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Abstract: Carthamus tinctorius L. (Honghua, HH) is an herbal medicine and functional food widely
used to treat chronic liver diseases, including liver fibrosis. By using network pharmacology and
molecular docking experiments, the present study aims to determine the bioactive components,
potential targets, and molecular mechanisms of HH for treating liver fibrosis. The components of
HH were screened from the Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform and literature, and the SwissTargetPrediction database was used to predict the
treatment targets of HH. Genecards and DisGeNET databases contained targets for liver fibrosis,
and the STRING database provided networks of protein–protein interactions. Gene ontology and
Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using
the Database of Annotation, Visualization and Integrated Discovery. The protein–protein interactive
network and drug–component–major target–pathway interactive network were visualized and
analyzed by Cytoscape software. Finally, Autodock Vina and Discovery Studio software were used
for molecular docking Validation. A total of 23 candidate bioactive compounds with 187 treatment
targets of HH were acquired from the databases and literature. A total of 121 overlapping targets
between HH and liver fibrosis were found to provide the molecular basis for HH on liver fibrosis.
Quercetin, beta carotene, and lignan were identified as key components with targeting to ESR1,
PIK3CA, and MTOR. HH is engaged in the intervention of various signaling cascades associated with
liver fibrosis, such as PI3K/AKT/mTOR pathway, MAPK pathway, and PPAR pathway. In conclusion,
HH treats liver fibrosis through multi-component, multi-target, and multi-pathway mechanisms.

Keywords: Carthamus tinctorius L.; herbal medicine; functional food; liver fibrosis; molecular
mechanism; network pharmacology

1. Introduction

Liver fibrosis, caused by chronic liver injuries such as viral hepatitis, fatty liver disease,
and cholestasis, is an abnormal response to repair the liver [1]. Liver fibrosis is characterized
by excessive deposition of collagen and other extracellular matrix (ECM). With liver fibrosis
processes, normal liver tissue is replaced by scar tissue, the structure is destroyed, and the
function is impaired, which leads to further cirrhosis, liver failure, or even liver cancer,
leading to death of patients [2]. As a result of non-alcoholic fatty liver disease, liver fibrosis
is a major predictor of its mortality [3]. In addition, approximately one million people die
from complications of cirrhosis every year, making it the 11th leading cause of death in
the world [4]. Obviously, the end-stage liver disease related to liver fibrosis is becoming a
tremendous public health challenge globally.
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Liver fibrosis was considered to be an irreversible pathological event in the past.
Remarkably, emerging evidence has suggested that the progression of fibrosis can be
reversed after the removal of damaging factors [2]. Some basis of fibrosis resolution
has been proven, including the interruption of harmful substances that cause chronic
liver damage, elimination or inactivation of myofibroblasts, intervention of inflammatory
responses, and the degradation of ECM [5]. Consequently, the early diagnosis and timely
interventional treatment of liver fibrosis may be one of the important measures to resolve
chronic liver diseases.

The activation and proliferation of hepatic stellate cells (HSCs) generate myofibrob-
lasts, which is the main cellular source of ECM and the main driver of liver fibrosis [6]. In
order to alleviate or reverse liver fibrosis, treatment strategies that inhibit the activation and
proliferation of HSCs are necessary [1]. Advances have been reported in HSC based thera-
peutic approaches in recent years. Drugs including pirfenidone, sorafenib, and obeticholic
acid have been shown to exhibit anti-fibrosis potential by inhibiting the activation of HSCs
in clinical studies [7,8]. Some natural products have also exerted anti-fibrosis activities
for liver fibrosis in preclinical studies, such as curcumin and ferulic acid [9,10]. However,
specific drugs available for patients with liver fibrosis are still lacking in clinical practice,
indicating an urgent demand to explore more effective and safe treatment strategies [11].

Herbal medicines containing natural products are receiving attention in the treatment
of chronic liver diseases due to their multiple pharmacological activities [12]. Carthamus
tinctorius L. (Honghua, HH) is a medicinal plant which has anti-inflammatory, antioxidant,
and antitumor effects and is cultivated and applied in more than 60 countries around the
world [13]. Moreover, HH has also a wide range of uses in the food fields, including as
a natural colorant and food additive with potential benefits to human health [14,15]. In
particular, HH is a traditional Chinese medicine used to stimulate blood circulation and
remove stasis from the body, which has been used in cardiovascular diseases and liver
diseases with a long history. Some traditional medicinal formulas containing HH have been
applied for liver fibrosis with satisfactory results [16]. Moreover, hydroxysafflor yellow A
in HH has exerted significant anti-HSC activation effect as a way to improve experimental
liver fibrosis [17,18]. These finding provided evidence of the potential of HH for liver
fibrosis; however, the molecular mechanisms still remain unclear.

