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Abstract: The handling of bulk solids in the form of powders is a fundamental process in a wide range
of manufacturing industries, such as the automotive, aerospace, food, and healthcare sectors. All these
sectors employ additive manufacturing (AM), as it enables the production of complex parts in a short
amount of time. Thus, it is considered an established method for developing an agile manufacturing
environment that can drastically reduce the lead time from conception to the production stage. At the
same time, powder is a unique material sensitive to environmental and machine conditions; hence,
establishing an optimal configuration is not straight-forward. This work presents a discrete element
method (DEM) simulation of an experimental dosing system used in AM. We introduce a robust
workflow that correlates suitable experimental data with simulation results, establishing models
of real powders with different flowability. The results showed an excellent agreement between the
experimental data and the simulation results and provided a better understanding of the material
behavior. Furthermore, we employed a coarse-grained approach to extract continuum fields from
the discrete data. The results showed that the cohesion level in the system was enough to create
agglomerates that hindered the transport of the material and produced nonuniform distribution.

Keywords: DEM; coarse-graining approach; material calibration

1. Introduction

Additive manufacturing (AM) has proved to be a novel production for a wide range of
applications, such as aerospace, biology, medicine, and architecture [1–4]. This is because it
is able to create three-dimensional parts directly from computer-aided design (3D CAD)
without the need for expensive machinery, labor, and increased time. Its enormous potential
for the rapid manufacturing of complex and customized parts has resulted in its exponential
growth, including various manufacturing methods such as 3D printing from a liquid-based
feed [5], powder spreading [6], laser sintering [7], and others.

Different types of powders, either in the form of pure powder or agglomerates, are
the main materials used in such applications, and they are fed into various types of AM
production equipment through delivery systems. The latter use prescribed volumes of
powders and control their flow into the printer spreading systems, hence dictating the
success or failure of the endproduct and influencing the machine set-up needed. Due
to the small particle sizes that these powders have, they exhibit a host of processing
problems, such as inconsistent flow, arching sensitivity to operational conditions, and
others. Furthermore, it is critical to understand the effect of powder properties on the
mechanics of the system and optimize the equipment.

The discrete element method (DEM) has been recognized as one of the most efficient
numerical tools for solving various scientific and engineering problems. It is based on the
work of Cundall and Strack [8], which represents particulate material as an assembly of
discrete elements. The DEM uses the Lagrangian approach, in which particles of granular
material are considered contacting bodies, and their dynamic parameters (position, velocity,
orientation, etc.) are continuously tracked during the simulation. Therefore, the nature of
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the DEM is considered a very suitable tool when it comes to exploring the fundamentals of
particle mechanics in additive manufacturing.

Fine powders are particularly challenging, with complex elasto-plastic-adhesive be-
havior that produces unwanted agglomeration phenomena hindering their flow. At the
same time, performing experiments is challenging due to the opaque nature of the system.
The methodology presented herein provides a deep understanding of the mechanics of such
solids, making such simulations an indispensable tool for complex industrial applications.
For this work, we used EDEM, which is a widely used commercial DEM code [9] previously
verified against a set of benchmark tests by Chung and Ooi [10].

Delivery dosing systems aim to deliver a precise quantity of powder of high flowability
for subsequent spreading, and the reliability of their performance strongly affects the
finished product quality. The major design challenge is to ensure reliable and precise
operation while processing powders of variable properties. Therefore, the focus of our
work is on understanding the effects of powder properties and wheel rotational velocity
on the accuracy of dosing and the quality of the powder-flow characteristics after dosing.
To this end, EDEM is used to develop material models that replicate powders of two
flowability extremes in the context of 3D printing and is used to simulate powder flow
through the dosing wheel. Finally, a coarse-graining approach is implemented using
EDEMPy to extract continuum fields from the discrete information and visualize the results
in a continuum manner.

2. Numerical Methods
2.1. Material Modeling

Discrete element modeling for additive manufacturing powders of two flowability
extremes was conducted in this work. The computational expense of modeling these
materials at the physical particle scale was prohibitive, and a computationally efficient
meso-scopic modeling approach was adopted whereby the material was modeled on an
intermediate scale between the physical particle scale and the scale of the system of interest
in order to achieve practical computational times. Previous work has shown that this
approach can produce excellent quantitative predictions of the macromechanical behavior
of fine-particulate solids under complex loading conditions [11,12].

