disaster, there may be a shortage of medical sup-
plies, and injured people may need treatment more than other affected people, so they
evaluated the equity of the emergency medical material plan according to the 24-h mor-
tality rate. Sun et al. [20] considered rescue vehicles, medical facility capacities, survival
probabilities, and victims’ psychological states for establishing a site selection and victim
transfer model for earthquake disaster relief; their model was designed to minimize the
psychological cost of the victims and maximize the number of survivors. Liu et al. [21]
established an emergency logistics network optimization model for infectious diseases
based on site selection and service levels. Ni and Zhao [22] proposed an emergency medical
resource allocation model considering delay cost and penalty cost, focusing on the alloca-
tion of medical resources in the initial emergency rescue stage of sudden natural disasters.
However, these studies focused primarily on the intra-regional allocation of emergency
medical materials, ignoring the importance of multi-regional collaborative allocation of
emergency medical resources during large-scale disaster relief operations.

Considering the actual needs of emergency rescue operations, the importance of
multi-regional collaborative emergency planning has gradually attracted the attention of
scholars [23]. The existing research mainly focuses on the regional collaborative mode [24],
influencing factors [25,26] and collaborative mechanism [27]. However, the existing re-
search on the multi-regional collaborative allocation model of emergency materials is
mainly based on the rescue operations for natural disasters and accidents. For exam-
ple, Cao et al. [28] proposed a cross-regional emergency material allocation model for
natural disasters centered on equity, which considers survivors’ risk acceptability and
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perceived satisfaction. Wang [29] developed a multiperiod allocation optimization model
for emergency materials based on regional self-rescue and cross-regional collaborative
rescue efforts, and took the case study based on the Wenchuan Earthquake as an example
for verifying the effectiveness of cross-regional emergency material collaborative allocation.
Qiu et al. [30] constructed a regional collaborative response strategy selection model based
on evolutionary game theory for accidents and disasters, mainly discussing the impact
of vertical administrative constraints on cross-regional collaboration, and analyzed the
collaborative strategy selection and evolution path of local governments. Lv et al. [31]
proposed a trans-regional petroleum emergency allocation model based on super-network
theory, whose optimization objective is to ensure the lowest allocation cost and delivery time.

In summary, it is crucial to consider multi-regional collaborative allocation of emer-
gency medical materials for large-scale disaster emergency rescue operations. This brief
review of the research regarding medical material allocation and regional collaborative
rescue operations provides a theoretical basis for our proposed multi-regional collaborative
allocation model of emergency medical materials. However, there are still gaps in the exist-
ing research. Firstly, previous research on the allocation of emergency medical materials
is mostly based on the intra-regional emergency rescue mode, ignoring the cross-border
nature of the spread of major infectious diseases, and rarely considering the particularity
of the emergency medical logistics involved in supply allocation during an epidemic. Sec-
ondly, although the advantages of multi-regional collaborative emergency response have
gradually been studied by some researchers, most of the relevant literature are qualitative
studies, regarding the mode or mechanism of regional collaborative emergency response,
while the current modeling research on multi-regional collaborative allocation of emer-
gency materials mostly focuses on natural disasters (e.g., earthquakes) and safety accidents.
Finally, existing multi-regional emergency medical resource allocation modeling analyses
have rarely considered both the efficiency and equity of multiple emergency periods in
their decision-making criteria and objectives.

Therefore, this study proposes a multi-regional collaborative optimal allocation model
of emergency medical materials that is specifically applied to emergency rescue opera-
tions for major infectious diseases. The proposed model can simultaneously consider
capture efficiency goals (allocation time and cost) and equity goals (system loss). The main
contributions of this work can be summarized as follows:

• A multi-objective optimization model for emergency medical material collaborative
allocation is formulated, which simultaneously considers time, cost, and loss, and the
trade-off between these three decision criteria is explored.

• A multi-regional collaborative allocation approach of emergency medical materials is
proposed, which considers a variety of the difference coefficients in different regions,
including the vulnerability and importance of demand points, the urgency of demand,
the vulnerability of victims, and the timeliness of emergency medical materials.

• An IAGA algorithm is developed to solve the model so that decision-makers can
handily select the best possible emergency medical material allocation strategy.

• The advantages of multi-regional collaborative allocation for improving rescue effi-
ciency and effectiveness are illustrated through the case of the collaborative response
to the COVID-19 epidemic in the Yangtze River Delta of China.

2. Model and Method
2.1. Problem Description

Major infectious diseases spread across multiple regions, regardless of borders. The
response to these epidemics should not occur only within a certain region; it is a problem
shared by multiple affected regions. The outbreak of a major infectious disease can cause
rapid spread across regions, each possessing different quantities and types of medical
materials, and with different respective abilities to procure and reserve different materials.
The demand for certain medical materials also varies across different regions due to the
severity of the epidemic and the characteristics of the victims. Certain types of materials
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may be in extremely short supply in a certain region while other regions have a surplus. In
this study, the unique characteristics of different regions, victims, demands, and materials
affecting epidemic emergency response operations were taken into account to develop a
medical material allocation model. The proposed model was designed to be multi-regional,
collaborative, scientific, and able to promote the effective and efficient sharing of emergency
medical materials in multiple periods. The issue of optimization for a multi-regional and
multi-periodic collaborative allocation of emergency medical materials for major infectious
diseases in this article is shown in Figure 1.
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2.2. Research Hypothesis

The following basic assumptions were made in developing the proposed model:

(1) The regions are independent of each other and the medical materials for emergency res-
cue can be transported to each region; all vehicles transporting materials are the same.

(2) The available supply of materials at the supply site within each region in each period
is known, and the demand at the affected point within each region in each time period
can be estimated through the existing technology and information. The distance from
supply site to demand point is known, as well.

