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Abstract: This review covers the operating conditions for extracting top value-added chemicals,
such as levulinic acid, lactic acid, succinic acid, vanillic acid, 3-hydroxypropionic acid, xylitol, 2,5-
furandicarboxylic acid, 5-hydroxymethyl furfural, chitosan, 2,3-butanediol, and xylo-oligosaccharides,
from common lignocellulosic biomass. Operating principles of novel extraction methods, beyond
pretreatments, such as Soxhlet extraction, ultrasound-assisted extraction, and enzymatic extraction,
are also presented and reviewed. Post extraction, high-value biochemicals need to be isolated, which
is achieved through a combination of one or more isolation and purification steps. The operating
principles, as well as a review of isolation methods, such as membrane filtration and liquid–liquid
extraction and purification using preparative chromatography, are also discussed.
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1. Introduction

Lignocellulosic biomass is the most widely available feedstock for biofuel produc-
tion. As a second-generation feedstock, lignocellulosic biomass does not compete with
crops used for food products, such as corn, sugarcane, beetroot, and others. Traditionally,
large-scale biomass processing facilities have focused on two main bio-based products,
i.e., biofuels and bioenergy. Biofuels include ethanol, butanol, biodiesel, etc. [1,2]. Methane
from biogas plants and syngas constitute the primary bioenergy products obtained from
biomass processing [3,4]. Whereas these products have spurred the quest for cleaner fu-
els, they have fallen short of presenting a sustainable business model for production of
high-value biomass-derived products. Moving away from single feedstock to a single-
product approach leads toward the contemporary biorefinery approach, whereby multi
feedstock processing leads to multiple bio-based products, including but not limited to
biofuel, bioenergy, biochemicals, proteins, and other high-value bioproducts.

In 2004, the U.S. Department of Energy (USDOE) identified the top 12 platform
chemicals (based on their market potential) that can be derived from biomass [5]. Four
carbon (C4) 1,4-dicarboxylic acids (succinic, fumaric, and malic acid), 2,5-furandicarboxylic
acid, 3-hydroxypropionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid,
3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol were identified as the top 12 can-
didates that can subsequently be converted into numerous high-value biomass-derived
products. ‘Top Value Added Chemicals from Biomass’ was the first volume of a two-volume
report, with the second volume published in 2007, in which the list was updated to include
lignin-based derivatives, such as vanillin, vanillic acid, syringaldehyde, aromatic diacids,
and quinones, amongst others [6]. Several promising technologies to obtain these building
block/intermediate chemicals are identified in this report based on technological maturity
and reported product yields.

2. Methodology

In this paper, we build on the foundation laid by these two reports and aim to consoli-
date the literature with respect to the effectiveness of extracting some of these value-added

Processes 2022, 10, 1752. https://doi.org/10.3390/pr10091752 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10091752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-2190-3252
https://doi.org/10.3390/pr10091752
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10091752?type=check_update&version=2


Processes 2022, 10, 1752 2 of 40

chemicals from the most common lignocellulosic biomasses. The most common lignocel-
lulosic biomasses include corn stover, sugarcane bagasse, pine, wheat straw, rice straw,
softwood, aspen wood, etc. This review identifies which value-added chemicals can be
derived from the most common lignocellulosic biomass and presents their respective yields.
Furthermore, we evaluate the technologies and the operating conditions used to extract
value-added chemicals from the most common lignocellulosic biomasses. Subsequently,
methods for the isolation of chemicals are also discussed.

Three factors govern the processing of lignocellulosic biomass: availability of the
type of biomass, accessibility and maturity of processing technology, and the intended
bioproduct and its market demand. We begin this review begins by identifying the critical
value-added chemicals based on their availability and potential to be extracted from ligno-
cellulosic biomass. Next, the literature-reported concentrations, yield, and productivity of
extracting value-added chemicals from some of the most common lignocellulosic biomasses
are presented. Lastly, the most promising technologies for the isolation of bioproducts
are reported.

Lignocellulosic biomass can be broken down into three major building blocks: cellu-
lose, hemicellulose, and lignin. Value-added chemicals can be categorized according to
their functional groups of origin, and based on processing routes as shown in Figure 1.
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Figure 1. Biological and chemical routes for the production of top value-added chemicals derived
from lignocellulosic biomass. Reprinted/adapted with permission from Ref. [7].

In this paper, we will discuss the following derivatives of cellulose:

1. Levulinic acid;
2. Lactic acid;
3. 3-hydroxypropionic acid (3-HP);
4. Succinic acid;
5. Vanillic acid and vanillin;
6. Itaconic acid;
7. Adipic acid;
8. 2,5-furandicarboxylic acid (FDCA); and
9. 5-hydroxymethylfurfural (HMF).
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The value-added chemicals extracted from hemicellulose and lignin discussed in this
paper are:

1. Xylitol;
2. Furfural;
3. Chitosan;
4. 2,3-butanediol (2,3-BD); and
5. Xylo-oligosaccharides (XOs)

3. Top Value-Added Chemicals
3.1. Levulinic Acid

Levulinic acid can be extracted by the dehydration of sugars, hydration of hydrox-
ymethylfurfural (HMF) or hydrolysis of furfuryl alcohol, both of which are derived from
xylose, which is a hemicellulose sugar [5]. A simple structure of levulinic acid is seen
in Figure 2. Levulinic acid has applications in additives, pharmaceutical, and plastic in-
dustries [7]. Biofine Technology (Boston, MA, USA), GFBiochemicals (Paris, France), and
Avantium (Amsterdam, The Netherlands) are companies that are invested in the commer-
cial production of levulinic acid. Table 1 summarizes the levulinic acid yield extracted
from lignocellulosic biomass under optimized pretreatment conditions (acid concentration,
time, and operating temperature). Levulinic acid can serve as a precursor for succinic
acid, diphenolic acid, valeric acid, γ-valerolactone, acetyl acrylic acid, 1,4-butanediol, and
other value-added chemicals [8,9]. The ease of deriving levulinic acid from a variety of
lignocellulosic crops and its important position in the supply chain as an intermediate
for the production of resins, herbicides, plasticizers, solvents, fuels, food, flavoring, and
fragrance components makes it one of the top value-added chemicals that can be derived
in a lignocellulosic biorefinery.
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Table 1. Review of extraction methods for levulinic acid from lignocellulosic biomass.

Biomass Cellulose Content % Acid Concentration Operating Temperature (◦C) Time (h) Theoretical Yield (mol%) Reference

Kraft Paper Pulp Residue 80 1–5% H2SO4
1st Stage 210–230
2nd Stage 195–215 N/A 70–80 [10]

Wheat Straw
40 3.5% H2SO4 210 N/A 68.8 [11]

40.4 4.5% H2SO4 220 N/A 79.6 [12]
3.5% H2SO4 210 0.63 19.8 [13]

Bagasse 42
4.5% HCl 220 N/A 82.7 [12]

1.5% H2SO4 25–195 2 17.5 [14]

Glucose

32 20% HCl 100 24 15 [15]
29 6.5% HCl 162 1 24 [16]
27 Amberlite IR-120 Room Temperature 124 5.8 [17]

5–20 0.1–4% H2SO4 160–240 N/A 35.4 [18]
10 6% HCl 160 0.25 41.4 [19]

12 3% Clay Catalyst
(Fe-pillared montmorillonite) 150 24 12 [20]

12 3% HY Zeolite 150 24 6 [21]
Rice Hull N/A 1% HCl 160 3 10.3

[22]Rice Straw N/A 1% HCl 160 3 5.5
Corn Stalks N/A 1% HCl 160 3 7.5

Wood Sawdust N/A 1.5% HCl 190 0.5 9 [23]
Oakwood N/A 3% H2SO4 180 3 17.5 [24]

Aspen, Pine, and Spruce N/A 5% H2SO4 200–240 2–4 13–18 [13]

Cellulose N/A
1–5% H2SO4

150–250 2–7
<25

[25]

1–5% HCl <28
1–5% HBr <27

Aspen Wood N/A
1–5% H2SO4

150–250 2–7
<15.5

1–5% HCl <12.4
1–5% HBr <13
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3.2. Lactic Acid

Lactic acid (structure in Figure 3) has become increasingly popular as a biomass-
derived chemical due to its utility for production of polylactic acid (PLA). Currently,
Corbin (Amsterdam, The Netherlands), Futerro (Escanaffles, Belgium), NatureWorks (Min-
netonka, MN, USA), and Myriant (Quincy, MA, USA) are commercial-scale users of lactic
acid [7]. Some of the most common lactic acid bacteria used for lactic acid production
from lignocellulosic-derived sugars include L. planterum, L. pentosus, L. delbrueckii, L. casei,
L. brevis, E. mundtii, E. faecalis, L. coryniformis, L. rhamnosus, L. salivarius, L. amylovorans, and
L. amylophilus, amongst others [26]. Lactic acid also serves as a critical platform chemical for
production of lactide (the intermediate for polylactic acid production), propanoic acid, 1,2-
propanediol, polyurethanes, pyruvic acid, acrylic acid, 2,3-pentanedione, and others. Lactic
acid concentration, yield, and productivity from some of the most common lignocellulosic
biomasses are shown in Table 2.
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Table 2. Lactic acid’s concentration, yield, and productivity from some of the most common lignocel-
lulosic biomasses.