Particle shape and size have significant effects on the bulk behavior of particulate
solids, making them an important consideration in the DEM modeling of these materi-
als [13]. In the context of mesoscopic modeling, however, the numerical particle represents
an agglomeration of millions of physical particles, and replicating the physical particle
morphology in the model becomes less meaningful. Indeed, previous works have shown
that the use of a simple, two-sphere particle with an aspect ratio equal or greater than
1.25 can lead to excellent quantitative predictions of the macromechanical responses of
powders under complex loading conditions. The same approach was adopted in this study,
as shown in Figure 1.
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2.2. Calibration of DEM Parameters

Mesoscopic modeling requires a contact model that can reproduce the macromechani-
cal behavior of a particulate solid using the micromechanical parameters. Several models
have been proposed [14,15], but the Edinburgh-elastic-plastic-adhesive model was adopted
in this work, as it has been successfully applied before to model powders in both quasi-
static and dynamic applications [11,16]. The micromechanical parameters of DEM contact
models, in general, and mesoscopic contact models, in particular, are often difficult and
sometimes impossible to measure directly. Therefore, an indirect determination of the
appropriate values for these parameters is typically conducted in DEM modeling whereby
the values are optimized to capture a carefully chosen macromechanical response in the
model. Because the determination of the input parameter values is performed indirectly, the
chosen experimental response for optimization needs to be sensitive to the same physical
phenomena as the system of interest and should, therefore, induce a similar stress state
and flow regime as the one expected in the system of interest. In this work, the widely
used basic flowability energy (BFE) measurement of an FT4 powder rheometer was chosen
for this purpose because it is conducted in a dynamic flow regime and under low stress
magnitudes [17], which are the expected conditions in a dosing wheel.

A standard FT4 rheometer BFE test with a 50 mL vessel was modeled. The test
measured the force and torque on the shaft of an impeller blade, which passed through a
bed of powder in a helical downward motion, as illustrated in Figure 2. The movement of
the blade was defined by the blade-tip speed, which was a function of the vertical velocity,
rotational velocity, and helix angle of the blade. The modeling focused on an experimental
test procedure at 100 mm/s blade-tip speed. The primary measurement of the instrument
was the energy requirement for the downward helical motion of the blade, which was
termed the basic flowability energy (BFE) and calculated according to Equation (1):

EF =
∫ Hmax

Hmin

(
Fv +

T
rtan(a)

)
dH (1)

where dH is the data write-out interval, Fv is the resultant vertical force, T is the torque, r is
the radius of the blade, and a is the helix angle.
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Figure 2. Schematic representation of the FT4 test used for material characterization [18].

The conditioning cycle performed in the physical test prior to the BFE measurement
was found to have a negligibly small effect on the computed results and was ignored in
the interest of computational efficiency. The filling was modeled by the random rainfall
method. The simulation stages are illustrated in Figure 3.
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Figure 3. Cross-sections of the DEM model replicating the FT4 rheometer basic flow energy test and
demonstrating the different stages of the procedure.

The model input parameter optimization was conducted in a staged approach. A
parameter sensitivity analysis was conducted first by generating a set of twelve simulation
runs in a Plackett–Burman design of experiment configuration and by fitting a linear
response model to the data. The response model was then used to assess the relative
importance of the input parameters with respect to the responses of interest, as well as to
produce initial estimates of the appropriate input parameter values. A detailed description
of the calibration methodology can be found in Pantaleev, et al. [11]. The computed BFE
results are shown in Figures 4 and 5. An excellent quantitative prediction of the evolution
of the flow energy response was achieved in all the cases. The poured bulk densities of the
two powders were also closely matched by the model, as shown in Table 1. The results
were achieved with a relatively low number of simulations (18 in total), demonstrating the
efficiency of the adopted calibration methodology.
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Table 1. Physical bulk density and matched simulated results.

Material Physical Bulk Density
(g/mL)

Simulated Bulk Density
(g/mL)

Powder 1 2.85 2.85
Powder 2 4.30 4.25

2.3. DEM Modeling of the Dosing Wheel Application

The filling and kinematics of the physical system were fully replicated in the DEM
model, as shown in Figure 6. This involved the filling of the doser under gravity, followed
by the discharge of the powder by the rotation of the dosing wheel onto a vibrating
surface. Approximately 1.2 × 105 bi-sphered particles were generated by the random
rainfall method and were allowed to settle under gravity until a static powder bed was
achieved. The dosing process was then simulated for 22 s of physical time. A graphic
processing unit was used to accelerate the calculations.

Processes 2022, 10, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 6. Schematic of the virtual dosing wheel equipment used in the DEM simulations. 