Network pharmacology analyzes the association between drugs and diseases at the
protein or systemic level, which is important to reveal the molecular mechanisms of multi-
component and multi-target herbal medicines for the treatment of diseases [19]. In the
present study, network pharmacology was used to understand the mechanisms of HH
in liver fibrosis, and molecular docking experiments were applied to verify the affinity
between ligands and receptors (Figure 1), with the hope of providing evidence for HH
treatment of liver fibrosis and to provide a basis for further studies.



Processes 2022, 10, 1735 3 of 18Processes 2022, 10, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Research strategies for the current study. 

2. Materials and Methods 
2.1. Prediction of the Bioactive Components and Treatment Targets of HH 

Most of the bioactive components of HH were collected from the Traditional Chinese 
Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, 
https://old.tcmsp-e.com/tcmsp.php (accessed on 1 June 2022)). The evaluation of absorp-
tion, distribution, metabolism, and excretion (ADME) has become an essential part of the 
drug discovery process, as drugs with good metabolic kinetic profiles are more likely to 
be potential treatment strategies [20]. Therefore, compounds with oral bioavailability (OB) 
greater than or equal to 30% and drug-likeness (DL) greater than or equal to 0.18 were 
identified as bioactive ingredients of HH [21,22]. In addition, hydroxysafflor yellow A, 
which have been demonstrated in the literature to have anti-fibrosis activity, was retained 
for further analysis. Subsequently, all the bioactive components were imported into Swis-
sTargetsPrediction (http://swisstargetprediction.ch/ (accessed on 1 June 2022)) to predict 
the treatment targets of HH. All the targets were restricted to “Homo Sapiens”. Notably, 
the validation study of SwissTargetsPrediction showed that the first 15 predicted results 

Figure 1. Research strategies for the current study.

2. Materials and Methods
2.1. Prediction of the Bioactive Components and Treatment Targets of HH

Most of the bioactive components of HH were collected from the Traditional Chi-
nese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, https:
//old.tcmsp-e.com/tcmsp.php (accessed on 1 June 2022)). The evaluation of absorption,
distribution, metabolism, and excretion (ADME) has become an essential part of the drug
discovery process, as drugs with good metabolic kinetic profiles are more likely to be poten-
tial treatment strategies [20]. Therefore, compounds with oral bioavailability (OB) greater
than or equal to 30% and drug-likeness (DL) greater than or equal to 0.18 were identified as
bioactive ingredients of HH [21,22]. In addition, hydroxysafflor yellow A, which have been
demonstrated in the literature to have anti-fibrosis activity, was retained for further analysis.
Subsequently, all the bioactive components were imported into SwissTargetsPrediction
(http://swisstargetprediction.ch/ (accessed on 1 June 2022)) to predict the treatment targets
of HH. All the targets were restricted to “Homo Sapiens”. Notably, the validation study of
SwissTargetsPrediction showed that the first 15 predicted results have at least one target
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that has been experimentally validated for the majority of compounds, suggesting that the
top 15 predictive genes are most likely to be the targets of molecules [23]. Therefore, the top
15 target genes predicted for each component were retained and identified as the treatment
targets of HH.

2.2. Collection of the Targets of Liver Fibrosis

Two databases, Genecards (https://www.genecards.org/ (accessed on 2 June 2022))
and DisGeNET (https://www.disgenet.org/ (accessed on 2 June 2022)) were used to collect
the disease targets. The targets obtained in Genecards were ranked according to the
Relevance Score, and those that were larger than the median were retained. Next, the
targets from the two databases were combined for subsequent analysis.