Biomass Strain Concentration
(g/L) Yield a (g/g) Productivity b

(g/L/h)
Reference

Wood Hydrolysate E. mundtii QU 25 93 0.93 1.7 [27]

Corn Cob/Stover

Lb. brevis 39.1 0.7 0.81 [28]

L. delbrueckii ZU-S2 48.7/44.2 0.95/0.92 1.01/5.7 [29]

L. pentosus 26 0.53 0.34 [30]

L. pentosus ATCC 8041 74.8 0.65 N/A [31]

L. rhamnosus and
L. brevis 20.95 0.7 0.58 [32]

Wheat Straw L. brevis and L. pentosus 7.1 0.95 N/A [33]

Softwood L. casei
subsp. rhamnosus 21.1–23.75 0.74–0.83 0.15–0.23 [34]

Sugarcane Bagasse
L. delbrueckii subsp.

delbrueckii Mutant Uc-3 67 0.83 0.93 [35]

L. lactis IO-1 10.9 0.36 0.17 [36]

Rice and Wheat Barn L. rhamnosus ATCC
9595 (CET288) 129 0.95 2.9 [37]

Brewer’s Spent Grain L. delbrueckii
UFV H2B20 35.5 0.99 0.59 [38]

a Ratio of the yield of lactic acid produced (g) to substrate consumed (g). b Lactic acid productivity.
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3.3. 3-Hydroxypropionic Acid

3-hydroxypropionic acid (3-HP) is an important C3 platform chemical, primarily
due to its contribution as precursor for the production of 1,3-propanediol. 3-HP is also
a platform chemical used for the production of malonic acid, acrylic acid, acrylonitrile,
polyamides, and 3-hydroxypropionate esters and its structure can be seen in Figure 4. BASF-
Cargill-Novozymes (Ludwigshafen, Germany/Wayzata, MN, USA/Bagsværd, Denmark),
and Dow (Midland, MI, USA) are commercial-scale producers of 3-HP [7].
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3-HP can be produced via microbial fermentation pathways from two major substrates:
glucose and glycerol [39]. Matsakas et al. [40] presented a comprehensive review on 3-HP
production and its production pathway mechanisms. Table 3 provides an overview of how
various microorganism compare in terms of their concentrations and productivity of 3-HP,
with glycerol and glucose as the two main substrate sources.

Table 3. 3-hydroxypropionic acid concentration and productivity based on various microbes and two
main substrate sources, i.e., glucose and glycerol.

Substrate Host Microorganism Concentration (g/L) Productivity (g/L/h) Reference

Glucose

S. cerevisiae
9.8 0.1 [41]

13.7 0.17 [42]
7.4 0.06 [43]

E. coli

10.1 0.28 [44]
40.6 0.56 [45]
31.1 0.63 [7]
29.7 0.54 [46]

S. pombe 7.6 0.25 [47]
C. glutamicum 62.6 0.87 [48]

Glycerol

K. pneumoniae

18 0.77 [49]
48.9 1.75 [50]
43 0.9 [51]

83.8 1.16 [52]
0.9 0.04 [53]

24.4 1.02 [50]
16 0.3 [54]

11.3 0.94 [55]
22.7 0.38 [56]
28.1 0.58 [57]
22 0.46 [58]

60.5 1.12 [59]

E. coli

42.1 1.32 [60]
71.9 1.8 [61]
40.5 1.35 [62]
56.4 1.18 [63]
41.5 0.86 [64]
31 0.43 [65]

38.7 0.54 [66]
6.06 0.13 [67]
5.05 0.105 [68]

L. reuteri
10.6 1.08 [69]
3.3 0.09 [70]

L. collinoides 0.55 0.07 [71]
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3.4. Succinic Acid

Succinic acid is a four-carbon dicarboxylic acid (structure in Figure 5) that has been
produced via chemical routes in the past but is gaining popularity for production via the
biological route. Myriant Technologies now PTT Global Chemical (Bangkok, Thailand) and
Reverdia (Utrecht, the Netherlands) have commercial-scale facilities for the production of
bio-based succinic acid [7].
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Succinic acid is a key intermediate chemical used for the production of several derivatives
of industrial importance, such as 1,4-butanediol, tetrahydrofuran, N-methylpyrrolidone, and
γ-butyrolactone. These derivatives are, in turn, utilized in the production of polyurethanes,
polyesters, and polyvinylpyrrolidone (PVP). Succinic acid can be extracted from various ligno-
cellulosic biomasses. Table 4 provides an overview of succinic acid concentrations, alongside
the concentrations of other value-added chemicals that can be derived simultaneously under
varying pretreatment conditions, from some of the most common lignocellulosic biomasses.

3.5. Vanillic Acid and Vanillin

Vanillin is a widely used food flavoring agent that is most typically extracted from
Vanilla spp.; however, it is currently produced inexpensively via petrochemical routes
(structure of vanillic acid and vanillin in Figure 6). Besides the food industry, vanillin finds
applications in the pharmaceutical and fragrance industries. The increasing demand for this
molecule has propelled the search for biomass-derived pathways for vanillin production.
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Vanillin can be extracted from lignin, ferulic acid, glucose, vanillic acid, aromatic
amino acids, isoeugenol, waste residue, and other substrates [72]. Currently, Borregaard
(Sarpsborg, Norway), a Norwegian company, claims to be the only producer of biovanillin,
which it produces from wood. Table 4 summarizes some lignocellulosic biomasses that can
be used to derive vanillin and vanillic acid.

3.6. Itaconic Acid

Itaconic acid is a C5 dicarboxylic acid (see Figure 7) that does not have as large a market
share as the likes of succinic acid, levulinic acid, and lactic acid. However, it remains an
intermediate building block of interest due to its significance in producing other value-
added chemicals with larger market shares. Itaconic acid is a precursor for polymethyl
methacrylate (PMMA), 3-methyltetrahydrofuran, polyitaconic acid, and styrene-butadiene
rubber latex. Additionally, itaconic acid can be converted to methyl pyrrolidones, 2-
methylbutanediol, 3-methyltetrahydrofuran, 4-methyl-γ-butyrolactone, and 4-methyl-γ-
butyrolactone. Itaconic acid is recommended as a replacement for maleic acid/anhydride
and sodium tripolyphosphate, which are, in turn, used for the production of polyester resin
and detergent [5].
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Qingdao Kehai Biochemistry (Jiaonan City, China), Zhejiang Guoguang Biochemistry
(Quzhou City, China), Jinan Huaming Biochemistry (Mingshui Zhangqiu City, China), and
Itaconix (Stratham, NH, USA) are producers of itaconic acid on a commercial scale [7].
Table 4 provides a summary of lignocellulosic biomasses and their respective pretreatment
conditions for extraction of itaconic acid.

3.7. Adipic Acid

Adipic acid is a C6 dicarboxylic acid (see Figure 8) with applications in the pro-
duction of nylon -6,6 fibers, resins, plasticizers, polyester polyols, food ingredients, and
lubricants [5].
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Adipic acid is also a precursor for the production of muconic acid and glucaric acid.
Biomass-derived adipic acid can be obtained from glucose as a starting substrate and E. coli,
S. cerevisiae, and P. putida as the chassis [73]. Lignin, lipids, xylose, and amino acids can also
serve as substrates to obtain bio-derived adipic acid. Genomatica (San Diego, CA, USA) and
DSM (Heerlen, The Netherlands) are developing strategies to produce commercial-scale
quantities of biomass-derived adipic acid [74].
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3.8. Furfural

Furfural is a C5 molecule (as shown in Figure 9) most often derived from the hemi-
cellulose fraction in lignocellulosic biomass. Furfural is a top value-added chemical with
several commercial-scale facilities operating across China, South Africa, and the Dominican
Republic [75]. The largest fractions of furfural are used in the production of furfuryl alcohol,
which, in turn, is used in resin production.

Processes 2022, 10, x FOR PEER REVIEW 9 of 41 
 

 

 
Figure 9. Structure of furfural (C5H4O2). 

Furfural is the precursor for the production of furoic acid, tetrahydrofuran, fumaric 
acid, 2-methyltetrahydrofuran, tetrahydrofurfuryl alcohol, and furfurylamine [7]. The 
highest reported furfural yields from lignocellulosic biomass vary from 34 to 87 weight% 
(wt%) [76–78]. Table  highlights the concentrations of furfural obtained after 
pretreatment from some of the most common lignocellulosic biomasses. 

3.9. 5-Hydroxymethylfurfural (HMF) 
5-hydroxymethylfurfural (HMF) is a C6 derivative obtained through dehydration of 

glucose and fructose, a structure of which can be seen in Figure 10 [79]. For lignocellulosic 
biomasses, cellulose is the main contributor to HMF production. HMF production, in 
principle, is possible from all biomasses containing hexoses and its oligomers, providing 
a wide range of possible feedstock for HMF production [75]. 

 
Figure 10. Structure of 5-HMF (C6H6O3). 

HMF is a precursor for the production of adipic acid, levulinic acid, 2,5-
dimethylfuran, caprolactone, polyamide 6, 2,5-furandicarboxylic acid, and others. Despite 
the presence of hydroxyl and aldehyde functional groups in this molecule, industrial-scale 
production of HMF remains unfeasible, predominantly due to the high costs of fructose 
and low reactivity of cellulose. AVA Biochem (Muttenz, Switzerland), is one of the few 
companies close to commercial-scale production of HMF [7]. Table  shows HMF 
concentrations obtained for different lignocellulosic biomasses after pretreatment. 

Table  provides an overview of succinic acid, glutaric acid, vanillin, vanillic acid, 
itaconic acid, adipic acid, furfural, and 5-HMF concentrations, alongside the 
concentrations of other value-added chemicals that can be derived simultaneously under 
varying pretreatment conditions from some of the most common lignocellulosic 
biomasses. Table  does not present the highest possible concentrations of each 
biochemical but, rather presents the biorefinery view, wherein multiple value-added 
products can be obtained from lignocellulosic biomass. 

 

Figure 9. Structure of furfural (C5H4O2).

Furfural is the precursor for the production of furoic acid, tetrahydrofuran, fumaric
acid, 2-methyltetrahydrofuran, tetrahydrofurfuryl alcohol, and furfurylamine [7]. The
highest reported furfural yields from lignocellulosic biomass vary from 34 to 87 weight%
(wt%) [76–78]. Table 4 highlights the concentrations of furfural obtained after pretreatment
from some of the most common lignocellulosic biomasses.

3.9. 5-Hydroxymethylfurfural (HMF)

5-hydroxymethylfurfural (HMF) is a C6 derivative obtained through dehydration of
glucose and fructose, a structure of which can be seen in Figure 10 [79]. For lignocellulosic
biomasses, cellulose is the main contributor to HMF production. HMF production, in
principle, is possible from all biomasses containing hexoses and its oligomers, providing a
wide range of possible feedstock for HMF production [75].
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Figure 10. Structure of 5-HMF (C6H6O3).

