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Abstract: In modern industrial systems, high-dimensional process data provide rich information
for process monitoring. To make full use of local information of industrial process, a distributed
robust dictionary pair learning (DRDPL) is proposed for refined process monitoring. Firstly, the
global system is divided into several sub-blocks based on the reliable prior knowledge of industrial
processes, which achieves dimensionality reduction and reduces process complexity. Secondly, a
robust dictionary pair learning (RDPL) method is developed to build a local monitoring model for
each sub-block. The sparse constraint with l2,1 norm is added to the analytical dictionary, and a low
rank constraint is applied to the synthetical dictionary, so as to obtain robust dictionary pairs. Then,
Bayesian inference method is introduced to fuse local monitoring information to global anomaly
detection, and the block contribution index and variable contribution index are used to realize
anomaly isolation. Finally, the effectiveness of the proposed method is verified by a numerical
simulation experiment and Tennessee Eastman benchmark tests, and the proposed method is then
successfully applied to a real-world aluminum electrolysis process.

Keywords: high-dimension; distributed robust dictionary pair learning; process monitoring;
aluminum electrolysis

1. Introduction

With the continuous development of information technology, the degree of automation
and integration of industrial processes have been continuously improved, and the structure
of industrial systems has become more complex. There are more and more factors affecting
the stable operation of industrial production, which makes anomaly detection and isolation
of industrial processes face challenges [1,2]. At present, industrial process monitoring tech-
nology has attracted great attention from academia and industry. The excellent properties of
aluminum make it widely used in practical fields, including construction, electrical, packag-
ing, medicine, transportation and so on. Electrolytic cell is the core equipment of aluminum
production industry. Moreover, aluminum electrolysis process mainly depends on biggish
and large pre-baked anode electrolytic cell. For the large-scale electrolytic cell, once the
abnormal cell condition occurs, the efficient and stable operation of the electrolytic cell may
be destroyed, causing huge economic losses [3]. Therefore, effective process monitoring
technology is of profound significance to ensure the green and stable operation of elec-
trolytic cells and reduce the production cost of enterprises. Existing aluminum electrolysis
process monitoring methods can be divided into three categories: mechanistic model-
based methods [4,5], knowledge-based methods [6,7], and data-driven methods [8–10]. The
effectiveness of the mechanism model-based process monitoring method for aluminum
electrolysis depends on the measurements, like cell resistance, cell voltage, and aluminum
level. However, some process parameters such as electrolyte temperature and molecular
ratio cannot be measured directly in actual aluminum electrolytic production. Meanwhile,
individual differences in empirical knowledge and lack of systematic theoretical basis lead
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to the failure to ensure the effectiveness of knowledge-based process monitoring methods
in aluminum electrolysis. In addition, due to the reduction on the cost of sensors, the rapid
development of technology and the application of advanced computer technology, mod-
ern industrial systems use a large number of sensors to obtain rich process information,
and data-driven process monitoring methods are widely studied and applied [11,12].

In recent years, dictionary learning has been proposed as an effective statistical ma-
chine learning method. Compared with traditional data-driven methods, dictionary learn-
ing methods have good generalization ability, which are successfully applied in many
fields, such as pattern recognition, image processing, and computer vision [13]. Dictionary
learning seeks the linear combination of atoms to reconstruct the original data. And the
learned dictionaries are over-complete and not restricted by orthogonal, which makes
dictionary atoms adapt to the training data more flexibly to ensure the high precision of
learning methods. According to different sparse coding methods, traditional dictionary
learning methods include analytical dictionary learning [14,15] and synthetical dictionary
learning [16,17]. Analytical dictionary learning can directly build the required dictionary
from the precise and fast transformation base, and its predefined encoding method makes
the computational complexity low, but it is relatively limited in monitoring modeling
ability. Synthetical dictionary learning requires sparse reconstruction by l0 or l1 norm,
which leads to much higher computational complexity. However, synthetical dictionary
learning is developing in industrial process monitoring with the effective ability of local
modeling. Meanwhile, to combine the advantages of analytical dictionary learning and
synthetical dictionary learning, Gu et al. [18] combined analytical dictionaries and syntheti-
cal dictionaries into a learning framework and proposed dictionary pair learning (DPL)
method. Zhang et al. [19] integrated coefficient learning and salient feature extraction into
a unified model and proposed a self-expressed local adaptive potential dictionary pair
learning method. Sun et al. [20] proposed a structured robust adaptive dictionary pair
learning framework for discriminative sparse representation learning, realizing the strong
representation ability of available samples.

However, small anomalies of real industrial processes are often hidden in high-
dimensional data. Commonly used dimensionality reduction methods include principal
component analysis (PCA) [21], partial least squares (PLS) [22], local retained projection
(LPP) [23], and other multivariate statistical monitoring methods. These methods project
the highly correlated high-dimensional process data into the low-dimensional subspace by
selecting representative principal elements, but this way destroys the global structure of the
original data matrix. In addition, traditional process monitoring methods often build global
monitoring model and ignore the local behavior of industrial processes. In order to carry
out regional and refined process monitoring, distributed process monitoring technologies
have emerged in the era of big data [24]. Distributed process monitoring technologies
combine the prior knowledge of industrial process to divide the high-dimensional data into
blocks, and build monitoring sub-models for each block, then fuse the monitoring results
of sub-blocks to the global monitoring results. For example, Zhu et al. [25] decomposed
large-scale processes into distributed blocks with prior process knowledge, and proposed a
distributed parallel data processing strategy based on MapReduce framework. Xu et al. [26]
proposed a distributed principal component analysis method for angle-relevant variable
selection, and realized whole plant process monitoring by the reduction of process variables
and the extraction of potential features. Huang et al. [27] proposed a distributed dictionary
learning (DDL) method for fault detection and fault isolation to achieve efficient industrial
process monitoring. Thus, existing process monitoring methods for high-dimensional
data can be divided into two categories, including projected methods and distributed
learning methods. The schematic diagram of the two methods is shown in Figure 1. In fact,
industrial process data are always contaminated by noise or outliers, which adversely
affects process monitoring efficiency. Therefore, robust process monitoring methods are
particularly important.
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Figure 1. Schematic diagram of the two process monitoring methods for high-dimensional data.
(a) Projected methods; (b) Distributed learning methods.