(3) Seven days is regarded as one emergency period, and the material requirements of
each demand point can be fully satisfied following an entire emergency material
allocation period.

2.3. Mathematical Model

The notations listed in Table 1 are used throughout this article.
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Table 1. Notation.

Notation Description

Sets
P Set of all regions affected by the epidemic, p ∈ P
Q Set of regions requiring rescue operations, q ∈ Q
S Set of all supply sites in the epidemic-affected region, s ∈ S
D Set of all demand points in the region requiring rescue operations, d ∈ D
K Set of types of emergency medical materials, k ∈ K
T Set of time periods of emergency medical material allocation, t ∈ T
Parameters

c f ixkt
psqd

Fixed transportation cost per unit distance for allocating unit emergency medical materials k ∈ K from the supply
site s ∈ S in the region p ∈ P to the demand point d ∈ D in the region q ∈ Q during time period t ∈ T

cvarkt
psqd

Variable transportation cost per unit distance for allocating unit medical materials k ∈ K from the supply site s ∈ S
in the region p ∈ P to the demand point d ∈ D in the region q ∈ Q during time period t ∈ T

cpunkt
qd

Unit penalty cost of shortage material k ∈ K at the demand point d ∈ D within the region requiring rescue
operations q ∈ Q at the end of time period t ∈ T

btrant
psqd

Transportation time required to allocate materials from the supply site s ∈ S in the region p ∈ P to the demand
point d ∈ D in the region requiring rescue operations q ∈ Q during time period t ∈ T

m̃kt
qd

New demand for emergency medical materials k ∈ K at the demand point d ∈ D in the region requiring rescue
operations q ∈ Q at the beginning of period t ∈ T. Due to the rapid spread and incubation period of the epidemic,
the specific new demand at each demand point in each period cannot be accurately known. The demand

m̃kt
qd
∼ N

(
Emkt

qd
, Varmkt

qd

2
)

is represented by a random variable in this study.

mkt
qd

Actual demand for emergency medical materials k ∈ K at the demand point d ∈ D in the region requiring rescue
operations q ∈ Q during time period t ∈ T

g′kt
ps

Latest amount of emergency medical materials k ∈ K raised at the supply site s ∈ S in the region p ∈ P at the
beginning of time period t ∈ T

gkt
ps

Actual supply (available amount) of emergency medical materials k ∈ K raised at the supply site s ∈ S in the region
p ∈ P during time period t ∈ T

lkt
ps

Inventory of materials k ∈ K at the supply site s ∈ S in the region p ∈ P at the end of time period t ∈ T
bloadkt

ps
Loading time of unit material k ∈ K at the supply point s ∈ S in the region p ∈ P during time period t ∈ T

bunloadkt
qd

Unloading time of the unit material k ∈ K at the demand point d ∈ D in the region requiring rescue operations
q ∈ Q during time period t ∈ T

Opsqd

Total mileage distance from the supply site s ∈ S in the region p ∈ P to the demand point d ∈ D in the region
requiring rescue operations q ∈ Q

Wt
psqd

Maximum total amount of material that can go from the supply site s ∈ S in the region p ∈ P to the demand point
d ∈ D in the region requiring rescue operations q ∈ Q during time period t ∈ T

ηkt
qd

Minimum allocation coverage rate of demand point d ∈ D for material k ∈ K in the region requiring rescue
operations q ∈ Q during time period t ∈ T

δk
Timeliness coefficient of emergency medical materials k ∈ K, that is, the available validity period of emergency
medical materials. δk = [0, 1], a larger value indicates longer timeliness of the materials and more benefits for the
development of rescue activities and the improvement of rescue effects

µt
qd

Vulnerability coefficient of the demand point d ∈ D in the region requiring rescue operations q ∈ Q during time
period t ∈ T, which reflects the epidemic’s overall degree of impact. µt

qd
= [0, 1], a larger value indicates greater

damage to demand point by the epidemic

σt
qd

Importance coefficient of the demand point d ∈ D in the region requiring rescue operations q ∈ Q during time
period t ∈ T. σt

qd
= [0, 1], a larger value indicates a more important demand point. If the demand is not met,

substantial loss will be incurred

λt
qd

Characteristic coefficient of the victims at demand point d ∈ D in the region requiring rescue operations q ∈ Q in
the t ∈ T period, which mainly reflects the vulnerability of the victims. If there are more elderly people and children
at the demand point, the vulnerability will be relatively high. λt

qd
= [0, 1], a larger value indicates a higher

vulnerability of the victims at the demand point relative to other demand points
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Table 1. Cont.

Notation Description

ϕt
qd

Urgency coefficient of overall demand at the demand point d ∈ D in the region requiring rescue operations q ∈ Q in
the t ∈ T period. ϕt

qd
= [0, 1], a larger value indicates a more urgent overall demand at this point relative to other

demand points
Pr{·} Probability that the constraint conditions in {·} are true
ρ Confidence level that makes constraints hold
Decision
Variables

xkt
psqd

Amount of emergency medical materials k ∈ K allocated from the supply site s ∈ S in the region p ∈ P to the
demand point d ∈ D in the region q ∈ Q during time period t ∈ T

Ut
psqd

Binary variable indicating whether materials are allocated to the demand point d ∈ D in the region q ∈ Q from the
supply site s ∈ S in the region p ∈ P during time period t ∈ T. If so, the value is 1; otherwise, it is 0

ykt
qd

Unmet amounts (shortfalls) of materials k ∈ K at the demand point d ∈ D in the region requiring rescue operations
q ∈ Q during time period t ∈ T

Based on the above-mentioned notations, a multi-regional collaborative optimal allo-
cation model of emergency medical materials for major infectious diseases is formulated:

• The first objective is to minimize the total time necessary for the collaborative allocation
of emergency medical materials, including route transportation time, loading time at
the supply site, and unloading time at the demand point.

min Z1 = ∑
p∈P

∑
s∈S

∑
q∈Q

∑
d∈D

∑
t∈T

btrant
psqd
·Ut

psqd
+ ∑

p∈P
∑

s∈S
∑

q∈Q
∑

d∈D
∑

k∈K
∑

t∈T
bloadkt

qd
·xkt

psqd

+ ∑
p∈P

∑
s∈S

∑
q∈Q

∑
d∈D

∑
k∈K

∑
t∈T

bunloadkt
qd
·xkt

psqd

(1)

• The second objective is to minimize the total cost of collaborative emergency medical
material allocation, including fixed transportation costs, variable allocation costs, and
penalty costs for material shortages.

min Z2 = ∑
p∈P

∑
s∈S

∑
q∈Q

∑
d∈D

∑
t∈T

c f ixt
psqd
·Ut

psqd
+ ∑

p∈P
∑

s∈S
∑

q∈Q
∑

d∈D
∑

k∈K
∑

t∈T
cvarkt

psqd
·xkt

psqd
·Opsqd

+ ∑
q∈Q

∑
d∈D

∑
k∈K

∑
t∈T

cpunkt
qd
·ykt

qd

(2)

• The third objective is to minimize the total system loss caused by unmet materials at
all demand points.

min Z3 = ∑
q∈Q

∑
d∈D

∑
k∈K

∑
t∈T

µt
qd
·σt

qd
·λt

qd
·ϕt

qd
·δk·ykt

qd

∑
q∈Q

∑
d∈D

mkt
qd

(3)

The constraints for the proposed multi-objective optimization model are as follows.

Pr

{
∑
p∈P

∑
s∈S

xkt
psqd
−

t−1

∑
v=1

(mkv
qd
− ∑

p∈P
∑
s∈S

xkv
psqd

) ≤ m̃kt
qd

}
≥ ρ ∀q ∈ Q, d ∈ D, k ∈ K, t ∈ T (4)

∑
q∈Q

∑
d∈D

xkt
psqd

+ lkt
ps
= g′kt

ps
+

t−1

∑
v=1

(gkv
qd
− ∑

q∈Q
∑

d∈D
xkv

psqd
) ∀p ∈ P, s ∈ S, q ∈ Q, d ∈ D, t ∈ T (5)

∑
p∈P

∑
s∈S

∑
q∈Q

∑
d∈D

xkt
psqd

= min

{
∑

p∈P
∑

s∈S
gkt

ps
+

t−1
∑

v=1
(gkv

ps
− ∑

q∈Q
∑

d∈D
xkv

psqd
), ∑

q∈Q
∑

d∈D
mkt

qd
+

t−1
∑

v=1
(mkv

qd
− ∑

p∈P
∑

s∈S
xkv

psqd
)

}
∀k ∈ K, t ∈ T

(6)
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∑
k∈K

xkt
psqd
≤Wt

psqd
·Ut

psqd
∀p ∈ P, s ∈ S, q ∈ Q, d ∈ D, t ∈ T (7)

∑
p∈P

∑
s∈S

xkt
psqd

/mkt
qd
≥ ηkt

qd
∀q ∈ Q, d ∈ D, k ∈ K, t ∈ T (8)

ykt
qd

=
t

∑
v=1

(mkv
qd
− ∑

p∈P
∑
s∈S

xkv
psqd

) ∀q ∈ Q, d ∈ D, k ∈ K, t ∈ T (9)

Ut
psqd
∈ {0, 1} ∀p ∈ P, s ∈ S, q ∈ Q, d ∈ D, t ∈ T (10)

xkt
psqd
≥ 0 ∀p ∈ P, s ∈ S, q ∈ Q, d ∈ D, k ∈ K, t ∈ T (11)

ykt
qd
≥ 0 ∀q ∈ Q, d ∈ D, k ∈ K, t ∈ T (12)

Constraint (4) indicates that the probability of the quantity of emergency medical materials
allocated to a demand point by a supply site in each period does not exceed its real material demand
in that period under the confidence level ρ. That is, the materials cannot be allocated prior to the
demand arising. Constraint (5) indicates the material flow conservation limit at the supply site in each
period. That is, the sum of the inventory in the previous period and the latest amount raised in this
period is equal to the sum of the allocated amount in this period and the remaining inventory at the
end of the period. Constraint (6) requires that the demand for emergency medical materials at each
demand point be satisfied to the greatest extent possible in each period. Constraint (7) indicates that,
if the supply site allocates materials to the demand point, the corresponding transportation cost must
be paid; it also reflects the capacity limitation. Constraint (8) indicates that the material allocation
satisfaction rate at each demand point in each period must not be lower than the preset minimum
value. Constraint (9) is an expression of the shortage or unsatisfied amount of emergency medical
materials at each demand point in each period. Constraint (10) requires that the binary variables
must be equal to 0 or 1. Constraints (11) and (12) indicate the nonnegativity of decision variables.