HMF is a precursor for the production of adipic acid, levulinic acid, 2,5-dimethylfuran,
caprolactone, polyamide 6, 2,5-furandicarboxylic acid, and others. Despite the presence of
hydroxyl and aldehyde functional groups in this molecule, industrial-scale production of
HMF remains unfeasible, predominantly due to the high costs of fructose and low reactivity
of cellulose. AVA Biochem (Muttenz, Switzerland), is one of the few companies close to
commercial-scale production of HMF [7]. Table 4 shows HMF concentrations obtained for
different lignocellulosic biomasses after pretreatment.

Table 4 provides an overview of succinic acid, glutaric acid, vanillin, vanillic acid,
itaconic acid, adipic acid, furfural, and 5-HMF concentrations, alongside the concentra-
tions of other value-added chemicals that can be derived simultaneously under vary-
ing pretreatment conditions from some of the most common lignocellulosic biomasses.
Table 4 does not present the highest possible concentrations of each biochemical but, rather
presents the biorefinery view, wherein multiple value-added products can be obtained
from lignocellulosic biomass.
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Table 4. Pretreatment conditions and concentrations of selected furans, organic acids, and phenolics.

Biomass Feedstock Content
Pretreatment/

Catalyst
Operating
Temp. (◦C)

Time
(min)

Concentrations

Unit Ref.
Furans Organic Acids Phenolics

Furoic
Acid Furfural 5 HMF Lactic

Acid
Succinic

Acid
Glutaric

Acid
Itaconic

Acid
Adipic
Acid Vanillin Vanillic

Acid
Ferulic
Acid

Corn
Stover

34.4% glucan, 22.8%
xylan, and 11% lignin

0.7% H2SO4 (w/w)

180 8

2.4 220 44 20 2.9 0.57 7.2 0.11 4 3.3 6.6 g/L

[80]

0.07% H2SO4
(w/w) 1.1 26 11 17.8 1.7 0.24 2 0.14 2.8 1.5 2.6 g/L

Liquid hot water 0.88 8 2.3 5.5 2.2 0.23 1.2 0.15 2.6 2.6 2.2 g/L

Deionized water
saturated with

oxygen at 174 psi
1.2 6.5 2.8 24 5.2 0.65 2.1 0.2 6.7 4.3 1 g/L

Aqueous ammonia
0.1% (w/w) 1.1 0.4 0.89 38 6.5 1.2 3.2 0.18 2.6 3.2 4.2 g/L

34.4% glucan, 22.4%
xylan, 4.2% arabinan, 0.6%

mannan, 1.4% galactan,
11% lignin, 2.3% protein,

6.1% ash, and 3.8%
uronic acids

Ammonia fiber
expansion (AFEX) 130 15 0.006 0.003 0.642 0.318 0.596 0.008 0.022 0.003 0.195 0.046 0.103 g/g DM

[81]

30% H2SO4 (w/w) 190 0.155 7.94 15.7 1.5 0.26 0.012 0.58 0.005 0.281 0.124 1.314 g/g DM

N/A 1% H2SO4 (w/w) 160 8 N/A 18.7 0.701 41 N/A N/A N/A N/A 0.06 0.034 N/A mM [82]

Poplar

43.8% glucan, 14.85%
xylan, 3.94% mannan, and

29.12% lignin

0.7% H2SO4 (w/w)

180 8

3.1 220 64 29 2.5 0.61 0.11 0.057 5.5 5.9 0.19 g/L

[80]

0.07% H2SO4 (w/w) 1.7 31 4 19 0.93 0.26 0.13 0.1 5.6 5.7 0.46 g/L

Liquid hot water 0.94 2.6 0.45 1.8 2.3 0.23 0.093 0.048 3.1 4.1 0.23 g/L

Deionized water
saturated with

oxygen at 12 bar
0.76 2.1 0.39 22 2.4 0.25 0.17 0.14 9.1 5.3 0.07 g/L

Aqueous ammonia
0.1% (w/w) 0.49 0.5 0.079 26 1.7 0.35 0.088 0.13 2.8 2.5 0.13 g/L

48.9% glucan, 15.7%
xylan, 27.7% lignin, and

1.2% ash
Steam explosion 214 6 N/A 5.9 2.6 N/A N/A N/A N/A N/A 0.035 N/A N/A mg/g DM [83]
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Table 4. Cont.

Biomass Feedstock Content
Pretreatment/

Catalyst
Operating
Temp. (◦C)

Time
(min)

Concentrations

Unit Ref.
Furans Organic Acids Phenolics

Furoic
Acid Furfural 5 HMF Lactic

Acid
Succinic

Acid
Glutaric

Acid
Itaconic

Acid
Adipic
Acid Vanillin Vanillic

Acid
Ferulic
Acid

Pine
40% glucan, 8.9% xylan,

16% mannan, and
27.7% lignin

0.7% H2SO4 (w/w)

180 8

1.1 190 170 3.7 0.73 0.37 0.07 0.076 4.6 5.2 0.12 g/L

[80]

0.07% H2SO4 (w/w) 0.8 13 9.5 4.5 0.34 0.18 0.032 0.09 5.8 3.6 0.22 g/L

Liquid hot water 0.83 2.5 1.3 8.7 0.75 0.16 0.09 0.054 2.4 2.3 0.31 g/L

Deionized water
saturated with

oxygen at 12 bar
0.91 1.9 0.64 18 1.8 0.31 0.24 0.18 7.1 4.8 0.14 g/L

Aqueous ammonia
0.1% (w/w) 0.55 0.65 0.16 36 2.39 0.66 0.099 0.13 3.2 4.8 0.16 g/L

Spruce

41.6% glucan, 11.5%
mannan, 4.7% xylan, 2%
galactan, 1.1% arabinan,

25.7% lignin, and
5.4% extractives

0.5% H2SO4 (w/w) 222 7 N/A 1 5.9 N/A N/A N/A N/A N/A 0.12 0.034 N/A g/L [84]

Wheat
Straw

36.3% cellulose, 30.9%
hemicellulose, and

7.1% lignin

6.5g/L Na2CO3 185 10 N/A N/A N/A 0.461 0.899 N/A N/A N/A 0.008 0.004 0.009
g/100 g DM [85]

2g/L Na2CO3 195 15 0.017 0.146 0.016 N/A 0.447 N/A N/A N/A 0.096 0.084 0.015

Barley
Straw

33% glucan, 20% xylan,
3.8% arabinan, 1%

galactan, 16.1% lignin,
7.6% ash, and

13.8% extractives

N/A 210 5 N/A 0.28 0.08 N/A N/A N/A N/A N/A 25 4.4 10 mg/100 g DM [86]

DM: dry matter. Adapted from [87].
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3.10. 2,5-Furandicarboxylic Acid

2,5-Furandicarboxylic acid (FDCA) is considered a promising alternative for petroleum-
derived terephthalic acid for the production of bioplastics, such as polyamides, polyesters,
and polyethylene furandicarboxylate. FDCA can be synthesized from 5-HMF or 2-furoic
acid derived from lignocellulose-based C6 and C5 sugars, respectively. The structure of
FDCA can be seen in Figure 11. Besides the required pretreatment for lignocellulose sac-
charification, the low efficiency of the dehydration process from hexoses to 5-HMF has
been an obstacle for commercial production [88,89]. For example, reported yields from the
conversion of fructose to HMF vary between 26 and 92% [90].
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No commercial process has been established for FDCA production from lignocellu-
losic biomass, and the production of sugar-derived FDCA has only been tested at the pilot
scale [91]. Some studies have presented direct conversion (so-called one-pot, two-step
method) for 5-HMF synthetized from sugars and oxidation to FDCA [92–95]. Another
challenge has been the need for a cost-efficient catalyst for the oxidation of furans, as uti-
lization of noble-metal-assisted catalysts without improved recycling can be costly [89,91].
Zhou et al. [89] developed a partly lignin-derived catalyst, which showed high selectivity,
as well as promising substrate conversion and FDCA yields. Some research has been
conducted with consideration of enzymatic oxidation, which is suggested as a renewable
alternative for catalytic conversion, although the area should be further explored [91,96].
Table 5 provides a summary of the most common oxidation processes used to derive 5-HMF
and 2-furoic acid.

Table 5. Review of oxidation processes from sugar-derived 5-hydroxymethylfurfural (5-HMF) and
2-furoic acid to 2,5-furandicarboxylic acid (FDCA).

Substrate Catalyst Reagents Temp. (◦C) Time (h) Pressure (Bar) Substr.
Conv. (%)

FDCA Yield
(%) Ref.

5-HMF

Lignin-derived Co SAs/N@C Na2CO3, O2
85 3 1 99.4 74.4 [89]85 8 1 100 99.5

MnO2 NaHCO3 100 24 10 >99 91 [97]
Au-TiO2 N/A 65 8 10 N/A >99 [98]
5% Pt/C O2 100 20 40 N/A 94 [92]

Magnetic ZnFe1.65Ru0.35O Dimethyl sulfoxide 130 16 N/A N/A 91.2 [94]
Ru/HAP N/A 160 4 20 N/A 34.2 [94]
Pd/CC K2CO3, O2 140 30 N/A N/A 85 [95]

Ru (4%)/MnCo2O4 N/A 120 10 24 100 99.1 [99]
Fungal enzymes: aryl alcohol

oxidase, peroxygenase,
galactose oxidase

H2O2, phosphate buffer N/A >24 N/A N/A 80 [96]

2-furoic acid
N/A Cs2CO2, CO2 200 5 8 N/A 77 [88]

Lignin-derived Co SAs/N@C Cs2CO2, CO2 260 36 Flowing 85.8 71.1 [89]

3.11. Xylitol

Xylitol is featured as a top value-added product from biorefineries in both reports
published by the USDOE and is one of the most studied molecules due to its applications
in the pharmaceutical, cosmetic, and food industries [100]. The Asia Pacific region (China
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in particular) represents a disproportionally large share of xylitol as compared to the rest
of the world, with chewing gum being the major market, representing 80–90% of the total
demand in Asia [100,101]. Xylitol demand grew from 6000 tons in 1978 to 190 thousand
metric tons in 2016, which was valued at USD 725.9 million [102].