To solve the problem of noise and outliers in high-dimensional industrial process
data, a process monitoring method based on distributed robust dictionary pair learning
(DRDPL) is proposed in this article. The main contributions of this article are described
as follows. The global system is divided into several sub-blocks with the reliable prior
knowledge of industrial process, which achieves dimensionality reduction and reduces
process complexity. A robust dictionary pair learning (RDPL) method is proposed to build
local process monitoring models for each sub-block. A sparse metric based on l2,1 norm is
used to encode the reconstruction errors so as to avoid the costly computation of l0 and
l1 norm. To reduce the interferences of noise and outliers, a sparse constraint with l2,1
norm is added to the analytical dictionary, and a low rank constraint is applied to the
synthetical dictionary, providing a robust dictionary pair. Then, Bayesian inference method
is introduced to fuse local monitoring information for global anomaly detection, and the
block contribution index and variable contribution index are used to realize anomaly
isolation, obtaining the interpretable location results of anomaly sources.

The remainder of this article is organized as follows. Section 2 describe the proposed
method in detail. Section 3 presents a numerical simulation experiment, Tennessee Eastman
benchmark tests, and a real-world aluminum electrolysis process monitoring. Finally,
the conclusion is given in Section 4.

2. Methodology

In this section, we will introduce the process monitoring method based on distributed
robust dictionary pair learning (DRDPL) in detail. The proposed method is mainly divided
into three stages, including distributed robust dictionary pair learning (RDPL), anomaly
detection, anomaly isolation. In the distributed robust dictionary pair learning stage,
training samples are divided in dimensions with the prior process knowledge. RDPL sub-
models are built for each sub-block, learning robust synthetical dictionary, robust analytical
dictionary, and control threshold. In the stage of anomaly detection, testing samples
are divided into blocks with the division of training samples, then the local monitoring
information obtained by the learned synthetical dictionary and analytical dictionary is
fused to the global one based on Bayesian inference, so as to detect whether the testing
sample is abnormal. In the anomaly isolation stage, the contribution plot method is used
to define the block contribution index and variable contribution index to locate abnormal
sources, where the block contribution index is used to achieve block-level anomaly isolation,
and the accurate anomaly location of variables in each block is realized by the variable
contribution index. The schematic diagram of the proposed process monitoring method is
shown in Figure 2.
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Figure 2. Schematic diagram of the process monitoring method based on distributed robust dictionary
pair learning.

2.1. Distributed Robust Dictionary Pair Learning

To solve the deficiency of traditional dictionary learning, dictionary pair learning
combines synthetical dictionary and analytical dictionary to reduce the computational
burden of l0 or l1 norm constraint and enhance the reconstruction ability of dictionary
learning [18]. The structure diagram of dictionary pair learning is shown in Figure 3, and its
general model is formulated as follows:

{D∗, P∗} = arg min
D,P

{
‖X− DPX‖2

F + ψ(D, P, X, Y)
}

(1)

where X ∈ Rp×n is p-dimensional data matrix, D ∈ Rp×m represents the synthetical
dictionary, P ∈ Rm×p is the analytical dictionary, m is the number of dictionary atoms.
‖X− DPX‖2

F denotes the reconstruction error term of dictionary pair learning, ψ(D, P, X, Y)
are some discriminative functions, and Y stands for the label matrix of X. In the dictionary
pair learning model, the representation coefficients A can be obtained by linear projection
instead of nonlinear sparse coding with l0 or l1 norm. That is, we can learn an analytical
dictionary P, such that A can be analytically obtained as A = PX ∈ Rm×n. Based on this,
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dictionary pair learning method learns such an analytical dictionary P together with the
synthetical dictionary D, then the data matrix X can be reconstructed by D, P, and X,
i.e., X ≈ DPX, where D is used to reconstruct X, and P is applied to analytically code X.

...

Data Matrix

X

...

Sythetical Dictionary

D

...»
...

...
´

Analytical Dictionary

P

´ ...

Data Matrix

X

)Figure 3. Structure diagram of dictionary pair learning.

Dictionary pair learning described above has been improved and used in industrial
process monitoring. However, the process data collected in practical industrial systems
often contain noise and outliers, which bring difficulties to process monitoring. Figure 4
shows the impact of noise and outliers on process monitoring results, where α is the control
threshold, a value lower than α is considered normal, while a value higher than α is detected
as an anomaly. From Figure 4a, we can observe that normal samples and abnormal samples
can be correctly detected without the interferences of noise and outlier. In Figure 4b, we
can see that when process data contains noise and outliers, false positives will appear in
abnormal detection results of process monitoring.

Sample Number

a

Sample Number

a

Sample Number

a

(a) (b)

Sample Number

a

Sample Number

a
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Figure 4. Illustration of the effects of noise and outliers in process monitoring. (a) is the training data
without noise and outliers; (b) is the training data containing noise and outliers.