2.4. Continuum Transformations of the Discrete Element Data 
While DEM data provide fundamental micromechanical insight into the behavior of 

bulk solids, they are also useful to understand important continuum quantities, such as 
the Cauchy stress tensor, the velocity field, the mass density field, and the momentum 
density. Such fields can be rigorously calculated via a coarse-graining approach, as pro-
posed by Weinhart, et al. [19] and Goldhirsch [20] and further applied by Labra, et al. [21]. 
In this approach, a spatial-averaging function is used to compute continuum fields from 
discrete data in a series of points within a simulation domain. This implementation has 
been an initial version of the continuum analysis and EDEM 2020 has been used, while 
EDEM 2022 inlcudes a final built-in version of the analysis. The calculations in this work 
were performed following Goldhirsch (2010), as described in Equations (2)–(6): σୡ = ෍ b୧୨F୧ϕ(r − r୧)୧  (2)

where σୡ is the contact stress component of the Cauchy stress tensor, b୧୨ is the contact 
branch vector, F୧ is the contact force tensor, and ϕ is the Gaussian coarse-graining func-
tion. 𝜙(𝑟) = 1ඥ(2𝜋𝑤)ଷ 𝑒ି |௥|మ(ଶ௪)మ𝐻(𝑤 − |𝑟|)  (3)

where 𝐻 is the heavyside function, 𝑤 = 3𝑅 is the coarse-graining width, and 𝑅 is the 
mean particle radius. 

The microscopic mass density at point 𝑟 at time 𝑡 is defined in a continuum analy-
sis, as follows: 𝜌(𝑟, 𝑡) =  ෍ 𝑚௜𝜙൫𝑟 − 𝑟௜(𝑡)൯௜  (4)

where 𝜌  is the mass density, and 𝑚௜  is the particle mass. Furthermore, the coarse-
grained momentum density is defined by: 𝑝(𝑟, 𝑡) =  ෍ 𝑚௜𝑣௜𝜙൫𝑟 − 𝑟௜(𝑡)൯௜  (5)

where p is the momentum density, and 𝑚௜ is the particle mass that corresponds to the 
equivalent microscopic momentum density field. 

The coarse-grained velocity field is defined by: 

Figure 6. Schematic of the virtual dosing wheel equipment used in the DEM simulations.

2.4. Continuum Transformations of the Discrete Element Data

While DEM data provide fundamental micromechanical insight into the behavior of
bulk solids, they are also useful to understand important continuum quantities, such as the
Cauchy stress tensor, the velocity field, the mass density field, and the momentum density.
Such fields can be rigorously calculated via a coarse-graining approach, as proposed by
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Weinhart, et al. [19] and Goldhirsch [20] and further applied by Labra, et al. [21]. In this
approach, a spatial-averaging function is used to compute continuum fields from discrete
data in a series of points within a simulation domain. This implementation has been an
initial version of the continuum analysis and EDEM 2020 has been used, while EDEM
2022 inlcudes a final built-in version of the analysis. The calculations in this work were
performed following Goldhirsch (2010), as described in Equations (2)–(6):

σc = ∑
i

bijFiφ(r− ri) (2)

where σc is the contact stress component of the Cauchy stress tensor, bij is the contact
branch vector, Fi is the contact force tensor, and φ is the Gaussian coarse-graining function.

φ(r) =
1√

(2πw)3
e
− |r|2

(2w)2 H(w− |r|) (3)

where H is the heavyside function, w = 3R is the coarse-graining width, and R is the mean
particle radius.

The microscopic mass density at point r at time t is defined in a continuum analysis,
as follows:

ρ(r, t) = ∑
i

miφ(r− ri(t)) (4)

where ρ is the mass density, and mi is the particle mass. Furthermore, the coarse-grained
momentum density is defined by:

p(r, t) = ∑
i

miviφ(r− ri(t)) (5)

where p is the momentum density, and mi is the particle mass that corresponds to the
equivalent microscopic momentum density field.

The coarse-grained velocity field is defined by:

V(r, t) =
p(r, t)
ρ(r, t)

(6)

The EDEMPy library of functions was used to calculate the continuum fields in the
analysis. It is a Python library for the postprocessing and analysis of EDEM simulation
data that takes advantage of EDEM’s hdf5 file structure. A coarse-graining width of 3 times
the mean particles was used in all the cases [21].