2.3. The Construction of the Protein–Protein Interactive (PPI) Network

The overlapping targets between HH and liver fibrosis were imported into the STRING
database (https://cn.string-db.org/ (accessed on 5 June 2022)), which is dedicated to
research of organism-wide protein association networks. In the STRING database, each
predicted protein–protein interaction is assigned an association score between 0 and 1. The
score is rated based on supporting evidence and reflects the degree of confidence that an
interaction is biologically meaningful, specific, and reproducible [24]. Higher confidence
score means less interaction and less false positives [25]. Therefore, the organisms were
set to Homo sapiens; confidence was set to the highest (>0.900); and independent nodes
were hidden to obtain the PPI network. The PPI network was transferred to Cytoscape
(version 3.9.1, the National Institute of General Medical Sciences, Bethesda, MD, USA)
software for visualization and consequent analysis.

2.4. The analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Enrichment for Major Targets

The PPI network was analyzed by “Analyze network” tool of Cytoscape. Briefly,
targets with three topological values (Betweenness, Closeness, Degree) all greater than the
median were identified as major targets. In order to explore the biological processes of
HH on liver fibrosis, the major targets were imported into the Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov/ (accessed on
10 June 2022)) to perform the GO and KEGG pathway enrichment analysis. The top ten
terms with p values less than 0.05 were kept and visualized.

2.5. The Identifition of Key Componets and Targets of HH in the Treatment of Liver Fibrosis

For identifying the possible key components and corresponding targets of HH in the
treatment of liver fibrosis, the interactive network of drug–component–target–pathway
was constructed by Cytoscape. According to the results of “Analyze network”, components
with top three-degree values were considered as the key components of HH. Additionally,
the PPI network was further analyzed and the targets with three topological values all
greater than the median were recognized as key targets.

2.6. The Validation by Molecular Docking Experiments

Molecular docking experiments were utilized to demonstrate the ligand–receptor
interactions between HH and liver fibrosis. Three key ingredients were applied as ligands.
Target proteins for molecular docking needed to meet two requirements: (1) protein-
encoding genes must be key targets in the PPI network and (2) the top three targets in
drug–component–major target–pathway network sorted by degree value.

The chemical constructions of ingredients were searched from Pubchem (https://
pubchem.ncbi.nlm.nih.gov/ (accessed on 20 June 2022)), and the protein structures of tar-
gets were downloaded from the PDB database (https://www.rcsb.org/ (accessed on 20 June
2022)). Molecular docking experiments were performed by AutoDock Vina (version 1.2.0,

https://www.genecards.org/
https://www.disgenet.org/
https://cn.string-db.org/
https://david.ncifcrf.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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the Center for Computational Structural Biology, La Jolla, CA, USA) and visualized by
Discovery Studio (version 4.5, Dassault Systems, Paris, France).

3. Results
3.1. The Bioactive Components and Treating Targets of HH in the Treatment of Liver Fibrosis

A total of 189 components of HH were found by the TCMSP database. After the
screening for OB and DL values, 22 components were kept and identified as bioactive
compounds in HH. According to the literature, hydroxysafflor yellow A was retained due
to its significant anti-fibrosis effect. Therefore, 23 compounds of HH were acquired (Table 1).
Based on these 23 components, the SwissTargetPrediction was used to predict the treatment
targets of HH (Supplementary Table S1). Finally, 187 targets of HH were acquired.

Table 1. The 23 bioactive components of HH found in databases and literature.

Components MOLID Pubchem CID Components MOLID Pubchem CID

Poriferast-5-en-3beta-ol MOL001771 457801 6-Hydroxynaringenin MOL002719 188308

Flavoxanthin MOL002680 5281238 Quercetagetin MOL002721 5281680

4-[(E)-4-(3,5-dimethoxy-4-oxo-
1-cyclohexa-2,5-

dienylidene)but-2-enylidene]-
2,6-dimethoxycyclohexa-2,5-

dien-1-one

MOL002694 10237057 7,8-dimethyl-1H-pyrimido
[5,6-g]quinoxaline-2,4-dione MOL002757 21786815