Therefore, to address the problem of process monitoring performance degradation
caused by outliers and noise, we propose a robust dictionary pair learning method for
industrial process monitoring. In addition, the proposed process monitoring method based
on distributed robust dictionary pairs is developed for high-dimensional process data.
The prior process knowledge is used to divide the training samples into blocks in the
dimension direction, i.e., X = [X1, · · · , XK, · · · , XN ]

T . The RDPL model of the Kth block in
training samples XK ∈ RdK×n is denoted as follows:

arg min
DK ,PK

{∥∥∥XT
K − XT

KPKDT
K

∥∥∥
2,1

+ α‖PK‖2,1 + βrank(DK)

}
, s.t.PT

K XK ≥ 0 (2)

where DK ∈ RdK×m represents the synthetical dictionary and PK ∈ RdK×m represents the
analytical dictionary for the Kth block, respectively. m denotes the number of dictionary
atoms. The first term is the reconstruction function of data, the second term is the sparse
regularization of analytical dictionary, and the third term is the low-rank constraint of
synthetical dictionary. α and β are the positive parameters used to balance the terms.
Besides, the constraint PT

K XK ≥ 0 is imposed to ensure that the coding coefficient PT
K XK

is non-negative.
By introducing analytical coding matrix AK, the non-convex problem of Equation (2)

is relaxed and transformed into the optimization function as follows:
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arg min
DK ,PK ,AK

{∥∥∥XT
K − AT

KDT
K

∥∥∥
2,1

+ λ
∥∥∥AT

K − XT
KPK

∥∥∥
2,1

+ α‖PK‖2,1 + βrank(DK)

}
, s.t.AK ≥ 0 (3)

where AK ≈ PT
K XK, and λ is a scalar constant. The optimization of the objective function in

Equation (3) is conducted in the following steps.
Numbered lists can be added as follows:

(1) Fix DK and PK, update AK

Firstly, we fix the synthetical dictionary DK and the analytical dictionary PK, the prob-
lem with respect to the analytical coding matrix AK can be reformulated as follows:

arg min
AK

{∥∥∥XT
K − AT

KDT
K

∥∥∥
2,1

+ λ
∥∥∥AT

K − XT
KPK

∥∥∥
2,1

}
, s.t.AK ≥ 0 (4)

Based on the definition of l2,1 norm [28], we have
∥∥XT

K − AT
KDT

K
∥∥

2,1 = 2tr[(XK − DK AK)·
UK
(
XT

K − AT
KDT

K
)]

, where UK is a diagonal matrix with the (i, i)th diagonal entries Uii
K =

1/
[
2
∥∥∥(XT

K − AT
KDT

K
)i
∥∥∥

2

]
,
(
XT

K − AT
KDT

K
)i is the ith row vector of XT

K − AT
KDT

K. In fact, since∥∥∥(XT
K − AT

KDT
K
)i
∥∥∥

2
may be equal to 0, we approximate 2

∥∥∥(XT
K − AT

KDT
K
)i
∥∥∥

2
+ τ instead. τ

is a small value to avoid singular values and to make the inversion more stable. Similarly,∥∥AT
K − XT

KPK
∥∥

2,1 = 2tr
[(

AK − PT
K XK

)
VK
(

AT
K − XT

KPK
)]

, where VK is a diagonal matrix with

the (i, i)th diagonal entries Vii
K = 1/

[
2
∥∥∥(AT

K − XT
KPK

)i
∥∥∥

2

]
,
(

AT
K − XT

KPK
)i is the ith row vector

of AT
K − XT

KPK. We use 2
∥∥∥(AT

K − XT
KPK

)i
∥∥∥

2
+ τ to approximate 2

∥∥∥(AT
K − XT

KPK
)i
∥∥∥

2
. Then,

the problem with respect to AK can be reformulated as follows:

arg min
AK

{
2tr
[
(XK − DK AK)UK

(
XT

K − AT
KDT

K
)]

+2λtr
[(

AK − PT
K XK

)
VK
(

AT
K − XT

KPK
)] }, s.t.AK ≥ 0 (5)

Let ψK,rc be the Lagrange multiplier for AK,rc ≥ 0 and Ψ = [ψK,rc] [20], the Lagrange
function ζ can be deduced as follows:

ζ = 2tr
[
(XK − DK AK)UK

(
XT

K − AT
KDT

K
)]

+2λtr
[(

AK − PT
K XK

)
VK
(

AT
K − XT

KPK
)]

+ tr
(
ΨAT

K
) (6)

The partial derivatives of ζ with respect to AK in Equation (6) are computed as follows:

∂ζ

∂AK
= −4DT

KXKUK + 4DT
KDK AKUK + 4λAKVK − 4λPT

K XKVK + Ψ (7)

By the definition of KTT condition [29], the equation with respect to AK,rc is obtained
as follows:

−
(
4DT

KXKUK
)

rc AK,rc + 4
(

DT
KDK AKUK

)
rc AK,rc + 4λ(AKVK)rc AK,rc

−4λ
(

PT
K XKVK

)
rc AK,rc = 0

(8)

Thus, we can obtain that the elements in rth row and cth column of AK are updated
as follows:

At+1
K,rc ← At

K,rc

(
DtT

K XKUt
K + λPtT

K XKVt
K
)

rc(
DtT

K Dt
K At

KUt
K + λAt

KVt
K
)

rc
(9)

(2) Fix AK and DK, update PK
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Secondly, after the analytical coding matrix AK is updated, we can update the analyti-
cal dictionary PK. By removing the terms that irrelevant to PK, the problem in Equation (3)
is reformulated as follows:

arg min
PK

{
λ
∥∥∥AT

K − XT
KPK

∥∥∥
2,1

+ α‖PK‖2,1

}
(10)

Similarly, we have ‖PK‖2,1 = 2tr
(

PT
K MKPK

)
, where MK is a diagonal matrix with

the (i, i)th diagonal entries Mii
K = 1/

[
2
∥∥Pi

K
∥∥

2

]
, Pi

K is the ith row vector of PK. We use
2
∥∥Pi

K
∥∥

2 + τ to approximate 2
∥∥Pi

K
∥∥

2. Then, the problem with respect to PK can be converted
as follows:

arg min
PK

{
2λtr

[(
AK − PT

K XK

)
VK

(
AT

K − XT
KPK

)]
+ 2αtr

(
PT

K MKPK

)}
(11)