Xylitol (structure in Figure 12) can be derived through the hydrogenation of xylose-by-
xylose reductase; however, microbial production of xylitol using yeast fungi and bacteria
has proven to be the more promising route for production. Candia spp. is the most
studied fungus with respect to xylitol production [103]. Xylitol serves as a precursor for the
production xylaric acid, ethylene glycol, and propylene glycol. Table 6 summarizes reported
xylitol production from lignocellulosic biomass. Whereas the pretreatment conditions are
quite diverse, the hydrolysate concentration is a good indicator of the relative effectiveness
of pretreatment.
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3.12. Chitosan

Chitosan (deacetylated chitin) is biopolymer used in food, pharmaceutical, and cosmet-
ics industries due to its non-toxicity, biocompatibility, biodegradability, and antimicrobial
properties [104,105]. It mainly consists of amino sugar D-glucosamine bounded to small
amounts of N-acetyl-D-glucosamine [105]. Satari et al. [106] approximated the amount of
chitosan in a biomass sample by measuring the amount of D-glucosamine. A representative
structure of chitosan can be seen in Figure 13.

Traditionally, chitosan is produced from waste exoskeletons of shellfish, but as a
high concentration (45–60%) NaOH is needed to extract the chitosan from chitin, fungus-
derived chitosan is a suitable alternative, as the more diluted alkaline required for the
extraction decreases the environmental pollution caused by the process [105]. Sigma-
Aldrich (St. Louis, MO, USA) and ChitoLytic (Toronto, ON, Canada) are companies
producing non-animal-derived chitosan at the commercial level. Chitosan can be found
in the cell wall of Zygomycetes fungi, and strains from Rhizopus and Mucor genera have
been tested for fermentation of lignocellulose prehydrolysates [104–107]. Xylose, which
is digested by microorganisms, is released from lignocellulose by treating the biomass
using hydrothermal or acid-assisted pretreatment at moderate temperatures, which can
be followed by enzymatic hydrolysis [108]. Despite being inhibitors, some sugar degra-
dation compounds, such as formic acid and acetic acid, in moderate concentrations have
been shown to stimulate the fungal growth and increase the accumulation of protective
chitosan in the fungal cell wall [104]. However, severe pretreatment conditions must be
avoided to prevent the excessive production of inhibitory compounds for fungal growth,
such as furfural. Chitosan can be extracted from fungal biomass by first separating the
alkaline, insoluble material, which is subsequently extracted using diluted acetic acid or
acetate [104–107]. Tai et al. [104] demonstrated fermentation in hemicellulose-based hy-
drolysate to enhance the fungal growth and chitosan production compared to fermentation
in synthetic glucose and xylose-containing medium. Table 7 provides a summary of fungal
chitosan production from lignocellulosic biomass.
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3.13. 2,3 Butanediol (2,3-BD)

Long-chain alcohol 2,3-butanediol (2,3-BD), structure seen in Figure 14, is an important
platform bulk chemical that is used as a fuel additive and in various other industries, includ-
ing chemicals, plastic manufacturing, pharmaceuticals, cosmetics, and even food [109–111].
Currently, it is mainly sourced from the petrochemical industry, but the increasing inter-
est in biorefining and sustainable bio-based chemicals has made microbial production of
2,3-BD a desirable alternative [112–114].
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2,3-BD can be produced by fermentation of lignocellulose-derived sugars using bacte-
rial strains that can simultaneously utilize glucose and xylose. Many industrial strains can
biologically produce 2,3-BD and have been shown to be suitable for fermentation. However,
to enhance the production and ensure sufficient yields, metabolic engineering of the strains
has been studied [109,110,112,114,115]. The pathogenic nature of most robust strains in
Klebsiella and Enterobacter genera remains an obstacle to commercialization of microbial
2,3-BD production. On the other hand, generally recognized as safe (GRAS) organisms,
such strains in the Bacillus genus, have shown lower fermentation efficiency [109,115]. Lig-
nocellulose is pretreated and hydrolyzed before fermentation, usually by sodium hydroxide
or sulfuric acid treatment followed by enzymatic hydrolysis. Joo et al. [116] studied the
effect of inhibitory sugar degradation compounds and reported that formic acid, furans,
and phenolic compounds have negative effects on cell growth and 2,3-BD production,
which enhances the importance of appropriate pretreatment conditions. Table 8 provides a
summary of fermentation techniques used to derive 2,3-BD from lignocellulosic biomass.

3.14. Xylo-Oligosaccharides (XOs)

Xylo-oligosaccharides (XOs) are non-digestible carbohydrates with prebiotic and other
beneficial health properties that have gained commercial interest due to their potential for
use as nutraceuticals; they can be produced by hydrolyzing xylan, the main component
of hemicellulose. [117,118]. This provides a route to produce high-value compounds from
abundant and inexpensive lignocellulosic feedstock, such as agricultural residues [119,120].
A representative structure of XOs can be seen in Figure 15.
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Several methods have been tested for XO production from lignocellulose, the most
common of which is hydrothermal or alkaline pretreatment followed by enzymatic or
acid hydrolysis. Hydrothermal pretreatment [120], acid hydrolysis [121], and enzymatic
hydrolysis [122] without pretreatment have also been tested. However, the high temper-
atures required for hydrothermal pretreatment and autohydrolysis increase the energy
consumption of the process. Therefore, it is suggested that alkaline pretreatment at mod-
erate temperatures, together with enzymatic hydrolysis, could be the most sustainable
processing route [118]. Downstream processing is required to purify XO-containing liquors
(75–90% purity required for food applications) from unwanted toxic and unhealthy com-
pounds, such as furfural and 5-HMF, and this process directly impacts the production
costs [118]. Production of XOs from agricultural residues has been extensively studied
in recent years, and in the reviewed studies, the reported yields, depending on the xylan
extraction and hydrolysis method, vary between 10.2% from wheat straw [119] up to >99%
from sugarcane bagasse [123]. One of the most promising feedstocks is corn cob, which
has shown high yields in various studies [124–127]. Table 9 summarizes XO production
from lignocellulose.
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Table 6. Review of extraction methods for xylitol from lignocellulosic biomass.

Biomass Feedstock Content Acid Conc. Operating Temp. (◦C) Time (min) Hydrolysate Strain Xylitol Reported Reference

Corncob

20.91 g/L of Xylose 1% H2SO4 (v/v) 121 30

40.16 g/L and 52.71 g/L
of xylose (hydrolysate
concentrated through

rotavapor and
microwave, respectively)

Candida tropicalis
1.2-fold increase in yield and

1.8-fold increase
in productivity

[128]

31.2 g/L of xylose and
3.3 g/L of glucose 1% H2SO4 (v/v) 121 40 160 g/L of xylose Candida tropicalis As

2.1776

Yield of 0.83 g/g and
productivity of 1.01 g/L/h.

Maximum xylitol production
of 96.5 g/L

[129]

41.2% cellulose, 33.4%
hemicellulose, and

18.7% lignin
1% H2SO4 (v/v) 125 60 21.67 g/L of xylose Candida tropicalis

CCTCC M2012462

Maximal xylitol
concentration of 38.8 g/L.

Yield of 0.7 g/g of xylose and
a productivity of 0.46 g/L/h

[130]

42.7% cellulose, 34.3%
hemicellulose, and

17.5% lignin
1% H2SO4 (v/v) 120 60 28.7 g/L of xylose Candida tropicalis

W103

Maximal xylitol
concentration of 68.4 g/L.

Yield of 0.7 g/g xylose and a
productivity of 0.95 g/L/h

[131]

32% cellulose, 35%
hemicellulose, 20%
lignin, and 4% ash

and others

1% H2SO4 (v/v) 121 60 24.9 g/L of Xylose Candida magnoliae
Production rate of

0.51 g/L/h and
18.7 g xylitol/L

[132]

Sugarcane
bagasse

- - - -
65% xylose, 15%
arabinose, and

8% glucose
Debaryomyces hansenii

Maximum yield of 0.76 and
0.82 g/g using free and

immobilized cells,
respectively, with

corresponding volumetric
productivities of 0.44 and

0.46 g/L/h at 100 g/L initial
xylose concentration

[133]

17.5% DM loading 1% H2SO4 150 30 15.73 g/L of D-xylose Candida guilliermondii
FTI 20037

Maximal xylitol production
of 50.5 g/L. Yield of 0.81 g/g
of xylose and productivity of

0.6 g/L/h

[134]



Processes 2022, 10, 1752 17 of 40

Table 6. Cont.

Biomass Feedstock Content Acid Conc. Operating Temp. (◦C) Time (min) Hydrolysate Strain Xylitol Reported Reference

Sugarcane
bagasse

9.3 xylose, 15.2 glucose,
and 8.5 lignin (% of DM)

100 mg of sulfuric
acid per g of

bagasse (dry wt)
121 10

Hydrolysate 64.7 g/L
xylose, 3.08 g/L glucose,
4.23 g/L arabinose, and

1.84 g/ L acetic acid

Candida guilliermondii

Maximum xylitol
concentration of 28.7 g/L,
xylitol yield on consumed
xylose of 0.49 g/g, and a

xylitol volumetric
productivity of 0.24 g/L/h

[135]

10% DM loading 1% H2SO4 (v/v) 121 60

Sugar composition in
hydrolysate xylose 56%,

glucose 15%, and
arabinose 24%

Candida tropicalis Xylitol yield was 0.65 g/g
of xylose

[136]

Corn Fiber 20% DM loading 1% H2SO4 (v/v) 121 60

Sugar composition in
hydrolysate xylose 30%,
glucose 38%, arabinose
22%, and galactose 4%.

Candida tropicalis Xylitol yield was 0.65 g/g
of xylose

DM: dry matter.
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Table 7. Review of production methods for fungal chitosan from lignocellulose.

Biomass Treatment Conditions Xylose (g/L) Fungal Strain Chitosan Extraction Biomass Production
(g/L/day)

Chitosan Content
(g/g Biomass) Comment Ref.