Lignan MOL002695 261166 Beta-carotene MOL002773 5280489

Lupeol-palmitate MOL002698 162847783 Baicalin MOL002776 64982

Phytoene MOL002706 5280784 Beta-sitosterol MOL000358 222284

Phytofluene MOL002707 6436722 Kaempferol MOL000422 5280863

Pyrethrin II MOL002710 5281555 Stigmasterol MOL000449 5280794

6-Hydroxykaempferol MOL002712 5281638 Luteolin MOL000006 5280445

Baicalein MOL002714 5281605 CLR MOL000953 5997

Qt_carthamone MOL002717 131833009 Quercetin MOL000098 5280343

Hydroxysafflor Yellow A MOL002690 6443665

A total of 7711 targets of liver fibrosis were obtained from the Genecards database.
Then, 3855 targets with a relevance score larger than the median were reserved. There
were 40 targets acquired from the DisGeNET database. After removing the duplicates,
3859 genes were considered as targets of liver fibrosis. Finally, 121 overlapping targets
were acquired between HH and liver fibrosis (Supplementary Table S2), suggesting the
molecular basis of HH in the treatment of liver fibrosis (Figure 2).
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3.2. The PPI Network Constructed by STRING

A total of 121 targets were uploaded to STRING to construct the PPI network (Figure 3).
After the screening of organisms, confidence, and node association, the network containing
90 nodes and 165 edges was acquired and transferred to Cytoscape (Figure 4a). There were
27 nodes identified as major targets by calculating three topological parameters (Table 2
and Figure 4b). Finally, ten node targets comprising MAPK, AR, ESR1, HSP90AA1, NR3C1,
PIK3CA, EGFR, HDAC1, MTOR, and IL2 were recognized as key targets of HH for treating
liver fibrosis (Figure 4c).
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Table 2. The major targets and their uniport IDs.

Target Gene Uniprot ID Degree Target Gene Uniprot ID Degree

PIK3CA P42336 17 PPARG P37231 6
HSP90AA1 P07900 15 IGFBP3 P17936 5

ESR1 P03372 12 MTOR P42345 5
MAPK8 P45983 11 IGF1R P08069 5
EGFR P00533 10 AHR P35869 4

AR P10275 9 GSK3B P49841 4
NR3C1 P04150 9 MAPT P10636 4
HDAC1 Q13547 9 AURKB Q96GD4 4
CYP3A4 P08684 8 CYP19A1 P11511 4

RXRB P28702 7 F2 P00734 4
PTPN1 P18031 7 MET P08581 4

IL2 P60568 7 MMP2 P08253 4
CDK1 P06493 6 TNF P01375 4

PPARA Q07869 6

3.3. The Results of GO and KEGG Pathway Enrichment Analysis

A total of 27 major targets were imported into the DAVID database to perform the
GO and KEGG enrichment analysis. The results showed that the targets of HH for liver
fibrosis were mainly concentrated on nucleus, cytoplasm, cytosol, nucleoplasm, plasma
membrane, membrane, macromolecular complex, chromatin, extracellular region, and
mitochondrion; the biological processes were positive regulation of transcription from
the RNA polymerase II promoter, positive regulation of transcription, DNA-templated,
negative regulation of gene expression, positive regulation of gene expression, negative
regulation of apoptotic process, negative regulation of transcription from RNA polymerase
II promoter, signal transduction, regulation of transcription from RNA polymerase II
promoter, positive regulation of smooth muscle cell proliferation, and positive regulation
of protein kinase B signaling; the molecular functions of HH on liver fibrosis were focused
on protein binding, ATP binding, identical protein binding, enzyme binding, zinc ion
binding, DNA binding, RNA polymerase II transcription factor activity, ligand-activated
sequence-specific DNA binding, sequence-specific DNA binding, protein kinase binding,
transcription factor activity, and sequence-specific DNA binding (Figure 5).
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The KEGG pathway enrichment analysis suggested that the major targets of HH
on liver fibrosis were involved in pathways in cancer, chemical carcinogenesis-receptor
activation, proteoglycans in cancer, the phosphoinositide 3-kinase (PI3K)/protein kinase
(AKT) signaling pathway, prostate cancer, endocrine resistance, insulin resistance, lipid
and atherosclerosis, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor
resistance, and Th17 cell differentiation (Figure 6). The most target gene-enriched pathway,
pathways in cancer, was visualized by the KEGG mapper to visualize the regulatory
approaches involved in HH (Figure 7). Among these, the PI3K/AKT signaling pathway,
mechanistic target of rapamycin (mTOR) signaling pathway, mitogen-activated protein
kinase (MAPK) signaling pathway, peroxisome proliferator-activated receptor (PPAR)
signaling pathway, and estrogen signaling pathway, which are involved in the pathogenesis
of liver fibrosis, are regulated by HH through targeting the key targets.