Let the partial derivative of Equation (11) with respect to PK be 0, and we can obtain
the closed-form solution of PK as follows:

Pt+1
K =

(
λXKVt

KXT
K + αMt

K + τ I
)−1
·
(

λXKVt
K A(t+1)T

K

)
(12)

(3) Fix AK and PK, update DK

Finally, after the analytical dictionary PK is calculated, we can update the synthetical
dictionary DK. By removing the terms that irrelevant to DK, the problem with respect to
DK is expressed as follows:

arg min
DK

{∥∥∥XT
K − AT

KDT
K

∥∥∥
2,1

+ βrank(DK)

}
(13)

Obviously, the optimization problem in Equation (13) is an NP-hard problem. There-
fore, we use the low-rank function with the nuclear norm constraint to relax the optimiza-
tion problem as follows [30]:

arg min
DK

{∥∥∥XT
K − AT

KDT
K

∥∥∥
2,1

+ β‖DK‖∗
}

(14)

where ‖DK‖∗ is the nuclear of DK. To reduce the computational complexity, we use ‖RK‖2
F +

‖SK‖2
F to replace ‖DK‖∗ [31], where RK ∈ RdK×dK and SK ∈ RdK×m. Thus, the optimization

problem of Equation (14) can be converted as follows:

arg min
DK

{∥∥∥XT
K − AT

KDT
K

∥∥∥
2,1

+
β

2

(
‖RK‖2

F + ‖SK‖2
F

)}
, s.t.DK = RKSK (15)

We use the inexact ALM algorithm [30] to solve the optimization problem in Equa-
tion (15), and the augmented Lagrange function is formulated as follows:

L =
∥∥∥XT

K − AT
KDT

K

∥∥∥
2,1

+
β

2

(
‖RK‖2

F + ‖SK‖2
F

)
+

γ

2
‖DK − RKSK‖2

F + 〈µ, DK − RKSK〉 (16)

where γ > 0 is a penalty parameter, and µ is a Lagrange multiplier.
To solve the optimization problem in Equation (16), we minimize the augmented

Lagrange function by iterative updating as follows:

(1) Fix RK and SK, update DK

By removing the terms of Equation (16) that irrelevant to DK, the optimization problem
with respect to DK can be reformulated as follows:

arg min
DK

∥∥∥XT
K − AT

KDT
K

∥∥∥
2,1

+
γ

2
‖DK − RKSK‖2

F + 〈µ, DK − RKSK〉 (17)
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Let the partial derivative of Equation (17) with respect to DK be 0, and we can update
the synthetical dictionary DK as follows:

D∗K =
(

4XKUK AT
K + RKSK − µI

)
·
(

4AKUK AT
K + γI

)−1
(18)

(2) Fix DK and SK, update RK

By removing the terms of Equation (16) that irrelevant to RK, the optimization problem
with respect to RK can be reformulated as follows:

arg min
RK

β

2
‖RK‖2

F +
γ

2
‖DK − RKSK‖2

F + 〈µ, DK − RKSK〉 (19)

Let the partial derivative of Equation (19) with respect to RK be 0, and we can update
the variable matrix RK as follows:

R∗K =
(

γDKST
K + µST

K

)
·
(

βI + γSKST
K

)−1
(20)

(3) Fix DK and RK, update SK

By removing the terms of Equation (16) that irrelevant to SK, the optimization problem
with respect to SK can be reformulated as follows:

arg min
SK

β

2
‖SK‖2

F +
γ

2
‖DK − RKSK‖2

F + 〈µ, DK − RKSK〉 (21)

Let the partial derivative of Equation (21) with respect to SK be 0, and we can update
the variable matrix SK as follows:

S∗K =
(

βI + γRT
KRK

)−1
·
(

γRT
KDK + µRT

K

)
(22)

Thus, the iterative updating process of the synthetical dictionary DK is summarized
as follows:

D(r+1)
K =

(
4XKUK AT

K + Rr
KSr

K − µI
)
·
(
4AKUK AT

K + γI
)−1

R(r+1)
K =

(
γD(r+1)

K SrT
K + µSrT

K

)
·
(

βI + γSr
KSrT

K
)−1

S(r+1)
K =

(
βI + γR(r+1)T

K R(r+1)
K

)−1
·
(

γR(r+1)T
K D(r+1)

K + µR(r+1)T
K

) (23)

To fully introduce the proposed method, Algorithm 1 describes the optimization of
RDPL, which stops optimizing each variable when the algorithm reaches the maximum
iteration T.

Algorithm 1 Robust Dictionary Pair Learning
1: Input: The training samples XK of the Kth sub-block, the parameters α, β, λ, γ, µ and τ.

2: Step 1: Initialize the synthetical dictionary D(0)
K and the analytical dictionary P(0)

K as random matrixes with
unit Frobenius norm, set t = 0.

3: Step 2: Repeat until t > T − 1;
4: Step 2.1: Fix the analytical dictionary PK and the synthetical dictionary DK , update the analytical coding

matrix A(t+1)
K by Equation (9);

5: Step 2.2: Fix the synthetical dictionary DK and the analytical coding matrix AK , update the analytical

dictionary P(t+1)
K by Equation (12);

6: Step 2.3: Fix analytical coding matrix AK and the analytical dictionary PK , update the synthetical dictionary

D(t+1)
K by Equation (23);

7: Step 2.4: Set t = t + 1.
8: Output: The analytical dictionary P∗K and the synthetical dictionary D∗K of the Kth sub-block.
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By building RDPL model through Algorithm 1, we can calculate the reconstruction
error of training samples in the Kth sub-block as follows:

EK =
∥∥∥XK − D∗KP∗TK XK

∥∥∥2

F
(24)

Then, the control threshold CK of the Kth sub-block can be obtained by the kernel
density estimation (KDE) method [32], and the univariate kernel density estimation is
conducted as follow:

fH(x) =
1

MH ∑M
i=1 K

(
x− Ei

K
H

)
(25)

where x represents the data point under consideration, M is the number of training samples,
H represents the bandwidth, Ei

K is the reconstruction error of the th sample in the Kth
sub-block, and K(·) is the uniform kernel function.