Corn Stover

2% H2SO4
100 ◦C 2 h 22.4 Rhizopus oryzae

ME-F12

1 M NaOH at 121 ◦C for
15 min + 2% acetic acid at

95 ◦C for 24 h
5.2 0.09 Total production [104]

Autoclave at
121 ◦C for 20 min N/A Aspergillus niger

1 M NaOH at 121 ◦C for
20 min + 2% acetic acid at

95 ◦C for 6–8 h
15.8 6.8 (g/kg)

Solid-state
fermentation

[107]

Autoclave
at 21 ◦C 20 for min N/A Rhizopus oryzae

1 M NaOH at 121 ◦C for
20 min + 2% acetic acid at

95 ◦C for 6-8 h
14.6 8.6

Acid-assisted steam
explosion, 0.8 MPa 30 Rhizopus oryzae

AS 3.819

1 M NaOH at 121 ◦C for
15 min + 2% acetate at

95 ◦C for 24 h
3.7 0.09 N/A [105]

Elm Wood 85% H3PO4 at 60 ◦ for C
45 min + enzymatic ND Mucor indicus CCUG

22424

0.5 M NaOH at 121 ◦C
for 20 min

(alkali-insoluble material)
3.3 0.06 Determined as the

amount of
glucosamine

[106]

Pine Wood 85% H3PO4 at 60 ◦C for
45 min + enzymatic 6.9 Mucor indicus CCUG

22424

0.5 M NaOH at 121 ◦C
for 20 min

(alkali-insoluble material)
2.8 0.06

Rice Straw 85% H3PO4 at 60 ◦C for
45 min + enzymatic ND Mucor indicus CCUG

22424

0.5 M NaOH at 121 ◦C
for 20 min

(alkali-insoluble material)
3.1 0.06

Wheat Straw NMMO * 120 ◦C
3 h + enzymatic 19.8 Mucor indicus CCUG

22424
Autolysis + NaOH

treatment + extraction N/A 0.13 N-methylmorpholine
-N-oxide [137]

* N-methylmorpholine-N-oxide.
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Table 8. Review of fermentation methods for 2,3-butanediol (2,3-BD) from lignocellulose.

Biomass Pretreatment Hydrolysis Strain Productivity (g/L/h) 2,3-BD Conc. (g/L) Yield (%) Ref.

Corn cob 2% NaOH at 80 ◦C for 2 h Enzymatic Enterobacter cloacae
CICC 10011 0.9 N/A 42 [138]

Corn stover
0.1 M NaOH at 80 ◦C Enzymatic Zymomonas mobilis N/A 10 N/A [114]

N/A Enzymatic Paenibacillus polymyxa 1.1 18.8 31 [139]
N/A N/A Bacillus licheniformis 2.3 119.4 95 [112]

Jerusalem Artichoke Stalk 1% H2SO4 at 130 ◦C for 90 min Enzymatic Klebsiella pneumoniae N/A 80.5 16.8 [111]
Oil Plan Frond 3% NaOH at 121 ◦C for 20 min Enzymatic Enterobacter cloacae SG1 0.3 30.7 N/A [113]

Pine Tree N/A N/A Klebsiella oxytoca CHA006 0.7 5.8 30 [110]

Rice Straw 0.375 M NaOH at 120 ◦C for
20 min Enzymatic Klebsiella sp. Zmd30 2.4 N/A 62 [140]

Rice Waste Na2CO3 + NaHCO3 + Na2SO4
at 100 ◦C for 3 h Enzymatic Klebsiella pneumoniae KMK-05 0.48 11.5 38.4 [141]

Sorghum Stalk 1.25% NaOH at 121 ◦C for
30 min Enzymatic Bacillus licheniformis DSM 8785 1 N/A 45 [109]

Sugarcane Bagasse

0.375 M NaOH at 120 ◦C for
20 min Enzymatic Klebsiella sp. Zmd30 0.7 N/A 15 [140]

10% NaOH at 90 ◦C for 90 min Enzymatic Klebsiella pneumoniae
CGMCC 1.9131 N/A 9 N/A [142]

1% H2SO4 at 121 ◦C for 30 min N/A Enterobacter aerogenes EMY-22 0.8 66.4 42 [110]
5% Na2CO3 + 5% Na2SO3 at

100 ◦C for 4 h N/A Enterobacter aerogenes EMY-22 N/A N/A 39.5 [143]

Sunflower Stalk N/A N/A Klebsiella oxytoca CHA006 0.8 4.3 34 [110]

Wood

24 N H2SO4 at 30 ◦C for
60 min + diluted acid at

105 ◦C for 60 min
N/A Enterobacter aerogenes N/A 9.9 N/A [116]

N/A N/A Bacillus licheniformis DSM 8785 1.6 N/A 40 [109]
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Table 9. Review of xylo-oligosaccharide (XO) production from lignocellulose.

Biomass Hemicellulose (%) Xylan (%) Extraction/Pretreatment Hydrolysis XO Conc. (g/L) Yield Unit Ref.

Barley Husk N/A 26.8 N/A Autohydrolysis
at 220 ◦C for 0.75 h N/A 27.1 % [120]

Corn Cob

N/A 30.6 N/A Non-isotherm
autohydrolysis at 202 ◦C N/A 78.7 gXOs/100 g xylan [126]

38.8 N/A 12% NaOH + steam at
121 ◦C for 45 min

0.25 M H2SO4
at 90 ◦C for 60 h 0.9 N/A N/A [144]

38.9 N/A 4–16% NaOH + steam at
121 ◦C for 45 min

Enzymatic at 40.9–41.4 ◦C
for 16.6–17.3 h <2.0 N/A N/A [145]

N/A N/A 1.25 M NaOH
at 37 ◦C for 180 min

Enzymatic
at 45 ◦C for 8 h 6.7 60 % [124]

N/A 31.3 N/A Autohydrolysis
at 220 ◦C for 0.75 h N/A 24.8 % [120]

N/A 31.9 2% NaOH at 20 ◦C for 6 h Enzymatic
at 50 ◦C for 24–36 h 8.2 86.7 % [125]

N/A 34.8 1.0 g/L H2SO4 + steam at
135 ◦C for 30 min

Enzymatic
at 50 ◦C for 24 h N/A 67.7 gXOs/100 g xylan [127]

Eucalyptus Wood N/A 16.6 N/A Autohydrolysis
at 220 ◦C for 0.75 h N/A 15.4 % [120]

Maize Silage 35.1 N/A 1 M NaOH + steam at
121 ◦C for 15 min

Enzymatic
at 50 ◦C for 24 h 3.5 N/A N/A [117]

Oil Palm Frond 30.4 N/A Steam at 121 ◦C for 60 min Enzymatic
at 40 ◦C for 24 h N/A 17.5 w/w% [146]

Reed N/A 21.2 Steam at 170 ◦C for 30 min Enzymatic
at 50 ◦C for 48 h N/A 68.1 gXOs/100 g xylan [147]

Rice Husk

N/A 15.6 N/A Autohydrolysis
at 220 ◦C for 0.75 h N/A 18 % [120]

25 N/A 18% NaOH + steam at
120 ◦C for 45 min

Enzymatic
at 50 ◦C for 9 h N/A 34.7 gXOs/100 g xylan [148]

11.2 N/A N/A Enzymatic
at 50 ◦C for 24 h N/A 69 gXOs/100 g xylan [122]

Ryegrass Silage 36.6 N/A 1 M NaOH + steam at
121 ◦C for 15 min

Enzymatic
at 50 ◦C for 24 h 2.4 N/A N/A [117]
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Table 9. Cont.

Biomass Hemicellulose (%) Xylan (%) Extraction/Pretreatment Hydrolysis XO Conc. (g/L) Yield Unit Ref.

Sugar Cane Bagasse

N/A 20.6 Aqueous ammonia + steam
at 121 ◦C for 30 min

Enzymatic
at 50 ◦C for 30 h N/A >99 % [123]

N/A N/A N/A 0.1% H2SO4
at 140 ◦C for 1 h N/A 92.28 gXOs/100 g xylan [121]

N/A N/A 6% Alkaline peroxide
at 20 ◦C for 180 min

Enzymatic
at 50 ◦C for 96 h N/A 31.5 % [149]

N/A N/A 10% Acetic acid + steam at
150 ◦C for 45 min

Enzymatic
at 30 ◦C for 1.25 h N/A 39.1 gXOs/100 g xylan [150]

23.2 N/A 12% NaOH + steam at
121 ◦C for 15 min

Enzymatic
at 40 ◦C for 8 h 1.72 N/A N/A [151]

Sunflower Stalk
N/A 18.9 24% KOH

at 35 ◦C for 120 min
Enzymatic

at 40 ◦C for 24 h 3.2 N/A N/A [152]

N/A 19.1 24% KOH
at 35 ◦C for 120 min

0.25 M H2SO4
at 100 ◦C for 30 h N/A 12.6 gXOs/100 g xylan [119]

Wheat Straw
N/A 20.6 24% KOH

at 35 ◦C for 120 min
Enzymatic 4

at 0 ◦C for 24 h 2.3 N/A N/A [152]

N/A 20.9 24% KOH
at 35 ◦C for 120 min

0.25 M H2SO4
at 100 ◦C for 30 h N/A 10.2 gXOs/100 g xylan [119]

N/A N/A 2% NaOH
at 80 ◦C for 90 min

Enzymatic
at 60 ◦C for 15 h N/A 39.8 gXOs/100 g xylan [153]
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4. Extraction Methods

Physical pretreatment is one of the first steps to open the molecular structure of lig-
nocellulosic biomass. Several physical, chemical, and physiochemical methods have been
studied and optimized to provide access to cellulose and hemicellulose by opening up the
binding lignin structure [154,155]. Whereas the primary goal of pretreatment is to provide
accessibility to cellulose and hemicellulose sugars, with time and increased interest in
biomass-derived production of value-added chemicals, molecules that were once consid-
ered pretreatment inhibitors, such as HMF and furfural, are now the primary compounds
of interest. This newfound interest prioritizes the secondary goal, which is opening the
lignin structure. Whereas accessibility to polysaccharides still holds relevance, if high-value
compounds can be extracted via low-cost extraction methods, then this step precedes the
step of extraction of polysaccharides into monomeric sugars. As a result of this shift, new
extractions methods are continually being investigated with respect to their efficacy in
obtaining high-value biochemicals. Conventional pretreatment operating conditions, as
described in Tables 1–9 are often energy-intensive, requiring reactor temperatures above
150 ◦C and reactor pressure between 1 and 20 atm and are frequently performed in the
presence of a catalyst. Novel extraction methods include less energy-intensive alternatives
that allow for recovery of high-value chemicals. The attractive prices and wide-ranging
applications of specialty chemicals derived from biomass justify the development of new
extraction methods. In the following sections, extraction methods for targeted high-value
compounds from lignocellulosic biomass are reviewed. The isolation and encapsulation
techniques used to stabilize high-value compounds are also discussed and reviewed.