2.4. Solution Method
The multi-regional collaborative optimal allocation of emergency medical materials proposed

in this paper is a complex decision-making problem. The model involves multiple objectives and
multiple factors, and belongs to the NP-hard problem. For the solution of this problem, it is necessary
to adopt an appropriate, fast, and effective algorithm (either by developing a new one or by finding
one in literature) to improve the decision-making efficiency and effectiveness in the case of an
emergency rescue [32–34]. Genetic algorithm (GA), which has diverse coding techniques, strong
search directionality and good operability, is a typical method for solving optimization problems; it
has been successfully applied in studies on vehicle scheduling, path optimization, and transportation
management problems [35]. However, in practical application, it also has the disadvantages of slow
convergence speed and a high tendency towards local optimization [36]. Therefore, we propose an
improved genetic algorithm based on an adaptive strategy to solve the shortcomings of the basic
GA by designing adaptive crossover probability and mutation probability, thereby meeting the
requirements for solving the model. The flow of the improved adaptive genetic algorithm (IAGA) we
designed to solve the multi-regional collaborative optimal allocation problem of emergency medical
materials is shown in Figure 2. Step 1. Chromosome coding. Combined with the basic characteristics
of the research question and decision variables, we used a hybrid coding method for genetic coding
in this study. The demand quantity of medical materials was coded by natural number method; all
of the regions affected by the epidemic, regions requiring rescue operations, supply sites, demand
points, emergency medical materials, and emergency periods were coded by symbolic method. The
specific coding process is as follows:

1© The demand quantity of emergency medical materials is coded by assuming that there are
eight demand points that need rescue medical materials. The demand quantity of each demand point
is 6, 9, 7, 3, 8, 8, 5, and 6 units of materials. The corresponding genetic code is 69738856. The code of
all regions affected by the epidemic is denoted by p1, p2, . . . , pi, the code of regions requiring rescue
operations is denoted by q1, q2, . . . , qj, the code of supply sites is denoted by s1, s2, . . . , sh, the code
of demand points is denoted by d1, d2, . . . , dn, the code of emergency medical materials is denoted
by k1, k2, . . . , kr, and the emergency periods are denoted by t1, t2, . . . , tv.

2© The rescue site completes a cross-regional emergency medical material allocation task as
a basic gene. For example, (p1, s2, q3, d4, k5, t6) represents the allocation of material k5 from the
supply site s2 in region p1 to the demand point d4 in region q3 during the period t6.
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3© The gene segments of all supply sites are paralleled in sequence from small to large according
to the number of supply sites in different regions, thus forming an individual.
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Figure 2. Basic flow of improved genetic algorithm.

Step 2. Generate initial population. To improve the global search performance and quality of
GA, the initial random number is transformed to a value between the minimum demand and the
actual demand, and the transformation formula is as follows:

xkt
psqd

= γkt
psqd
·rand

(
ηkt

qd
·mkt

qd
/γkt

psqd
, mkt

qd
/γkt

psqd

)
(13)

where γkt
psqd

represents the initial random number and rand
(

ηkt
qd
·mkt

qd
/γkt

psqd
, mkt

qd
/γkt

psqd

)
represents

the generated random transformation multiple.
Step 3. Design fitness function. The proposed three objective functions are respectively total

time Z1, total cost Z2, and total loss Z3. Each objective function is normalized to obtain Z∗1 , Z∗2 , and
Z∗3 , and the weights are given respectively ω1, ω2, and ω3, where ω1 + ω2 + ω3 = 1. Then the fitness
function is:

Fit
(

xkt
psqd

)
= ω1·Z∗1 + ω2·Z∗2 + ω3·Z∗3 (14)

Step 4. Selection. Selection is the process of selecting high-quality individuals from a population
to form a new population with the purpose of avoiding loss of genetic information and improving
global convergence. In this paper, the roulette method was used to select the new population, and the
dominant individuals obtained in Step 3 were added to the new population to improve the quality of
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the population. ζb represents the probability that the bth individual is selected, and Fitb represents
the fitness of the bth individual. Equation (15) indicates that the selection probability of an individual
is directly proportional to its fitness value.

ζb = Fitb/ ∑
b∈B

Fitb (15)

Step 5. Corssover and mutation. To improve the convergence speed and global search ability
of the GA, inspired by Liu et al. [37], we designed the adaptive change rules of crossover and
mutation, so that the crossover and mutation probability adaptively adjusts the change according
to the similarity degree of population, so as to achieve global optimization. The adaptive crossover
and mutation probability functions are designed as functions related to the evolutionary algebra e, as
shown in Equations (16) and (17), respectively.

∂e
cov =


∂cov,0 Fitmin(e)/Fitmax(e) ≥ β, and Fitavg(e)/Fitmax(e) > ε

∂cov,1 −
∂cov,2−∂cov,1

1−Fitmin(e)/Fitmax(e)
α < Fitmin(e)/Fitmax(e) < β, and Fitavg(e)/Fitmax(e) > ε

∂cov,2 other

(16)

∂e
mut =


∂mut,2 Fitmin(e)/Fitmax(e) ≥ β, and Fitavg(e)/Fitmax(e) > ε

∂mut,2 −
∂mut,2−∂mut,1

1−Fitmin(e)/Fitmax(e)
α < Fitmin(e)/Fitmax(e) < β, and Fitavg(e)/Fitmax(e) > ε

∂mut,0 other

(17)

where ∂e
cov and ∂e

mut represent the crossover probability and mutation probability of the eth generation,
and their values are calculated from the fitness value of the previous generation chromosome popula-
tion. ∂cov,1, ∂cov,2, ∂mut,1, ∂mut,2, ε, α, and β are adaptive adjustment parameters of auxiliary crossover
and mutation probability, satisfying 0 < ∂cov,0 < ∂cov,1 < ∂cov,2, 0 < ∂mut,0 < ∂mut,1 < ∂mut,2.
Fitmax(e), Fitmin(e), and Fitavg(e) represent the maximum, minimum, and average fitness of the pop-
ulation, respectively. Fitmin(e)/Fitmax(e) reflects the approximation degree of the whole population.
Fitavg(e)/Fitmax(e) reflects the distribution of individual fitness within the population. The closer the
two are, the more similar the individuals of this generation are, and they may fall into local optimum.
When Fitmin(e)/Fitmax(e) ≥ β and Fitavg(e)/Fitmax(e) > ε, the approximation degree of the popu-
lation is great. This situation is generally in the late stage of iterative evolution. In this case, small
crossover probability and large mutation probability should be selected to generate new individuals
and jump out of local optimal. When α < Fitmin(e)/Fitmax(e) < β and Fitavg(e)/Fitmax(e) > ε, it is
in the middle and late stage of evolution, and the population approximation degree is large, so the
crossover probability should be maintained and the mutation probability should be appropriately
increased. In other cases, it is generally in the early and middle stages of iterative evolution, and the
approximation degree of the population is small, so large crossover probability and small mutation
probability should be selected to improve the evolution speed and protect excellent individuals.