Processes 2022, 10, 1735 9 of 18Processes 2022, 10, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. The Sankey diagram of major targets involved in the KEGG signaling pathways (top 10 
were listed). 

Figure 6. The Sankey diagram of major targets involved in the KEGG signaling pathways (top 10
were listed).

Processes 2022, 10, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. The map of pathways of cancer. Nodes with red color represent the major target genes of 
HH on liver fibrosis. 

3.4. The Analysis Results of Drug–Component–Major Target–Pathway Interactive Network  
The drug–component–major target–pathway interactive network with 58 nodes and 

152 edges was constructed by Cytoscape, indicating the multi-component, multi-target, 
and multi-pathway characteristics of HH in the treatment of liver fibrosis (Figure 8). Three 
components with highest degree value, comprising quercetin (MOL000098), beta-carotene 
(MOL002773), and lignan (MOL002695) were considered as key compounds of HH. In 
addition, ESR1, MTOR, and PIK3CA were the potential critical targets of HH for treating 
liver fibrosis.  

Figure 7. The map of pathways of cancer. Nodes with red color represent the major target genes of
HH on liver fibrosis.



Processes 2022, 10, 1735 10 of 18

3.4. The Analysis Results of Drug–Component–Major Target–Pathway Interactive Network

The drug–component–major target–pathway interactive network with 58 nodes and
152 edges was constructed by Cytoscape, indicating the multi-component, multi-target,
and multi-pathway characteristics of HH in the treatment of liver fibrosis (Figure 8). Three
components with highest degree value, comprising quercetin (MOL000098), beta-carotene
(MOL002773), and lignan (MOL002695) were considered as key compounds of HH. In
addition, ESR1, MTOR, and PIK3CA were the potential critical targets of HH for treating
liver fibrosis.
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3.5. Molecular Docking Experiments Results

Three key components and critical targets were used for molecular docking experi-
ments to predict their direct combined effects. Typically, the binding energy which is less
than −7.0 kcal/mol indicates a strong binding activity between ligands and receptors [26].
The docking results have shown the strong binding activities with different binding forms
between key components and critical targets (Figure 9). The 2D visualized diagram showed
the connection between ligands and receptors by different forces (Figure 10).
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4. Discussion

It is estimated that approximately two million deaths occur each year as a result
of chronic liver diseases. It is common for chronic liver disease patients to undergo
liver fibrosis as a pathological stage, which may progress to cirrhosis and liver cancer,
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causing death and accounting for 3.5% of global deaths [27]. The finding of liver fibrosis
regression makes it possible to reverse liver fibrosis and even to prevent cirrhosis and liver
cancer effectively [28]. Consequently, anti-fibrosis drugs and strategies are essential for the
treatment of chronic liver diseases.

The theory of traditional Chinese medicine holds that blood stasis is conducive to
some chronic liver diseases, such as fatty liver disease, cirrhosis, and liver cancer. Therefore,
clinically, HH is widely used to treat chronic liver diseases because of its ability to activate
blood circulation and remove stasis. There is, however, a lack of understanding about how
HH contributes to ameliorate liver fibrosis. In light of the intricacy of herbal medicinal com-
ponents, the network pharmacology characterized by a holistic and systematic approach
was used to understand the possible molecular mechanisms of HH for liver fibrosis in the
present study.

Based on databases and previous literature, we identified 23 bioactive ingredients
in HH and obtained 187 possible targets. Most of the targets overlapped with those of
liver fibrosis, suggesting the potential and molecular basis of HH for liver fibrosis. The
consequent analysis has indicated that quercetin, beta carotene, and lignan may have
critical roles in the anti-liver fibrosis activities of HH. Quercetin is commonly found in
fruits, vegetables, and herbal medicines [29]. The anti-fibrosis potential of quercetin has
gained recent attention. The benefits of quercetin-based treatment for liver fibrosis were
demonstrated through the inhibition of HSC activation, the promotion of ECM degradation,
and the intervention in autophagy [30,31]. Moreover, quercetin can exhibit hepatoprotective
effects via anti-lipid accumulation, anti-inflammatory, antioxidant, and anti-apoptotic
properties on hepatocytes [32]. Similarly, beta carotene is available from food and herbal
medicines and has significant health-promoting effects on the human body [33]. The intake
of beta carotene has been shown to prevent or improve diabetes and obesity, which are also
risk factors for liver fibrosis [34]. Some clinical studies have found an inverse association
between liver steatosis and fibrosis with beta carotene intakes, suggesting its potential to
prevent chronic liver diseases [35,36]. In addition, the treatment effect of beta carotene for
liver fibrosis has been proven by preclinical studies, and the mechanisms by which it works
may be linked to the inhibition of oxidative stress and inflammation [37,38].