3. Results and Discussion

The following section includes results using EDEM 2020 with a customized initial
version of the continuum analysis. Newer editions of EDEM include expanded built-in
versions of the analysis. One of the main areas of interest was to investigate the effectiveness
of the dose units. Thus, selected compartments (Bins 1–4) that encapsulated the dosing
units were checked against the mass of material that was transferred (Figure 7). It was
observed that, for both the cohesive and the free-flowing materials, the top dose unit (Bin
4) held the highest mass of material, followed by a progressive reduction in Bins 2 and 3,
whereas the bottom unit (Bin 1) contained the lowest. It could also be observed that the
highest reduction rate for both materials occurred in Bin 1, with the free-flowing material
dropping by 26.6% and the cohesive material by 21.9%. The smaller reduction rate indicated
that more particles were contained in the bottom unit, which could be attributed to the
presence of cohesion and the creation of clusters.
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Figure 7. Schematic of the dosing wheel showing the calculated amounts of mass per dose unit for
each powder material, as well as their reduction rates.

Next, the profile of the mass flow rate is demonstrated in Figure 8. It could be observed
that the cohesive material had abrupt releases of material with high peaks, whereas the
profile of the free-flowing material appeared to be more uniform with lower peaks. This
indicated the creation of agglomerates. This claim is verified by Figure 9, which shows the
contact vectors between particles overlooking the top the area where the material landed.
It could be observed that the cohesive material covered a much larger area compared to the
free-flowing one.
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To visualize the simulation data as a continuum, we computed the continuum phys-
ical quantities from the discrete data of EDEM using the methodlogy described by Labra, 
et al. [21], whereby distance-weighted averaging of the discrete data was performed 
around the nodes of a uniform, rectilinear grid of points in the domain using a Gaussian 
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Figure 9. Top view and zoomed-in areas of the ground floor, highlighting the contact vectors
between particles.

To visualize the simulation data as a continuum, we computed the continuum physical
quantities from the discrete data of EDEM using the methodlogy described by Labra, et al. [21],
whereby distance-weighted averaging of the discrete data was performed around the
nodes of a uniform, rectilinear grid of points in the domain using a Gaussian weighting
function with a unity spatial integral. For this, EDEMPy was used, a Python library
for the postprocessing and analysis of EDEM simulation data that takes advantage of
EDEM’s hdf5 file structure. Figure 10 demonstrates the average velocities over time
for the free-flowing and cohesive materials, respectively. It could be observed that the
cohesive material had lower velocity during the entire simulation, and the shape of the
velocity after exiting the wheel created a bottleneck. This indicated the presence of clusters,
which is in good agreement with previous observations of agglomerate creation due to
interparticle adhesion.
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Furthermore, Figure 11 demonstrates the hydrostatic stress field, which is the first
invariant of the Cauchy stress tensor. The results are presented as the average pressure over
time for both materials. It could be observed that the cohesive material (b) was subjected
into higher stresses, especially toward the top dose units. This was expected due to the
presence of clusters and the increased contact between particles.
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Next, Figure 12 shows the momentum density averaged over time for both the free-
flowing and cohesive materials. The momentum density had units of kg/m2·s and showed
how much material was transferred. It could be observed that the cohesive material had
a higher momentum density, which could be attributed to the fact that the agglomerates
had stronger impacts with the surrounding walls, thus tending to break and create higher
momentum density.
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Further, investigating the profiles of the compressive forces in the region around the
wheel (Figure 13), the height of the wheel was divided in equal horizontal layers, and
the results were normalized against the masses of the particles for each material. It was
observed that the profiles for both materials followed the same shape, but the cohesive
material had an overall higher reduction rate at the H4 compartment than the free-flowing
one. This indicated that the free-flowing material was better packed, which led to a more
uniform force distribution.
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4. Conclusions

In this paper, two powders of different flowability were modeled and calibrated
against experimental testing. A complete and automated workflow was presented based
on the previous work of the authors [6]. The results showed that the EDEM material
models captured the complex micromechanical behavior of powders and provided excellent
quantitative predictions of complex physical responses after calibration. The efficient model
calibration methodology adopted in this work required only a small number of simulations,
making the calibration of accurate models practical.

The calibrated material models were used to simulate an example of a dosing process
for AM to better understand the mechanics of the system and the effect of powder properties
on it. In addition, a coarse-grained approach was coupled with DEM to extract continuum
fields from the discrete data.

The DEM was used to analyze in detail the mass flow and the effectiveness of the dose
units against each material. It was observed that the presence of cohesion hindered the
flow, as the dose units were filled with smaller amounts of material, while the flow at the
outlet discharged the formed clusters, covering a larger area at the bottom of the equipment.
Furthermore, the average velocity over time confirmed the creation of agglomerates for the
cohesive material through the creation of bottleneck-shaped velocity compared with the
free-flowing material. Finally, the average hydrostatic pressure and the compressive force
profile were analyzed, highlighting the effect of cohesion on the mechanics of the system.
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