Step 6. Termination condition of algorithm. In general, when the fitness value of the current
solution does not show any significant improvement, or the number of iterations for solving the
evolution reaches a certain multiple of the current population size, the algorithm can be terminated,
and the individual with the maximum fitness appearing in the evolution process is regarded as the
optimal solution of the model.

3. Case Study and Results
3.1. Case Description and Data Setting

The sudden occurrence and rapid spread of major infectious diseases require a collaborative
emergency response from multiple cities. Since the outbreak of COVID-19, the Yangtze River Delta
region (Jiangsu, Zhejiang, Anhui, and Shanghai) has given full play to the collaborative advantages of
integrated development, coordinated and promoted joint prevention and control of the epidemic, suc-
cessively established multiple collaboration mechanisms including information exchange regarding
confirmed and suspected cases, mutual assistance for supply distribution guarantees, sharing of med-
ical diagnoses and treatment plans, and consultations for doctors treating critically ill patients [38].
These cooperative mechanisms provide a strong guarantee for effective epidemic prevention and
control in the Yangtze River Delta. Due to the destructive degree and rescue effect in this epidemic,
the collaborative response to COVID-19 in the Yangtze River Delta of China was chosen to be a case
study, given that it is representative of an effective demonstration of collaborative response measures
in a disaster relief context.
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Medical drugs (k1) and disposable protective clothing (k2) were selected for the purposes of
the case study as urgently needed materials. Relevant parameters were set by combining actual and
simulated data. It was assumed that the above three provinces, and one city each, have (2, 2, 1, 1)
supply sites and (2, 3, 2, 1) demand points. The transportation time and total distance for all regional
supply sites to allocate materials to demand points were determined according to a Baidu map. The
average transportation cost per unit distance for moving emergency medical materials from the
supply site to the demand point was found to be 10 RMB. The minimum material allocation coverage
rate for each demand point in each period was set to ηkt

qd
= 0.6. The latest amounts of materials raised

at the supply sites and the forecast demand for materials at the demand points in different regions at
the beginning of each period are shown in Table 2. The loading time of unit material at the supply site,
the unloading time of unit material at the demand point, and the penalty cost of unit material shortage
are shown in Table 3. The maximum material transportation volume and fixed transportation cost for
the allocation of materials from supply sites to demand points in each region are shown in Table 4.
The vulnerability coefficient, importance coefficient, demand urgency coefficient, victim vulnerability
coefficient, and timeliness coefficient of emergency medical materials at different demand points
in each period are shown in Table 5. We solved the computational case in MATLAB R2016a on a
computer with an Intel (R) Core (TM) 1.90 GHz processor with 16.0 GB of RAM. The IAGA parameters
were set as follows: population size N= 50, maximum number of iterations G= 400, ε= 0.8, α= 0.002,
β= 0.7, ∂cov,0= 0.1, ∂cov,1= 0.5, ∂cov,2= 0.9, ∂mut,0= 0.005, ∂mut,1= 0.1, ∂mut,2= 0.6.

Table 2. The latest amounts of materials raised and the forecast demand for materials in different
regions at the beginning of each time period.

Region Supply
Site

Period Demand
Point

Period

1 2 3 4 1 2 3 4

p1
s1 3.5, 3 6, 4 9.5, 6 21, 7 d1

N (7, 3)
N (10, 6)

N (9, 3)
N (14, 3)

N (12, 6)
N (19, 7)

N (15, 3)
N (23, 8)

s2 2, 1 5, 2 6, 3 17, 4 d2
N (4, 3)
N (8, 5)

N (6, 4)
N (9, 3)

N (8, 5)
N (12, 4)

N (10, 8)
N (14, 3)

p2

s3 0.5, 10 3, 18 3.5, 24 5, 38 d3
N (5, 2)
N (9, 7)

N (6, 2)
N (10, 3)

N (7, 4)
N (12, 8)

N (9, 5)
N (14, 5)

s4 0.5, 5 2, 10 2.5, 12 3, 13 d4
N (3, 2)
N (7, 4)

N (5, 2)
N (8, 3)

N (6, 3)
N (10, 4)

N (8, 5)
N (12, 3)

d5
N (6, 3)
N (9, 3)

N (7, 3)
N (10, 2)

N (8, 4)
N (11, 5)

N (10, 3)
N (13, 3)

p3
s5 0.5, 7 2, 21 3.5, 29 4, 63 d6

N (4, 3)
N (8, 6)

N (5, 2)
N (9, 4)

N (7, 4)
N (11, 4)

N (9, 3)
N (13, 5)

d7
N (3, 2)
N (5, 3)

N (4, 2)
N (6, 3)

N (5, 3)
N (8, 2)

N (7, 3)
N (9, 3)

p4 s6 5, 2 12, 5 17, 6 46, 7 d8
N (9, 6)

N (12, 5)
N (10, 5)
N (15, 6)

N (13, 6)
N (19, 5)

N (16, 2)
N (23, 5)

Note: The data format at the supply site on the left of the table is A, B, where A and B are the latest amount of
material k1 and k2 raised in ten thousand piece units, respectively. The data format at the demand point on the
right is N(A, B), and the demand obeys a normal distribution.