Lignan is a natural compound formed by the polymerization of two phenylpropanoid
derivatives, such as schisandrin B, honokiol, and magnolol [39]. As a result, the pharmaco-
logical activities of lignan are usually derived from the compound prior to polymerization.
Schisandrin B and honokiol have exerted anti-liver fibrosis effects by suppressing oxidative
stress and mediating the transforming growth factor-β (TGF-β)/Smad pathway to inhibit
the activation and proliferation of HSCs [40]. Furthermore, magnolol can attenuate liver
fibrosis by inhibiting Th17 cell differentiation [41].

It is worth noting that hydroxysafflor yellow A was included in our analysis although
it is not characterized by good pharmacokinetic and metabolic profiles. Hydroxysafflor
yellow A is receiving extensive interests because of its potential anti-fibrosis activity. It
is demonstrated that hydroxysafflor yellow A has extensive anti-fibrotic functions via
reducing hepatocyte apoptosis through decreasing oxidative damage and inflammatory
response, inhibiting HSCs activation, and accelerating ECM degradation [18,42,43]. How-
ever, it has not emerged as a key component of HH for liver fibrosis in the present study,
which may due to the differences in therapeutic targets between animals and humans.
Certainly, this cannot dismiss the great potential of hydroxysafflor yellow A against liver
fibrosis. It has become possible to develop drugs based on molecular modifications. And
such structural modifications will result in stronger activities and improvement of the
pharmacokinetic properties of some natural products [44]. In summary, the identification
and investigation of key components will provide strong preclinical and clinical evidence
for HH for liver fibrosis.

The drug–component–major target–pathway interactive network has suggested that
HH treats liver fibrosis through the multi-compound and multi-target characteristics.
Based on the results of KEGG pathway enrichment, several signaling pathways linked
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to liver fibrosis are triggered by the major targets, such as pathways in cancer, PI3K-Akt
signaling pathway, endocrine resistance, EGFR tyrosine kinase inhibitor resistance, and
Th17 cell differentiation, with pathways in cancer being most enriched. Further, ESR1,
PIK3CA, and MTOR were considered as critical target genes based on the PPI network and
drug–component–major target–pathway interactive network. The strong binding activities
between components with targets have demonstrated the regulatory effects of HH for
liver fibrosis.

In the vitro hepatocyte model, the ability of quercetin on hepatic apolipoprotein
AI regulation and high-density lipoprotein synthesis is associated with the induction of
ESR1 mRNA expression [45]. Additionally, quercetin significantly reduced mTOR protein
expression to regulate autophagy and exerted hepatoprotective effects in a high-fat diet-
induced model of nonalcoholic fatty liver disease [46]. PIK3CA is an important gene
involved in the PI3K/AKT pathway, which catalyzes the PIK3 enzyme by encoding p110α
and stimulates the downstream AKT1 protein to activate the pathway. Quercetin exhibited
significant inhibitory effects on the PI3K/AKT pathway, including inhibition of PI3K
activation and reduced phosphorylation of AKT1, although there is no preclinical evidence
for direct intervention of quercetin in PIK3CA mRNA expression [47]. Beta carotene is able
to suppress PI3K and mTOR protein expression and regulate autophagy to relieve fibrosis
in a lung fibrosis model, demonstrating its potential to regulate PIK3CA and MTOR target
genes [48]. These studies provide clear evidence for the intervention of key components in
HH on critical targets and can help to reveal their exact regulatory effects on target genes
or encoding proteins. Nevertheless, in view of the different biological effects that may exist
for target genes in different organs or cells, the regulatory effects of key components on
critical targets in the treatment of liver fibrosis deserve in-depth exploration.