For efficient extraction of high-value compounds from lignocellulosic biomass, phys-
iochemical pretreatment is followed by extraction methods. The extraction method is
governed by the characteristics of the targeted compounds identified for extraction. Some
compounds are thermolabile and therefore prone to thermal degradation. Therefore, pro-
longed extractions using high temperatures should be chosen with caution [156,157]. For a
solvent to dissolve the solute, the diffusion, solubilization, and/or transfer are governed by
the thermodynamic properties of the solute and the solvent. Solvents are widely used for
extraction of targeted molecules, partly due to the simplicity of the method, its scalability,
and low cost [158]. Solvents used to extract high-value compounds discussed in this review
include water, ethanol (EtOH), methanol (MeOH), ethyl acetate (EtOAc), dichloromethane
(DCM), acetone, dimethyl sulfoxide (DMSO), deep eutectic and ionic solvents (DESs), acids
and bases, and supercritical CO2 [159–166].

Phenolics are secondary metabolites with a chemical structure comprising one or
more aromatic rings attached to one or more hydroxyl groups. Phenolics can be derived
from food plants and lignocellulosic plants. With more than known 8000 phenolics, there
is certainly a growing interest in the ability to extract these compounds from a variety
of biomass sources [158]. In an in silico study, Galanakis et al. [167] investigated the
ability of solvents to solubilize phenolics, e.g., hydroxycinnamic acids (HCA), flavonoids,
phenolic aldehydes, or hydroxybenzoic acids, all of which are molecules with at least
one hydroxyl group (polar group) connected to an aromatic ring (non-polar group). The
activity coefficient and polarity, which can be predicted by computer models, were the main
parameters used to determine the solubility of a solute in a solvent. The authors stated that
different solvents target different phenolic groups [167]. Of the 15 investigated phenolic
groups, the solvents with the best properties for extracting phenolics were EtOH, MeOH,
EtOAc, and DCM. However, these solvents do not consider the liberation of phenolics from
the lignocellulosic matrix.

4.1. Hansen Solubility Parameters

Hansen solubility parameters (HSPs) are associated with the method of theoretically
calculating a solute’s solubility in a solvent based on the thermodynamical properties of
dispersion, polarity, and hydrogen bonding. Compounds with similar HSP values have
high miscibility, solubility, diffusivity, and affinity for each other. Such compounds have
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similar HSP values because they have comparable atomic dispersion forces, molecular
dipole forces, and electron exchanges, denoted by δD, δP, and δH, respectively.

A compound is defined as soluble in a solvent if the solvent lies inside in three-
dimensional solubility parameter spheroid in the Hansen space [168,169]. Hansen empha-
sizes the impracticality of using water to predict solubility behaviors with HPS. Water
is a small molecule with strong polar interactions, as well as strong hydrogen-bonding
and hydrogen-donor capabilities. Therefore, the HPS values depend on the local en-
vironment, and Hansen does not recommend water predictions of solubility with the
HPS method [168,169]. Ionic compounds are not well-described by the HSP method.
Tables 10 ad 11 consolidate HSP for common solvents and solutes.

Table 10. HSP values of solvents as described by Hansen [169].

Compound δD δP δH Compound δD δP δH

1,4-Dioxane 19 1.8 7.4 Iso-butanol 15.1 5.7 15.9
1-Butanol 16 5.7 15.8 Methanol 14.7 12.3 22.3

1-Propanol 16 6.8 17.4 Methyl cyclohexane 16 0 1
2-Butanol 15.8 5.7 14.5 Methyl ethyl ketone 16 9 5.1

2-Propanol 15.8 6.1 16.4 Methyl isobutyl ketone 15.3 6.1 4.1
Acetone 15.5 10.4 7 Methylene dichloride 18.2 6.3 6.1

Acetonitrile 15.3 18 6.1 N,N-dimethyl
acetamide 16.8 11.5 10.2

Benzene 18.4 0 2 N,N-dimethyl
formamide 17.4 13.7 11.3

Benzyl Alcohol 18.4 6.3 13.7 n-Butyl acetate 15.8 3.7 6.3
Carbon tetrachloride 17.8 0 0.6 n-Heptane 15.3 0 0

Chlorobenzene 19 4.3 2 n-Hexane 14.9 0 0
Chloroform 17.8 3.1 5.7 n-Nonane 15.7 0 0
Cyclohexane 16.8 0 0.2 n-Octane 15.5 0 0

Cyclohexanone 17.8 6.3 5.1 n-Pentane 15.6 0 0
Decalin (cis) 18 0 0 sec-Butyl acetate 15 3.7 7.6

Dichloromethane 8.9 3.1 3 Styrene 18.6 1 4.1
Diethyl Ether 14.5 2.9 4.6 Tetralin 19.6 2 2.9

Dimethyl Phthalate 18.6 10.8 4.9 Tetramethylene
sulfoxide 18.2 11 9.1

Dimethyl Sulfoxide 18.4 16.4 10.2 Toluene 18 1.4 2
Ethanol 15.8 8.8 19.4 Water 18.1 17.1 16.9

Ethyl Acetate 15.8 5.3 7.2 Xylene 17.6 1 3.1
Ethyl Benzene 17.8 0.6 1.4 γ-Butyrolactone 19 16.6 7.4

Ethylene Carbonate 19.4 21.7 5.1

Units are in MPa1/2.

Table 11. HSP values of solutes [169–171].

Solute δD δP δH

Lactic acid 17.0 8.3 28.4
Adipic acid 17.1 9.0 14.6

Vanillin * 19.4 9.8 11.2
Furfural 18.6 14.9 5.1

Ferulic acid * 19.0 6.6 15.1
4-Hydroxy cinnamic acid * 19.1 6.7 15.9

Chitosan 23.0 17.3 25.7
Xylo-oligosaccharides 25.4 7.4 15.5

Units are in MPa1/2. * Phenolic compound.

By applying the solvent HSP values to the solute HSP values using Equation (1),
the distance in Hansen space (RAB) can be calculated to determine the theoretically best
solvents for individual solutes of interest, as shown in Table 12, where the solvents with
the lowest distance to the solute in the Hansen space as defined by R1, the second-lowest is
defined by R2, etc.

RAB =
√

4 · ∆δ2
D + ∆δ2

P + ∆δ2
H (1)
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Table 12. Chosen solutes of interest and the solvents closest to them in Hansen space.

Solute R1 R2 R3 R4

Lactic acid MeOH EtOH 1-Propanol 2-Propanol
Succinic acid
Adipic acid EtOAc n-Butyl acetate Sec-Butyl acetate Chloroform

Vanillin * Tetramethylene sulfoxide Benzyl alcohol N,N-dimethyl acetamide N,N-dimethyl formamide
Furfural γ-Butyrolactone Dimethyl phthalate Dimethyl sulfoxide Tetramethylene sulfoxide

Ferulic acid * Benzyl alcohol 1-Butanol 1-Propanol 2-Butanol
4-Hydroxy cinnamic acid * Benzyl alcohol 1-Butanol 1-Propanol 2-Propanol

Chitosan Water MeOH EtOH Dimethyl sulfoxide
Xylo-oligosaccharides Benzyl alcohol 1,4-Dioxane Tetramethylene sulfoxide Dichloromethane

R1 denotes the shortest distance between solute and solvent in Hansen space, R2 denotes the second shortest
distance, etc. * Phenolic compound.

As shown in Table 12, the best solvent for chitosan is water, according to calculations
based on HSP values. However, this does not mean that chitosan is soluble in water, as
chitosan is a polymer, and a second chemical is therefore needed to change the ionic charge
of the solute and solvent, e.g., by the addition of a weak acid [172].

If a solvent with good HSP values compared to the compound of interest is unfit for
handling due to safety concerns, high cost, or due to processing inability or environmental
restrictions, other miscible solvents with desirable characteristics can be chosen and mixed
in ratios that will result in similar HSP values. If mixed on the basis of a volume-weighted
average, a new RAB can be calculated such that the mixture of solvents might be low-cost,
safer, or more environmentally accepted, with a possibly lower RAB distance in Hansen-
space. By applying Equations (2)–(4), new HSP values can be calculated for a mix of solvents.
This technique can also shift the solubility of a solute in the mix of solvents to induce
crystallization of the solute without extensive and expensive downstream processing.

δD =
δD1 ·V1 + δD2 ·V2 + δDn ·Vn

Vtot
(2)

δP =
δP1 ·V1 + δP2 ·V2 + δPn ·Vn

Vtot
(3)

δH =
δH1 ·V1 + δH2 ·V2 + δHn ·Vn

Vtot
(4)

4.2. Solvent Extraction

Maceration extraction (ME) is the most common and easy solvent extraction technique.
This method is often called simple solvent extraction or conventional extraction [173,174].
Compounds can be extracted by simply submerging the biomass in a solvent and heating
below the boiling point. As ME relies on the diffusion transfer of compounds, physical
pretreatment is often required for efficient extraction to increase the surface area of the
biomass and possibly to open the plant cell walls of lignocellulosic material. Such physical
pretreatment can be achieved by milling or crushing. ME can also happen before, during,
or after fermentation. This is the case for winemaking, where the solvent slowly changes
from sugar-rich water to a mix of water–sugar–ethanol, shifting the solvent properties,
e.g., polarity, dielectric constant, and surface tension [175]. As many organic solvents are
perfectly miscible with water, the effect of shifting solvent properties can be well-controlled.

Decoction extraction (DE) involves boiling the plant material in a solvent to extract
compounds of interest. This method is also commonly referred to as hot maceration or
boiling maceration. Silva et al. [176] investigated DE and microwave-assisted extraction of
bioactive compounds from lignocellulosic halophyte Salicornia ramosissima. The biomass
was milled to open the lignocellulosic structure, and particles of 1 mm were obtained. DE
was conducted by boiling 300 mg biomass in 10 mL distilled water for 5 min and leaving it
to cool for 25 min. The extract was filtered and freeze-dried into a powder. The extracts
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were analyzed by a Folin–Ciocalteu total phenolic assay, with DE showing 80% higher
extraction of total phenolics compared to microwave-assisted extraction.