Table 3. Loading and unloading time of unit material, and penalty cost of unit material shortage.

Material Loading Time
(Hour)

Unloading Time
(Hour) Penalty Cost (104 CNY)

k1 1 1 (0.3, 0.2, 0.5, 0.4, 0.3,
0.5, 0.5, 0.2)

k2 0.7 0.6 (0.5, 0.4, 0.3, 0.3, 0.2,
0.2, 0.2, 0.5)
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Table 4. Maximum transportation and fixed transportation cost from supply site to demand point.

Region Demand
Point

p1 p2 p3 p4

s1 s2 s3 s4 s5 s6

p1
d1 100, 1.1 90, 2 130, 0.8 90, 1.2 150, 1.9 120, 0.5
d2 70, 0.4 60, 0.2 120, 1.4 70, 2 145, 1.3 125, 1.3

p2

d3 70, 1.4 50, 1.5 115, 0.4 60, 0.9 140, 2.1 130, 0.5
d4 75, 1 60, 1.1 125, 0.4 65, 1.2 150, 1.7 110, 0.7
d5 70, 1.7 70, 1.8 120, 0.3 70, 0.6 140, 2.3 115, 1

p3
d6 80, 0.3 60, 0.8 115, 1.5 60, 2.2 145, 0.8 110, 1.7
d7 90, 0.4 80, 0.6 120, 1.7 70, 2.5 140, 0.7 120, 1.9

p4 d8 100, 1.5 100, 1.4 130, 0.9 110, 1.2 150, 2.4 120, 0.04

Note: The data format in this table is a, b, where a is the maximum material transportation volume (unit: 104 piece)
and b is the fixed transportation cost (unit: 104 CNY).

Table 5. Difference coefficients of disaster area, victims, demand, and materials.

Region Demand
Point

Period

1 2 3 4

p1
d1

(0.9, 0.9,
0.9,0.8)

(0.9, 0.8, 0.8,
0.7)

(0.8, 0.7, 0.7,
0.6)

(0.6, 0.5, 0.5,
0.4)

d2
(0.8, 0.7, 0.8,

0.7)
(0.7, 0.6, 0.6,

0.6)
(0.6, 0.5, 0.4,

0.5)
(0.3, 0.3, 0.2,

0.3)

p2

d3
(0.8, 0.8, 0.9,

0.9)
(0.8, 0.7, 0.8,

0.8)
(0.7, 0.7, 0.7,

0.7)
(0.5, 0.5, 0.5,

0.5)

d4
(0.7, 0.8, 0.8,

0.8)
(0.7, 0.7, 0.6,

0.7)
(0.6, 0.6, 0.4,

0.6)
(0.4, 0.2, 0.3,

0.4)

d5
(0.8, 0.7, 0.8,

0.7)
(0.7, 0.6, 0.6,

0.6)
(0.5, 0.5, 0.5,

0.4)
(0.3, 0.3, 0.1,

0.2)

p3
d6

(0.8, 0.9, 0.9,
0.9)

(0.8, 0.8, 0.8,
0.8)

(0.7, 0.7, 0.7,
0.7)

(0.5, 0.5, 0.4,
0.5)

d7
(0.9, 0.9, 0.9,

0.9)
(0.9, 0.8, 0.8,

0.8)
(0.8, 0.7, 0.7,

0.7)
(0.6, 0.5, 0.5,

0.5)

p4 d8
(0.8, 0.9, 0.8,

0.8)
(0.7, 0.7, 0.7,

0.6)
(0.5, 0.6, 0.6,

0.6)
(0.3, 0.4, 0.3,

0.4)

Material Timeliness (1, 1) (0.8, 0.9) (0.8, 0.7) (0.5, 0.5)
Note: The data formats in the table are respectively 1© demand points (vulnerability coefficient, importance
coefficient, demand urgency coefficient, victim vulnerability coefficient); 2© materials (timeliness of material k1,
timeliness of material k2).

3.2. Result Analysis
3.2.1. Time, Cost, and System Loss of Collaborative Material Allocation per Period

The time, cost, and system loss of the collaborative allocation of materials in each period are
shown in Figure 3. The system loss of emergency material allocation in each period gradually
decreases until reaching zero at the end of the fourth period. This indicates that the proposed
model enables the material demands at all demand points in all regions to be met by rescue activities
throughout entire emergency period. Meanwhile, the time and cost for allocating emergency materials
in each period increase over time, which suggests that there is a decrease in system loss at each
demand point that sacrifices some time and cost. This is because the materials are limited in the
initial stages of the rescue process. In consideration of time and cost, limited materials tend to be
allocated to nearby areas first, so there is shorter time and lower cost for material allocation initially
with relatively low shortage. However, with the gradual increase in material supply, the quantity
of materials allocated to each demand point in each period increases to compensate for previous
shortages at various demand points. Thus, the loss of each demand point is gradually reduced while
the time and cost for material allocation increases, to some extent.
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3.2.2. Material Satisfaction Rate of Each Demand Point in Each Period
The material satisfaction rates of demand points in different regions in each period, as shown in