2.2. Bayesian Inference Based Anomaly Detection

Testing samples Ynew are divided into Ynew = [y1, · · · , yK, · · · , yN ] by the means of
division in training samples, and the reconstruction error of the Kth sub-block in testing
samples is calculated according to the corresponding RDPL model as follows:

EyK =
∥∥∥yK − D∗KP∗TK yK

∥∥∥2

F
(26)

To fuse the local monitoring statistics of sub-blocks to the global monitoring informa-
tion in industrial processes, the Bayesian inference method [33] is introduced to convert
the reconstruction error EyK of sub-block yK in testing samples into normal possibility
PK(yK|N ) and anomaly possibility PK(yK|A ), which are expressed as follows:

PK(yK|N ) = e−
EyK
CK (27)

PK(yK|A ) = e
− CK

EyK (28)

The conditional probability of normal sub-blocks and the conditional probability of
abnormal sub-blocks are defined as PK(N) and PK(A) by significance level α, respectively,
i.e., PK(N) = 1− α and PK(A) = α. And the posterior probability of abnormal sub-blocks
based on Bayesian inference method is calculated as follows:

PK(A|yK ) =
PK(yK|A )PK(A)

PK(yK|A )PK(A) + PK(yK|N )PK(N)
(29)

Then, the global anomaly index (GAI) is defined to fuse local statistical information to
global state, which is expressed as

GAI =
N

∑
K=1

PK(yK|A )pK(A|yK )

∑N
K=1 PK(yK|A )

(30)

where N is the number of sub-blocks in testing samples. If a new testing sample ynew
satisfies GAInew < α, it regards as normal, otherwise it regards as anomaly.

2.3. Contribution Index Based Anomaly Isolation

For the detected abnormal samples, we need to further locate abnormal sources.
The location of the anomaly is found by the method of locating the abnormal block based
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on counting time [27], that is, when the posteriori probability of the abnormal block exceeds
the significance level, the block anomaly flag (BAF) is set to 1, and BAF is defined as

BAFh
K =

{
1, PK

(
A
∣∣∣yh

K

)
≥ α

0, Otherwise
(31)

where yh
K represents the hth abnormal sample of the Kth block. To ensure the reliability of

abnormal block isolation, block anomaly index (BAI) and block contribution index (BCI)
are defined as follows:

BAIK =
H

∑
h=1

BAFh
K (32)

BCIK =
BAIK

∑N
i=1 BAIK

(33)

where H is the number of abnormal samples.
In industrial process monitoring, contribution plot method [34] has become a common

method for anomaly isolation. On the basis of locating the abnormal block, the contribution
plot method is used to locate the abnormal variable to realize anomaly isolation accurately.
Suppose that the synthetical dictionary and the analytical coding matrix of the abnormal
sample yh

K are defined as DK and Ah
K, respectively, the abnormal sample yh

K can be expressed
as follows:

yh
K = DK Ah

K + f = [DK, I]
[

Ah
K

f

]
(34)

where I ∈ Rs×s is an identity matrix, and s is the number of variables in the Kth sub-block.
The non-zero terms of the vector f represent the position and size of the anomaly source.
To more clearly represent the anomaly source, the augmented synthetical dictionary is
defined as D̄K = [DK, I], so the new analytical coding matrix of the anomaly sample yh

K
under D̄K is calculated as follows:

Ah
K,new = arg min

Ah
K

∥∥∥yh
K − D̄K Ah

K

∥∥∥2

F
(35)

Then, the abnormal sample is reformulated as yh
K = D̄K Ah

K,new. In addition, the vector
f can be replaced by SAh

K,new, where S = [O, I] ∈ Rs×(d+s), and O is the zero matrix.
The variable contribution (VC) of the jth variable in the Kth block is defined by contribution
plot method, which can be calculated as follows:

VCj
K =

H

∑
h=1

[ejSAh
K,new]

2
(36)

And the corresponding variable contribution index (VCI) is expressed as

VCI j
K =

VCj
K

∑s
i=1 VCi

K

(37)

where ej = [0, · · · , 0︸ ︷︷ ︸
j−1

, 1 0, · · · , 0︸ ︷︷ ︸
s−j

] is an identity matrix.

3. Experiments

To verify the effectiveness of the proposed method in industrial process monitor-
ing, a numerical simulation experiment is designed and Tennessee Eastman (TE) bench-
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mark tests are carried out, and then the proposed method is applied in a real-world
aluminum electrolysis industrial process. Besides, the proposed method is compared with
several common methods, including robust PCA (rPCA) [35], distributed PCA (DPCA) [36],
KSVD [16], DDL [27] and DPL [18]. Meanwhile, Training Time, Testing Time, false alarm
rate (FAR), and fault detection rate (FDR) are considered to quantitatively evaluate the
performance of different process monitoring methods [24]. To ensure that the compari-
son is fair, we use the original codes of the comparison methods directly. The number
of dictionary atoms is set to 50 for all dictionary learning methods. For the proposed
PRDPL method, the optimal parameters of α, β and λ are selected from the candidate set{

10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102
}

. With each group of parameters, twenty
groups of samples are randomly collected to test. The parameter value corresponding to
the highest average FDR is recorded as the parameter setting value. For all comparison
methods, we obtain the optimal parameters from the original paper proposing the compar-
ison methods, or adopt the same setting strategy of optimal parameters as our proposed
method. Besides, when the comparison method adopts the optimal parameters from the
original paper, we also randomly collect 20 groups of samples for the experiment, and take
the average value as the experimental result. Meanwhile, the kernel density estimation
method is used to obtain the control thresholds of all dictionary learning methods in this
paper, where all parameters are set consistently. For rPCA and DPCA, we use the method
provided in the original paper to obtain the control threshold. Moreover, the significance
level is set to 0.05, which is common to all methods.