Most analysis methods require liquid samples, as analytical equipment cannot handle
solid samples. For analysis, a solid–liquid extraction method is needed to solubilize the
solute of interest. Soxhlet extraction is a commonly used method for solid–liquid extraction,
as the method is well-described, reliable, safe, and easy to operate. Soxhlet extraction
works on the principle of continuous evaporation and simultaneous condensation of a
solvent. The biomass is gradually submerged in the solvent. Once the extraction chamber
containing the biomass is full of condensed solvent at near-boiling temperature, the solvent
is siphoned off, and a new condensed solvent can fill up the extraction chamber. The
transfer equilibrium is thereby shifted and does not determine the mass transfer of the
desired compound into the solvent. This allows for an unmonitored operation of the
Soxhlet apparatus, and the operator can stop the operation when desired. The continuous
and cyclic nature of this extraction method ensures a concentrated extract. The solvent is
usually determined by the polarity of the solute, but other factors, such as flammability,
toxicity, and price, can be used as parameters for the selection of a solvent [177].

Soxhlet extraction can also be applied for the extraction of oils, fats, waxes, sterols, and
other non-polar compounds from lignocellulosic biomass using a non-polar solvent. More
polar compounds, e.g., phenolic compounds, can be extracted using ethanol, methanol, or
ethyl acetate. A schematic of this setup is shown in Figure 16. Cascade extraction using
a Soxhlet apparatus can achieve relatively pure extract phases and yield a lignocellulosic
fraction with a low concentration of residual material, such as lipids or ash [178–180].
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Figure 16. Experimental setup for experimental Soxhlet extraction. Adapted from [177].

Medini et al. [178] studied the phytochemical composition, antioxidant capacity, anti-
inflammatory effect, and anticancer activities of the halophyte Limonium densiflorum. The
tested extracts were extracted by Soxhlet extraction using a successive cascade with hexane,
dichloromethane, ethanol, and methanol. These solvents were carefully chosen to extract
as much non-lignocellulosic material as possible and thereby afford a pure lignocellulosic
fraction after extraction [178].
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4.3. Subcritical Water Extraction

Subcritical water extraction (SWE) utilizes increasing temperatures and pressure of
water of 100–374 ◦C and 0.1–22.1 MPa, respectively, while remaining below the vapor
pressure. SWE utilizes the shift in chemical properties, such as viscosity, dielectric con-
stant, surface tension, diffusivity characteristics, polarity, and pH value. Changing these
properties can cause the water assimilate acids and organic solvents, allowing the operator
to select the compounds of interest and yielding an aqueous extract free of harmful acids
and solvents [181]. Zhang et al. [181] reviewed the extraction of phenolic compounds by
SWE and found the optimal extraction conditions for total phenolic content (TPC) and
total flavonoid content (TFC) of lignocellulosic biomass to be approximately 160–220 ◦C for
16–45 min at 2–6 MPa. Table 13 summarizes the parameters and raw materials reviewed
by Zhang et al. [181]. The optimized extraction parameters are changed by increasing the
pressure, and the extraction temperature can be lowered significantly to 100–140 ◦C for
5–130 min at 10–15 MPa.

Table 13. Optimal extraction parameters by subcritical water extraction measured by Folin–Ciocalteu
total phenolics assay. Literature reported in a review by Zhang et al. [181].

Detection Method Raw Material Temperature (◦C) Pressure (MPa) Time (min) Ref.

Folin–Ciocalteu

Oleaceae europaea pulp residue 160 - 30 [182]
Vitis vinifera pomace 140 15 130 [183]
Vitis vinifera pomace 120 10 120 [184]

Plantago major 100 10 2 [185]
Plantago lanceolata 100 10 2 [185]
Japonica-type rice

(Oryza sativa) 100–360 18 10–30 [186]

4.4. Extraction at Varying pH Values

Changing pH during an extraction process can purify the product from other com-
pounds that will dissolve in acidic or alkali solutions and hence extract unwanted com-
pounds. Examples include polymers and resin chitosan, 2,5-furandicarboxylic acid poly-
mers, and furfural resins.

Treating biomass using alkalis is a common method for pretreatment or extraction
of certain compounds [85,187]. To avoid irreversible degradation of many compounds
with low pKa values, such as organic acids, the stabilities of compounds of interest should
be reviewed. Friedman et al. [187] demonstrated the irreversible degradation of caffeic,
chlorogenic, and gallic acids at high pH, and degradation was shown to occur even at
acidic pH levels, which emphasizes the necessity of low pH values during storage and
extraction of phenolic compounds. Chlorogenic acids were shown to degrade into their
subcomponent monophenolic compounds, caffeic acid and quinic acid. Flavonoids were
shown to be more stable than monophenolic compounds or heterodimers, such as chloro-
genic acid. Friedman et al. explained that this was due to the exposed carboxyl groups on
the less complex phenolic compounds [187]. However, Peanparkdee et al. contested that
protocatechuic acid, similar in molecular structure to gallic acid and thus considered to
be more stable, exhibited degradation at lower pH levels [188]. Table 14 summarizes the
stability and degradation of phenolic compounds at varying pH.
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Table 14. Review of stability and degradation of phenolic compounds at varying pH levels.

Compound Stable at pH High Degradation
at pH Refs.

Gallic acid <7 >10 [187]
Protocatechuic acid <5 >7 [188]

Vanillic acid <5 >7 [188]
Caffiec acid <7 >10 [187]
Ferulic acid <9 >11 [187,188]
Quercetin N/A >6 [53]

(-)-catechin <7 >10 [187]
Rutin <11 N/A [187]

Neochlorogenic acid <6 >9 [189]
Cryptochlorogenic acid <5 >9 [190]

Chlorogenic acid <5 >7 [191,192]

4.5. Ultrasound Extraction

Ultrasound extraction (USE) has been studied extensively with the purpose of pro-
viding enhanced accessibility to cellulose and hemicellulose. Bussemaker and Zhang [193]
reviewed the application of ultrasound on various lignocellulosic biomasses, such as
sorghum, corn stover, sugarcane bagasse, rice hull, and rice straw. However, the focus,
like that of other reviews, was the extraction of lignin from biomass or the extraction of
cellulose or hemicellulose [194–196]. Fang et al.’s [197] book, ‘Production of biofuels and
chemicals with ultrasound’ covers the extraction of biofuels and enhanced biogas production
using ultrasound, as well as the extraction of chemicals from algae. The use of ultra-
sound to extract value-added chemicals from lignocellulosic biomass remains scarcely
researched. This expands the review slightly to accommodate other biomasses that are not
necessarily lignocellulosic but have been utilized for the extraction of high-value chemicals
using ultrasound.

Corbin et al. [198] investigated the USE of flax seeds for efficient extraction of phenolic
compounds. The phenolics extracted by Corbin et al. [198] were bound to a glucoside
group, as the phenolics in flaxseed are bound in the seed coat, with high content of glu-
cosidic bonds. The molecules are still considered HCA, despite the glucosidic bonds.
Corbin et al. [198] used slightly alkaline operation conditions (0.2 N NaOH) for the com-
pounds bound in the seed coat matrix to release the polyphenolic lignans, polyphenolic
flavonoids, and monophenolic hydroxycinnamic acids. The study by Corbin et al. [198] also
compared phenolic extractions in flax seeds by optimized microwave extraction (MWE),
USE, enzymatic-assisted extraction (EASE), and heated reflux. This shows MWE to be
superior for the extraction of ferulic acid glucoside (76 w% higher than USE), USE to
be superior for the extraction of p-coumaric acid glucoside (20 w% higher than MWE),
and MWE and USE to show similar properties in the extraction of caffeic acid glucoside.
The extraction of other polyphenolic compounds was also dominated by MWE and USE
extractions in flaxseed, with USE showing superior extraction properties [198].

USE has also been investigated with respect to the extraction of phenolics from saline
lignocellulosic biomass and halophytes. Padalino et al. [199] extracted phenolics from
vacuum-dried fresh Salicornia europaea to increase the phenolic content and antioxidant
capacity of freshly made pasta. USE was executed at an extraction temperature of 50 ◦C
with an ethanol/water ratio of 40/60 v/v% and a DM loading of 1:30 w/v. The researchers
achieved an increase in antioxidant capacity of 148% [199].

4.6. Enzymatic Extraction

Arabinoxylan–lignin and glucan–lignin linkage with the HCAs ferulic acid, p-coumaric
acid, and flavonoid tricin, amongst others, were shown to be present in wheat straw by
Zikeli et al. [200]. Of the carbohydrate–lignin linkages in wheat straw, the ferulic acid
linkage is the most predominant, with high amounts of tricin linkages also shown between
glucan and lignin. These intermolecular bonds are too strong to be broken solvents; hence,
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enzymatic hydrolysis could be investigated as part of an extraction cascade, as different
extraction methods and solvents have been shown to target the extraction of different
phenolics [161,167,198].

Zhu et al. [161] demonstrated that p-coumaric acid, ferulic acid, and caffeic acid in
dehulled barley cannot be (or are poorly) extracted by regular solvent extraction using
acetone but very easily extracted after digestion in 2 M NaOH in the presence of nitro-
gen. It should be noted that Zikeli et al. [200] found both ferulic acid and p-coumaric
acid in the carbohydrate–lignin linkage, which is supported by Bartolomé and Gómez-
Cordovés’ [201] characterization of the purified enzymes from microbial cultures, ferulic
acid, and p-coumaric acid esterases. Extraction of barley using enzymatic digestion with
pepsin, pancreatin, Pronase E, and Viscozyme L, compared to solvent extraction of free
and bound phenolics, increased the extraction of (+)-catechin by 232–239 wt% and that of
p-coumaric acid 29–82 w%, with no significant increase in the extraction of ferulic acid or
caffeic acid [162].