Figures 4 and 5, are consistently higher than 60%. This indicates that the proposed model satisfies
the rescue material demand of demand points across different regions. The model appears to
guarantee the equity of multi-periodic material allocation to a certain extent, as well. When materials
are extremely scarce, the proposed model may ensure that each demand point obtains a certain
proportion of the required materials, thus preventing a certain demand point from suffering serious
loss. For example, the total demand for the first material in the first period at the three demand points
in the region p2 is about 6.5, but the total supply of this region is only 1. If there is no collaborative
material allocation, some demand points in the region can only obtain a small portion, if any, of the
necessary materials. Almost all demand points in the region will face serious shortages. However,
with the collaborative allocation of materials, the regions p1 and p3, where materials are relatively
adequately supplied, can allocate some of the materials to the demand points in the region p2.
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3.2.3. Allocation Path and Amount of Various Types of Materials in Each Period
The allocation path and amount of various materials in each period are shown in Figure 6. The

proposed model appears to combine the territorial allocation principle with the nearby allocation
principle while comprehensively accounting for various coefficients of difference, including the
vulnerability, importance, overall demand urgency, victim characteristics, and timeliness of the
demand point on the basis of allocation time, cost, and system loss. The model can maximize the
satisfaction rate and ensure the optimal allocation of emergency medical materials.
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Figure 6. Allocation path and amount of materials k1 and k2 in each period. (a) Path and amount
of material allocation in the first period; (b) Path and amount of material allocation in the second
period; (c) Path and amount of material allocation in the third period; (d) Path and amount of material
allocation in the fourth period. (Note: → represents collaborative allocation, and 99K represents
non-collaborative allocation).

3.2.4. Comparison of Collaborative and Non-Collaborative Allocation
The overall satisfaction rates of two types of materials in each period in cases of collaborative

versus non-collaborative allocation are shown in Figure 7. The rates for both materials increase over
time until reaching 100% at the end of the fourth period. The model allows for the free allocation and
exchange of various types of materials across different regions under comprehensive consideration
of time, cost, and system loss. Thus, the rate of satisfaction gradually increases until satisfying the
demands at all demand points, with an increase in the overall material supply.
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Figure 7. Total material satisfaction rate per period under collaborative and
non-collaborative allocation.

Figure 7 also shows where the satisfaction rates decrease over time when materials are not
collaboratively allocated. It is impossible in this case to achieve a material satisfaction rate of over
60% at each demand point in each period. In the absence of collaboration, supply points in each
region can only allocate materials to the demand points in one region per period. Even if there are
still materials remaining after allocation to certain demand points, the supply points can only retain
them until the next emergency period for allocation to the demand points in their region. There may
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be an extreme excess of a certain material at the supply point even if there is a demand point in
another region that is in dire need. The supply and demand for materials is imbalanced, shortages
abound, and the demand is ultimately not satisfied.

Consider an example wherein the supply of materials k1 is sufficient (supply 70 and 80, demand
44 and 34) but the supply of materials k2 is insufficient (supply 30 and 20, demand 80 and 54)
throughout the emergency period in the regions p1 and p4. Alternately, the supply of materials k2
(supply 130 and 120, demand 85 and 43) is sufficient, but the supply of materials k1 (supply 20 and
10, demand 45 and 22) is insufficient in the regions p2 and p3. The satisfaction rate of each demand
point in the regions p2 and p3 for the materials k1 and the satisfaction rate of each demand point in
the regions p1 and p4 for the materials k2 under collaborative versus non-collaborative conditions are
shown in Table 6.

Table 6. Comparison of satisfaction rates of emergency medical materials at each demand point
under two situations of collaborative allocation (CA) and non-collaborative allocation (NCA).

Region Demand
Point

Allocation
Mode Period 1 Period 2 Period 3 Period 4

p1
(k2)

d1
NCA � � � �

CA ⊕ ⊕ 2� 2�

d2
NCA ⊕ ⊕ ⊕ ⊕
CA ⊕ ⊕ 2� 2�

p2
(k1)

d3
NCA � ⊕ ⊕ �

CA ⊕ ⊕ 2� 2�

d4
NCA � � � �

CA ⊕ ⊕ ⊕ 2�

d5
NCA � � � �

CA ⊕ ⊕ ⊕ 2�

p3
(k1)

d6
NCA � � � �

CA ⊕ 2� 2� 2�

d7
NCA ⊕ 2� 2� ⊕
CA ⊕ 2� 2� 2�

p4
(k2) d8

NCA � � � �

CA ⊕ ⊕ ⊕ 2�
Note: 2�means that the material satisfaction rate is 100%; ⊕ means that the satisfaction rate is 60% ≤ δ < 100%; �
means that the material satisfaction rate is 0 ≤ δ < 60%.

As can been seen in Table 6, collaborative allocation appears to improve the satisfaction rate of
each demand point for emergency materials in each period, and satisfies all material requirements
of all demand points in a relatively short time. As the supply continues to increase, the effects and
advantages of collaborative allocation grow increasingly significant. For example, in the absence
of collaborative allocation, the satisfaction rate of material k2 at the demand point d1 in the region
p1, and the satisfaction rate of the materials k1 at the demand point d4 in the region p2 are very
low throughout the emergency period. The material requirements of the two demand points are
not met until the end of the entire rescue activity (fourth period). After collaborative allocation
is adopted, Table 6 also shows that the demand of the demand point d1 for materials k2 is fully
satisfied in the third period. The demand of the demand point d4 for materials k1 is fully met in
the fourth period. Collaborative allocation allows a certain proportion of materials to be provided
to demand points with extreme shortages, even when the supply is limited in the initial stage of
rescue. This ensures the equitable allocation of emergency medical materials while also maximizing
the overall effects of rescue operations. This shows that the proposed model can realize the effective,
fair, and collaborative allocation of emergency medical materials in multiple regions, thus verifying
the validity and feasibility of the model.
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3.2.5. Verification of IAGA Effectiveness
To verify the effectiveness of the proposed IAGA, we ran 30 random operations on the algorithm

while maintaining the same conditions and parameters. The best and the worst total allocation time
were 815 and 821, respectively, with a difference of only 0.73%; the best and worst total allocation
costs were 145 and 147, respectively, with a difference of 1.36%; and the best and worst total losses
were 0.5 and 0.505, respectively, making only a 0.99% difference. The calculation result is relatively
stable, thus, the algorithm has strong stability. Moreover, the emergency material allocation path is
consistent among the 30 generated schemes, which indicates that the IAGA algorithm has strong
stability.