Pathways in cancer is a collection of various signaling pathways that play roles
in cancer. The KEGG mapper have shown that PI3K/AKT signaling pathway, mTOR
signaling pathway, MAPK signaling pathway, PPAR signaling pathway, and estrogen
signaling pathway are all part of it and are regulated by HH.

Liver fibrosis is known to be driven by the activation of HSCs. Certain molecular
signaling pathways have been engaged in the activation and proliferation of HSCs [49]. The
PI3K/AKT signaling pathway is an upstream factor of mTOR and contributes to the prolif-
eration, apoptosis, and autophagy of cells [50]. In liver, the activation of the PI3K/AKT
pathway can stimulate HSC proliferation and α1 collagen transcription and translation,
to promote liver fibrosis [51,52]. Meanwhile, the PI3K/AKT pathway can induce mTOR
expression to inhibit autophagy [50]. Generally, the inhibition of the PI3K/AKT/mTOR
cascade is thought to ameliorate liver fibrosis by activating autophagy to promote the apop-
tosis of HSCs [53]. However, it has also been found that increased autophagic activity in
HSCs can provide energy to HSCs through degradation of lipid droplets, further promoting
their activation and proliferation [54]. The reasons for these contradictory phenomena
are still not elucidated but may be related to the effects caused by different degrees of
autophagy in HSCs. Moderate autophagy may provide energy for HSCs, while excessive
autophagic activation may cause the death of HSCs, which still needs further research [50].

The TGF-β signaling pathway is thought to be the crucial mediator in the fibrosis
process, including liver fibrosis, due to its ability to induce myofibroblast differentiation [55].
Phosphorylation of Smad3 via TGF-β has been described as the major fibrotic pathway and
the canonical TGF-β pathway [56]. In addition, some non-canonical pathways of TGF-β
signal have been identified, including the MAPK pathway [57]. It is reported that all MAPK
subfamilies, including ERK, JNK, p38 MAPK, and ERK5 can be activated by a TGF-β
signal [57]. Remarkably, hydroxysafflor yellow A in HH was seen to exert an inhibiting
role of the ERK, ERK5, and p38 MAPK signaling pathways to suppress the progression of
liver fibrosis [18,58].

PPARs are a family of transcription factors which function as lipid transducers in
tissues [59]. Moreover, PPARs are able to prevent liver fibrosis by modulating inflammation,
regulating lipid storage, and keeping HSCs quiescent [60]. Pioglitazone and rosiglitazone
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have shown significant therapeutic effects in liver fibrosis by targeting PPARs, which also
suggests that PPARs may be the potential targets for the treatment of liver fibrosis [61].
Estrogen is one of the most important hormones for women, which can exert its biological
activity by binding to its receptor, estrogen receptor α and estrogen receptor β [62]. The
epidemiological study has found a positive correlation between estrogen deficiency and
liver fibrosis in women, suggesting an important role of the estrogen signaling pathways
in hepatoprotection [63]. In view of the expression of estrogen receptor β in HSCs, the
potential mechanism of estrogen treatment of liver fibrosis is thought to be related to
estrogen receptor β interactions that promote inactivation of HSCs [64]. In summary, the
contribution of estrogen in hepatoprotection should also be taken into account.