3.1. Numerical Simulation Experiment

Firstly, to verify the effectiveness of the proposed method, a linear system for generat-
ing high-dimensional data is introduced as follows [27]:

X = As + e (38)

where A ∈ R8×2 represents a random observation matrix, s is a state vector containing two
independent variables, and e is a noise vector composed of eight independent Gaussian
noises with zero mean and the standard deviation of 0.01. Four different state vectors are
designed to simulate different operation units in the process, which is used as prior process
knowledge to divide into four sub-blocks. Thus, the state vectors are expressed as follows:

Block1 s1 : U(2, 3) s2 : N(7, 1)
Block2 s1 : 2 cos(0.08t) · sin(0.006t) s2 : N(2, 0.1)
Block3 s1 : 2 cos(0.08t) · sin(0.006t) s2 : U(−1, 1)
Block4 s1 : U(−1, 1) s2 : N(2, 0.1)

Then, the aforementioned system is used to generate 32-dimensional process data,
and 2000 data are collected as training samples and 300 data are collected as normal testing
samples. In addition, a bias fault of 2 is added to the third dimension of the first block,
and 500 data are collected as abnormal testing samples. First, we divide the training
samples in dimension according to the generation relation, that is, the 32-dimensional data
are divided into four sub-blocks of 8-dimensional data. Then, RDPL sub-models are built
for each sub-block to learn robust synthetical dictionary and robust analytical dictionary,
see robust dictionary pair learning in Algorithm 1. Next, the reconstruction errors are
calculated to obtain the control threshold. Finally, we implement anomaly detection and
anomaly isolation by GAI defined in Equation (30), BCI defined in Equation (33), and VCI
defined in Equation (37). For the diagram of the above method, refer to Figure 2.

The process monitoring results of all methods in the numerical simulation experiment
are shown in Figure 5, and the quantitative monitoring results of each method are shown
in Table 1. As can be seen from the experimental results, The FDRs of DDL method, DPL
method, and DRDPL method all reached 100%. Meanwhile, DRDPL method performs
best in process monitoring, and its FAR is as low as 0. The FDRs of T2 statistics in rPCA
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method and DPCA method are up to 100%, but their SPE statistics have a lower FDR
in process monitoring. In addition, the training time of rPCA method, DPL method,
and DRDPL method is obviously shorter. Although DDL method has better accuracy in
process monitoring, it consumes the most computational time.

Figure 5. The process monitoring results of numerical simulation experiment. (a) rPCA-rT2;
(b) rPCA-rSPE; (c) DPCA-D− T2; (d) DPCA-D− SPE; (e) KSVD-RESI; (f) DDL-GFI; (g) DPL-DRE;
(h) DRDPL-GAI.

Table 1. The comparison results of numerical simulation experiment.

Method Training Time (s) Testing Time (s) FAR (%) FDR (%)

rPCA (rT2) 0.0114 0.0003 17.00 69.00
rPCA (rSPE) 0.0112 0.0002 2.33 100.00
DPCA (D− T2) 2.3512 0.0811 1.00 50.00
DPCA (D− SPE) 2.7365 0.1406 1.00 100.00
K-SVD (RESI) 2.6444 0.0039 0.33 43.40
DDL (GFI) 10.5511 0.0036 6.67 100.00
DPL (DRE) 0.0316 0.4884 4.00 100.00
DRDPL (GAI) 0.2702 0.0033 0.00 100.00

The anomaly isolation results of numerical simulation experiment are shown in Figure 6.
Figure 6a shows the result of locating the abnormal block by BCI, which demonstrates that
the anomaly occurred in the first block. On the basis of locating abnormal blocks, Figure 6b
shows that the abnormal variable is further located by VCI. The location result demonstrates
that the anomaly is most likely to occur in the third variable. Therefore, the results of anomaly
location ate consistent with the anomaly we set.
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Figure 6. The anomaly isolation results in numerical simulation experiment. (a) BCI; (b) VCI.

3.2. TE Benchmark Test

Tennessee Eastman (TE) benchmark tests are often used to validate process monitoring
methods. The structure diagram of TE process is shown in Figure 7. There are mainly
5 operation units, including 12 process control variables and 41 process measurement
variables [37]. Notably, 22 process measurement variables and 9 process control variables
are selected as 31 process variables in TE benchmark tests, see Table A1 in Appendix A.
In addition, according to the technological process of TE process, 31 variables can be
divided into four blocks, which are shown in Table 2 [25].

Table 2. The division of TE process variables.

Block Variables Principle of Division

1 v1, v2, v3, v5, v6, v23, v24, v25 Input
2 v7, v8, v9, v21, v30 Reactor
3 v10, v11, v12, v13, v14, v20, v22, v27, v28, v31 Separator, Compressor and Condenser
4 v4, v15, v16, v17, v18, v19, v26, v29 Stripper

Figure 7. Structural schematic diagram of TE process.

TE process contains 28 disturbances, see Table A2 in Appendix A. 3000 data are col-
lected as training samples and 300 data are collected as normal testing samples. Moreover,
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500 data are collected under each disturbance as abnormal testing samples. Similarly, for the
schematic diagram of TE process monitoring based on DRDPL, refer to Figure 2. Table 3
shows that the FDRs of all methods in TE processes with various disturbances. The results
of process monitoring show that the proposed method has high FDR for most disturbances.