Torres-Mancera et al. [202] described enzymatic extraction methods, whereby the
majority of the phenolics in ground coffee pulp were recorded to be bound in the plant
cell wall. Pectinase was used as a coenzyme to break the structure of the cell wall, and
Rhizomucor pusillus strain 23aIV was used in solid-state fermentation to extract the HCAs.
The phenolics were extracted downstream with solvents [202].

In the case of high protein content in the lignified biomass, protein removal should
be considered, as high protein content can inhibit enzymatic hydrolysis, as described
by Faulds et al. [203]. For low-protein biomasses, a hydrothermal pretreatment with a
low severity factor, followed by enzymatic hydrolysis using commercial enzymatic blend
DEPOL 740 L containing ferulic acid and p-coumaric acid esterases and subsequent Soxhlet
extraction, can be considered. Table 15 describes extraction methods for phenols and
hydroxycinnamic acids from lignocellulosic biomass.

Table 15. Review of extraction methods for phenolics.

Biomass Method Optimal or Experimental Conditions References

Flax USE 0.2 M NaOH in water at 25 ◦C for 60 min
at 30 kHz [198]

Crithmum maritimum and
Salicornia europaea USE Water:ethanol, 40:60 v/v% at 50 ◦C for

20 min [199,204]

Wheat straw Solvent Water:ethanol, 60:40 v/v%, 8 w% NaOH
at 70 ◦C for 18 h [200]

Barley straw Alkaline + solvent Pretreatment: 2 M NaOH for 1 h,
nitrogen atmosphere. Solvent: EtOAc. [161,162]

Enzymatic Pepsin, Pancreatin, Pronase E,
Viscozyme L

Used coffee bean pulp Enzymatic + fungi + solvent Pectinase, Rhizomucor pusillus, and EtOAc [202]
Brewer’s spent grain Enzymatic DEPOL 740 L, pH 8 at 50 ◦C [203]

5. Isolation and Purification Methods

Once the value-added compounds have been extracted from the biomass, the next
step is to isolate and purify said compounds. Here, we discuss membrane filtration,
liquid–liquid extraction, and purification using preparative high-performance liquid chro-
matography (Prep-HPLC).

5.1. Membrane Filtration

Membrane filtration can be seen as an easily scalable and inexpensive method for the
filtration of extracts. Amongst the various membrane filtration technologies, micro-(MF),
ultra-(UF), and nano-(NF) filtration are pressure-driven technologies. These technologies
have the benefits of a low energy input, high separation efficiency, simple operation, no
use of expensive solvents or effluents, and scalability [205]. A disadvantage of membrane
separation is the inability to separate specific compounds of similar polarities and molecular
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weights (MWs), as the membranes only retain compounds above a certain molecular size
or approximate MW.

Galanakis and Castro-Muñoz et al. [206–208] reviewed the separation of functional
macro- and micromolecules using ultra- and nanofiltration (NF). NF with a pore size of
120 Da was used to separate phenolic compounds, achieving a separation efficiency of 99%.
The smallest possible phenolic acid, benzoic acid, has an MW of 122 Da, which means all
phenolics should be retained by the 120 Da membrane filter. Most phenolics with three or
fewer aromatic rings have an MW of <650, which means that an initial filtration to remove
larger molecules and particles, such as bacteria, hemicellulose, cellulose, lignin, proteins,
and starch, is necessary, as such particles would clog the NF membrane. Even if the range
of MW is established as 141–650 Da for membrane separation of phenolic compounds, this
does not imply that the molecules will not be retained in larger pores. Galanakis et al. [206]
investigated the separation of the phenolic compounds of HCA derivatives and flavanol
from olive mill wastewater using UF and NF. Four UF pore sizes and one size of NF
(100, 25, 10, 2 kDa, and 120 Da, respectively) were found to retain <1, 32, 44, 53, and 99%
HCA, respectively, and 10, 37, 56, 62, and 99% flavonols, respectively [206]. This indicates
the ability of these molecules to attach to other molecules or in lignocellulosic structures.
Furthermore, 79, 98, 98, 99, 99% of pectin was retained with a pore size of 100, 25, 10, 2 kDa,
and 120 Da, respectively, indicating that the optimal UF pore size for retention of pectin
and purification of a phenolic-rich fraction is between 25 and 100 kDa, with a secondary
NF membrane filtration with a pore size of 120 Da.

Whereas membrane filtration is one of the most promising technologies for recovery
of macro- and micromolecules derived from lignocellulosic biomass, it is associated with
some drawbacks. Some of the major drawbacks of membrane filtration are membrane
fouling, leading to a decrease in permeate flux, as well as reduced efficiency of the process,
and the high cost associated with cleaning and maintenance of membranes.

5.2. Liquid–Liquid Extraction

Many organic solvents used for liquid–liquid purposes have lower relative polarity
than water, and these might coextract lipids, waxes, and other non-polar compounds,
along with the targeted compounds. Therefore, a prior liquid–liquid extraction using a
non-polar non-water-soluble solvent, such as hexane, dichloromethane, or chloroform, can
positively affect the isolation and purification of the targeted compounds, yielding a more
concentrated product with fewer contaminates.

Stiger-Pouvreau et al. [209] originally developed a cascade liquid–liquid extraction
for the isolation of phlorotannin, a specific phenolic compound group in macroalgae
Sargassacaea spp. crude extract (Figure 17). A hydroethanolic maceration obtained the
extract (v/v, 1:1). The method implies the use of various consequent washings with organic
solvents by liquid–liquid extraction in a separatory funnel, evaporation of solvents, and
resuspension of the extracted material in an aqueous phase. Liquid–liquid extraction
using dichloromethane extracted the lipids from the crude aqueous extract. Sugars and
proteins were separated by low-temperature acetone and ethanol washings. Liquid–liquid
extraction using ethyl acetate purified the phenolic compounds and isolated them in
the organic solvent [209]. Kim et al. [210] resuspended a powdered methanolic extract
of Salicornia herbacea in water and successively partitioned it with n-hexane, chloroform,
EtOAc, and n-butanol. These compounds are immiscible with water or have a low solubility
in water, which can be further decreased by introducing salt [210,211]. The solvent layers
were easily separated from the aqueous layers and concentrated in a vacuum at 38 ◦C. Both
the ethyl acetate and the n-butanol phases showed high free-radical scavenging activity,
and the compound’s two layers were further isolated by column chromatography.
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Figure 17. Procedure of liquid–liquid extraction of phenolic compounds from Sargassaceae spp. [209].
M:W: methanol:water; DCM: dichloromethane.

Similar to membrane filtration, liquid–liquid extraction also has its drawbacks.
Bokhary et al. [212] highlighted these challenges, some of which include poor biocompati-
bility of solvents with microbial species, energy-intensive processes for solvent recovery,
solvent toxicity, high cost of solvents, extensive safety protocols, and environmental risks
associated with using large quantities of solvents at high temperatures.

5.3. Purification Using Preparative-HPLC

Prep-HPLC, like analytical HPLC, is a method of isolating chemical compounds by
attracting force retention of compounds in the column stationary phase. While the mixture
is passing through the column, the compounds separate in retention time, as detected by
ultraviolet (UV) reflection at specific wavelengths, but in prep-HPLC, unlike analytical
HPLC, the compounds are quantitatively separated and collected after detection. After
collecting the separated compounds, i.e., extract purification, the separated compounds can
be further processed and stabilized using encapsulation methods if necessary. Compared to
analytical HPLC, Prep-HPLC usually has a larger column diameters and stationary-phase
particle diameters, and the operator aims for maximum allowed sample weight, which
requires more attention with respect to injection flow rate. To compare the retention times
of the separated compounds, the retention factor of compound n (k’n) can be calculated.
This is a dimensionless number representing how long a compound is retained in the
stationary phase [213–215].

k′n =
tn − t0

t0
(5)
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where tn is the retention time for compound n, and t0 is the column dead time, i.e., the
shortest retention time.

Making the peak width as narrow as possible is important to determine the fraction
concentration. Unlike a narrow peak with the same area, a broad peak decreases the
concentration of the compound of interest, as a more mobile phase dilutes the concentration
of the separated compound. The peak width is determined at half the peak height and
denoted as w 1

2
. The peak number of compound n (Nn) is derived from fractional distillation

theory and is a height equivalent to a theoretical plate. The higher the peak number, the
narrower the peak in the chromatogram and the higher the concentration of the separated
compound [213–215]. The peak number is calculated as:

Nn = 5.54·
(

tn

w 1
2

)
(6)

Prep-HPLC can be scaled-up to allow for the separation of larger volumes with a
column diameter of up to 30 cm, whereas industrial prep-HPLC can separate up to 3 kg h−1

of the analyte, although overloading effects are common. Overloading volume or mass in
the column can result in non-optimal peak characteristics, leading to a diluted collected
sample, so the maximum injection volume must determined [213,215].

Some of the challenges of using prep-HPLC for large-scale extraction of high-value
compounds include the high cost of solvents, challenges in scaling up stationary phase
chemistry, and the relationship between the quantity of material recovered and the size of
the column [216,217]. However, many such challenges have been successfully addressed
in the pharmaceutical sector, which suggests that prep-HPLC is viable for extraction of
high-value products [218].

6. Conclusions

Research and development activity with respect to the extraction of high-value
biomass-derived chemicals have increased considerably since the first report published by
USDOE in 2004, highlighting the future of biochemicals. Although the list of top contenders
has been altered and appended in the last two decades, several of the top 12 featured com-
pounds have already reached commercial-scale production, such as succinic acid, xylitol,
2,5-FDCA, itaconic acid, levulinic acid, and furfural. Advances in genetically modified
microbial strains have also boosted derivation of these compounds using biological routes
as an alternative to petrochemical pathways. The considerable advances with respect to
processing of lignocellulosic biomasses has enabled researchers to explore cost-effective
extraction, isolation, and purification methods that directly target high-value molecules.
Whereas pretreatment remains one of the primary steps in opening up the lignocellulosic
structure, the severity of pretreatment can be reduced in lieu of the possibility of protecting
the unstable phenolic groups, which have a high market value. Although there are still
many challenges with respect to the extraction and isolation of high-value compounds,
shifting the biorefinery approach to maximize the utility of lignocellulosic biomasses
will aid in the cost-effective discovery of novel methods to produce biochemicals from
lignocellulosic biomasses.
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