We also compared our IAGA against the basic GA to further validate its effectiveness. After 400
evolutionary iterations under the same conditions and parameters, the fitness evolution curves of
IAGA and GA were obtained, respectively, as shown in Figure 8.
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It can be seen from Figure 8 that IAGA can achieve high fitness at the early stage of iteration. As
the iteration continues, although the basic GA has a fast search speed at the initial stage of operation,
after it falls into local optimum in 138 iterations, the offspring within the population tend to be
similar. At this time, the small mutation probability cannot meet the algorithm’s requirement of
obtaining new individuals different from the population, and it falls into local optimum until the end
of 400 iterations. Although the convergence speed of IAGA is slow at the initial stage of operation,
after 36 iterations, the convergence speed is improved by increasing the crossover probability and
reducing the mutation probability. When the operation falls into local optimization in the later stage,
the ability of IAGA to explore new solutions is increased by reducing the crossover probability and
increasing the mutation probability, thereby causing a steady progression of jumps away from the
local optimization and towards the optimal solution, until finally, the global optimal solution is
effectively obtained in 143 iterations.

We ran the IAGA and GA 100 times, independently. The results are shown in Table 7. The
proposed IAGA is superior to the GA in terms of computing time, which shows that IAGA can
quickly and accurately obtain the appropriate EMA scheme, which is very important in the case of
emergency response operations. In addition, the optimal convergence times, average convergence
values, and relative convergence error rate are also significantly better than the basic GA. We attribute
that to the introduction of adaptive crossover and mutation probability function, which not only
prevents falling into local optimization, but also improves the convergence speed and global search
ability of the algorithm.
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Table 7. Performance comparison of IAGA and GA (100 times).

Algorithms Computing Time (s)
Average

Convergence Value
Relative Convergence

Error Rate (%)

ST LT AT Z1 Z2 Z3 Z1 Z2 Z3

GA 135.27 163.19 150.22 836 152 0.55 2.51 4.61 9.1
IAGA 85.56 112.36 91.36 817 145.9 0.502 0.24 0.62 0.40

Note: ST is the minimum computing time, LT is the maximum computing time, and AT is the average computing
time. Z1 represents the objective function of total allocation time, Z2 represents the objective function of total
allocation costs, and Z3 represents the objective function of total loss.

4. Conclusions and Outlook
This paper proposed a multi-objective optimization model for multi-regional collaborative

allocation of emergency medical materials. This model minimizes the total time and total costs for
material allocation and prioritizes equity in minimizing any system loss due to dissatisfied material
demands. An IAGA method was developed to obtain high-quality emergency medical material
allocation schemes. Finally, a case study was conducted based on the collaborative response to
COVID-19 across the Yangtze River Delta region to validate the model.

The research results show that the proposed model can balance efficiency and equity, realize
effective integration and sharing of emergency materials between regions, and improve the utilization
efficiency and rescue effect of emergency materials allocation. We also find that collaborative alloca-
tion can improve the satisfaction rate for emergency materials at various demand points. Even in the
case of extreme shortage of materials at the initial stage of a rescue operation, the model can ensure
that each region obtains a certain proportion of the required materials and can effectively prevent a
certain region from suffering a severe shortage. As the supply continues to increase, the advantages
of collaborative allocation grow increasingly significant. Finally, the material allocation scheme con-
siders a variety of difference coefficients in different regions in each period, such as the vulnerability
and importance of demand points, the urgency of overall demand, the vulnerability of victims, and
the timeliness of materials, each of which are conducive to improving the decision-making flexibility
of multi-regional material collaborative allocation and the practical applicability of the scheme, and
more in line with the actual characteristics of emergency rescue operations after the outbreak of a
major infectious disease. Additionally, the proposed IAGA can be effectively applied to cross-regional
emergency rescue decision-making. It has significant advantages in terms of solution efficiency,
stability, convergence effects, and optimization capability. In practice, it could save valuable time
for emergency relief operations and provide decision support for obtaining high-quality or optimal
material allocation schemes. The model provides practical and applicable plans that conform to the
actual characteristics of emergency rescue operations after the outbreak of a major infectious disease.

The research findings provide several management implications for coping with COVID-19 in
real-world scenarios.

First, the scientific and optimal allocation of emergency medical materials plays a vital role in
rescue operations after a major infectious disease outbreak. The relevant management departments
need to attach great importance to the allocation process, and efficiency and equity need to be
considered simultaneously.

Second, major infectious diseases have a significant cross-border nature, and their impact is
extremely extensive. Emergency rescue activities require a multi-regional collaborative response,
especially via the establishment of a scientific and reasonable joint prevention and control linkage
mechanism, to build a shared community for future multi-regional emergency rescue response.

Third, the effective promotion and implementation of multi-regional collaborative emergency
response needs to consider many aspects, such as resource sharing, information sharing, and risk
communication.

Although this study shows great promise for improving the collaborative allocation of emer-
gency medical materials across multiple regions, and the results can provide useful strategies for
supporting emergency rescue during major infectious disease outbreaks, it is important to note that,
in this study, only road transportation modes were considered. Different material transportation
modes (e.g., air or rail) have different effects on actual allocation efficiency and emergency material
allocation. Various transportation modes should be integrated into the proposed model as neces-
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sary. Therefore, further research is necessary to investigate the multi-regional collaborative optimal
allocation of emergency medical materials based on multiple transportation modes.
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