Table 3. The FDR of the proposed method and comparative methods for 28 kinds of disturbances in
TE process.

Disturbance
Number

rPCA(
rT2) rPCA

(rSPE)
DPCA(
D − T2) DPCA

(D − SPE)
K-SVD
(RESI)

DDL
(GFI)

DPL
(DRE)

DRDPL
(GAI)

1 0.9900 0.9900 1.0000 1.0000 0.9760 0.9880 0.9460 1.0000
2 0.9640 0.9660 1.0000 1.0000 0.9300 0.9560 0.9040 1.0000
3 0.9900 0.9880 1.0000 1.0000 0.9740 0.9840 0.9460 1.0000
4 0.9980 0.9980 1.0000 0.4260 0.9980 0.9980 0.0700 1.0000
5 0.9460 0.9820 1.0000 1.0000 0.9100 0.9660 0.8920 1.0000
6 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9920 0.9980
7 0.9980 0.9980 1.0000 1.0000 0.9980 0.9980 0.9980 1.0000
8 0.8020 0.8320 1.0000 1.0000 0.7360 0.7960 0.7180 1.0000
9 0.9980 0.9980 1.0000 0.4000 0.9980 0.9980 0.1000 1.0000
10 0.7720 0.9260 0.9760 0.9660 0.5600 0.8700 0.0320 0.8000
11 0.9500 0.9420 1.0000 0.9760 0.9160 0.9180 0.3420 0.9880
12 0.5620 0.4420 0.9300 0.8420 0.2900 0.4340 0.0540 0.1820
13 0.9500 0.9460 1.0000 1.0000 0.9280 0.9360 0.9120 1.0000
14 0.9633 0.8000 1.0000 1.0000 0.9540 0.9680 0.0260 0.9940
15 0.9860 0.9880 1.0000 1.0000 0.9620 0.9600 0.0620 0.9880
16 0.9500 0.9460 1.0000 1.0000 0.9260 0.9340 0.9120 1.0000
17 0.9600 0.9500 1.0000 1.0000 0.9320 0.9320 0.4180 0.9320
18 0.7060 0.7720 0.9560 0.9860 0.5740 0.7520 0.2680 0.8120
19 0.9780 0.9540 1.0000 1.0000 0.8760 0.9620 0.0460 1.0000
20 0.8340 0.7940 1.0000 1.0000 0.7680 0.7880 0.7360 0.9020
21 0.8320 0.7920 1.0000 1.0000 0.7720 0.7860 0.7360 0.9300
22 0.9600 0.9360 1.0000 1.0000 0.8420 0.9460 0.0480 0.9540
23 0.7200 0.7840 0.9760 0.9960 0.5900 0.8600 0.2900 0.7360
24 0.8360 0.9160 1.0000 1.0000 0.7780 0.9300 0.4260 0.9220
25 0.7760 0.9360 0.9880 0.9800 0.5800 0.9180 0.2120 0.7040
26 0.9560 0.9600 1.0000 0.9960 0.9260 0.9600 0.2920 0.9500
27 0.9320 0.9580 0.9820 0.6300 0.8240 0.8900 0.0660 0.8280
28 0.8440 0.9100 0.9900 0.8120 0.6180 0.8260 0.0280 0.8220

To further compare the process monitoring performance of the proposed method
with other methods, the results of TE processes under disturbance IDV (6) and IDV (14)
are shown in Figures 8 and 9, respectively, and the quantitative monitoring results are
presented in Tables 4 and 5, respectively. The experimental results show that the proposed
DRDPL method performs better in process monitoring. That is, rPCA method, DPCA
method, K-SVD method, DDL method, and the proposed DRDPL method have high
FDRs, while the FAR of our DRDPL is the lowest. Meanwhile, the training time of DPCA
method and DDL method are significantly more than that of rPCA method, K-SVD method,
DPL method, and the proposed DRDPL method. Besides, DPL method has the excellent
performance of process monitoring in TE process with IDV (6), but its FDR in TE process
with IDV (14) is only 2.60%. Thus, the stability in process monitoring of DPL needs to
be improved.
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Table 4. The comparison results of TE process with IDV (6).

Method Training Time (s) Testing Time (s) FAR (%) FDR (%)

rPCA (rT2) 2.5695 0.0008 16.00 99.80
rPCA (rSPE) 1.0328 0.0007 7.33 99.80
DPCA (D− T2) 14.9032 0.7141 22.67 99.80
DPCA (D− SPE) 14.8002 0.7019 17.00 99.80
K-SVD (RESI) 4.7873 0.0028 2.33 99.80
DDL (GFI) 13.6185 0.0001 6.67 99.80
DPL (DRE) 0.0580 0.1415 4.00 99.20
DRDPL (GAI) 2.9189 0.0045 0.00 99.80

Table 5. The comparison results of TE process with IDV (14).