All along, the clinical use of traditional Chinese medicine has been impeded by possible
adverse reactions such as renal toxicity and hepatotoxicity [65]. HH is considered as a safe
herbal medicine according to the Pharmacopoeia of the People’s Republic of China (2020 edition).
However, some conflicting findings were reported on the toxicity of HH. Namjoo et al.
reported that the methanolic extract of HH at 20 mg/kg or 40 mg/kg doses on pregnant
mice may cause liver tissue damage in newborn mice, which may be related to the deficiency
of lysosomal acid lipase in newborn mice [66]. Mirhoseini et al. found that the aqueous
extract of HH administered at a dose of 200 mg/kg caused adverse effects on testicular
tissue and sperm production in mice, suggesting its possible reproductive toxicity [67].
The concerns of toxicity of HH have been raised by these studies. Contrastingly, a sub-
chronic toxicity research showed that a dose of 100 mg/kg of ethanolic extract of HH did
not cause any toxic reactions but reduce alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels in rats [68]. This phenomenon has suggested that HH does
affect the liver, but it may not be hepatotoxic. In addition, a rigorous toxicity assessment
of concentrated water solution of HH using a dose of 1000 mg/kg suggested that HH did
not show any toxic effects on the reproduction and early development of maternal animals
and their offspring [69]. Furthermore, HH at 476 mg/kg, 1430 mg/kg, or 4290 mg/kg
doses was able to improve histopathological changes in the liver and reduce ALT and AST
levels to exert hepatoprotective effects by modulating hepatic metabolic profiles, reducing
inflammatory responses, and inhibiting oxidative stress in an alcohol-induced acute liver
injury model in rats [70]. In light of numerous conflicting evidences available, it is difficult
to state whether HH has significant hepatotoxicity. Moreover, the methods of HH extraction,
the dose administered, and the duration of treatment are different in various studies, which
may also be important factors affecting the experimental results. However, in any case,
caution needs be taken when using HH with high doses for a long time, particularly for
women in the peripartum period, infants and children. In addition, PIK3CA and MTOR
target genes involved in the PI3K/AKT/mTOR pathway are predicted to be critical targets
of HH in the treatment of liver fibrosis in our study. In view of the complex role of mTOR
pathway-mediated autophagy, the exact influence of HH treatment on autophagy in HSCs
remains to be answered, which may be one of the necessary ways to reveal the impact of
HH on liver health. Therefore, further toxicological research is needed to provide more
definitive evidence on the short-term and long-term safety of HH for clinical application,
especially on the effects of liver health.

Taken together, we predicted the bioactive components, potential targets, and molec-
ular mechanisms of HH in the treatment of liver fibrosis using a network pharmacology
approach and validated them by using molecular docking experiments. However, there
are still some limitations of the current study. Firstly, both the online databases and lit-
erature are time-sensitive, possibly there are also unknown active components in HH to
be characterized. Likewise, therapeutic targets for liver fibrosis have space for renewal.
Notably, the application of systemic pharmacology and high-throughput technologies
such as transcriptomics and genomics may help to discover the directly targeted genes
of HH in the treatment of liver fibrosis. Secondly, the screening based on OB and DL is
not the only criterion to evaluate the clinical potential of a compound, as exemplified by
hydroxysafflor yellow A. A large number of methods that can improve the bioavailability
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of promising drugs have been investigated and proven, such as structural modifications
and nanomaterial binding, which may also be a future research direction. Finally, the value
of network pharmacology lies in the prediction of key components and target genes of HH
based on the known therapeutic potential of it for liver fibrosis and verifying the direct
receptor–ligand interactions between key components and proteins encoded by target genes
through molecular docking, which contributes to revealing the exact mechanisms of HH in
treating liver fibrosis. However, such a research strategy can only provide information on
the interventional effects of components on the disease targets. It is limited to suggesting
whether the exact regulatory effects, including an improving or inhibiting role, and these
need to be confirmed by other studies or explored in depth in the next step. In the present
study, quercetin, beta carotene, and lignan are predicted to be key components of HH
and may be used to treat liver fibrosis by targeting ESR1, PI3KCA, and MTOR. Although
there is a certain amount of literature evidence supporting the modulatory effects of these
components on corresponding targets, complete compositional characterization, in vitro
and vivo validation studies are still needed to be designed and conducted to clarify the
roles of these active components of HH in the treatment of liver fibrosis, which is our next
research objective.

5. Conclusions

To the best of our knowledge, this is the first systematic exploration of the molecular
mechanisms of HH in the treatment of liver fibrosis. HH treats liver fibrosis through multi-
component, multi-target, and multi-pathway mechanisms in a holistic manner. Key compo-
nents such as quercetin, beta carotene, and lignan may be involved in the PI3K/AKT/mTOR
pathway, MAPK signaling pathway, PPAR pathway, and estrogen signaling pathway by
targeting key proteins such as ESR1, PIK3CA, and MTOR, ultimately improving liver
fibrosis by ameliorating inflammation, inhibiting oxidative damage, suppressing HSCs
activation and proliferation, and promoting ECM degradation. Some key issues, including
the influence of HH on liver health in clinical practice, and the exact regulatory effects
of the bioactive ingredients on target genes, need to be explored in subsequent research.
To sum up, our study may provide a basis for revealing the mechanisms of HH on liver
fibrosis and provide knowledge for HH-based research in the future.
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