Method Training Time (s) Testing Time (s) FAR (%) FDR (%)

rPCA (rT2) 1.2971 0.0002 19.00 99.00
rPCA (rSPE) 0.0094 0.0001 4.33 99.40
DPCA (D− T2) 14.3749 0.6949 22.67 100.00
DPCA (D− SPE) 14.2242 0.6752 17.00 100.00
K-SVD (RESI) 4.8615 0.0029 0.67 95.40
DDL (GFI) 13.8954 0.0001 6.00 96.80
DPL (DRE) 0.0518 0.1417 4.00 2.60
DRDPL (GAI) 1.3678 0.0011 0.00 99.40

FAR = 16%

FDR = 99.8%

FAR = 0

FDR = 99.8%

FAR = 4%

FDR = 99.2%

FAR = 6.67%

FDR = 99.8%

FAR = 2.33%

FDR = 99.8%

FAR = 17%

FDR = 99.8%

FAR = 22.67%

FDR = 99.8%
FAR = 7.33%

FDR = 99.8%

Figure 8. The process monitoring results of TE process with IDV (6). (a) rPCA-rT2; (b) rPCA-rSPE;
(c) DPCA-D− T2; (d) DPCA-D− SPE; (e) KSVD-RESI; (f) DDL-GFI; (g) DPL-DRE; (h) DRDPL-GAI.
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FAR = 19%

FDR = 99%

FAR = 0

FDR = 99.4%

FAR = 4%

FDR = 2.6%

FAR = 6%

FDR = 96.8%

FAR = 0.67%

FDR = 95.4%

FAR = 17%

FDR = 100%

FAR = 22.67%

FDR = 100%

FAR = 4.33%

FDR = 99.4%

Figure 9. The process monitoring results of TE process with IDV (14). (a) rPCA-rT2; (b) rPCA-rSPE;
(c) DPCA-D− T2; (d) DPCA-D− SPE; (e) KSVD-RESI; (f) DDL-GFI; (g) DPL-DRE; (h) DRDPL-GAI.

Figures 10 and 11 show the results of anomaly isolation under the two disturbances,
respectively. Figures 10a and 11a show the results of locating abnormal blocks by BCI,
and Figures 10b and 11b show the results of locating abnormal variables by VCI in sub-
blocks with the highest probability of anomalies. The location results show that the first
dimension (v1) of the first block is the most likely to have an anomaly in TE process
monitoring with the disturbance of IDV (6), and the fifth dimension (v30) of the second
block is most likely to have an anomaly in TE process monitoring with the disturbance of
IDV (14). In addition, for the results of variable isolation in other blocks of TE process, see
Figure A1 in Appendix B. The results of anomaly location are basically consistent with the
possible caused results of disturbances.

(a) (b)
1v

2v 3v 5v 6v

23v

24v

25v

0.2790 0.2746
0.2549

0.1915

Figure 10. The anomaly isolation results in TE process with IDV (6). (a) BCI; (b) VCI-Block 1.
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Figure 11. The anomaly isolation results in TE process with IDV (14). (a) BCI; (b) VCI-Block 2.

3.3. Aluminum Electrolysis Industrial Process Application

With the development of large-scale aluminum electrolytic cell, the complexity and
uncertainty of aluminum electrolytic system become higher. Effective cell condition moni-
toring technology plays an important role in detecting and predicting abnormal cell condi-
tion in real time, adjusting control strategy in time, and ensuring efficient and high-quality
operation of electrolytic cell [38]. In aluminum electrolysis industrial process, the dynamic
behaviors of local anodes form the distributed cell state, and anode current can reflect
localized cell states.

In the experiments, anode current data are obtained by the production data report of
400 kA series electrolytic cell from an aluminum electrolysis factory in Shandong Province.
The structure diagram of an aluminum electrolysis cell is shown in Figure 12. The series
of electrolytic cells have 12 anodes on each side, that is, aluminum electrolysis cells can
produce 24-dimensional anode current data. Importantly, six adjacent anodes are divided
into one node based on prior process knowledge of alumina concentration in aluminum
electrolysis process. Therefore, the 24-dimensional anode current data are divided into
four sub-blocks. Meanwhile, 3000 data are collected as training samples and 300 data
are collected as normal testing samples. In addition, 500 data are collected under the
anodic effect and anodic slip conditions as abnormal test data, respectively. Similarly,
for the schematic diagram of aluminum electrolysis industrial process monitoring based on
DRDPL, refer to Figure 2.

Anode beam

Anode 

Bath

i

c e ll kI i 

Metal

Figure 12. Structural schematic diagram of aluminum electrolysis cell.

Figures 13 and 14 show the monitoring results of aluminum electrolysis processes
with the abnormal cell conditions of anode effect and anode slippage. Tables 6 and 7 give
corresponding quantitative monitoring results, respectively. The experimental results show
that rPCA method, DPL method, and the proposed DRDPL method have outstanding
advantages in computional time. In terms of process monitoring performance, the FDRs of
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all methods can reach 100%. And the FARs of KSVD method and our DRDPL method are
lower than that of rPCA method, DPCA method, DDL method, and DPL method, which
are only 0. Therefore, the performance of the proposed method is better than other methods
in cell condition monitoring.

FAR = 19.33%

FDR = 100%

FAR = 0

FDR = 100%

FAR = 1.33%

FDR = 100%

FAR = 5.67%

FDR = 100%

FAR = 0

FDR = 100%

FAR = 1%

FDR = 100%

FAR = 22.67%

FDR = 100%
FAR = 7.67%

FDR = 100%

Figure 13. The process monitoring results of anode effect in aluminum electrolysis process. (a) rPCA-
rT2; (b) rPCA-rSPE; (c) DPCA-D− T2; (d) DPCA-D− SPE; (e) KSVD-RESI; (f) DDL-GFI; (g) DPL-
DRE; (h) DRDPL-GAI.

FAR = 19.33%

FDR = 100%

FAR = 0

FDR = 100%

FAR = 1.33%

FDR = 100%

FAR = 10%

FDR = 100%

0

122.67FAR = 7.67%

FDR = 100%

Figure 14. The process monitoring results of anode slippage in aluminum electrolysis process.
(a) rPCA-rT2; (b) rPCA-rSPE; (c) DPCA-D− T2; (d) DPCA-D− SPE; (e) KSVD-RESI; (f) DDL-GFI;
(g) DPL-DRE; (h) DRDPL-GAI.
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Table 6. The comparison results of anode effect in aluminum electrolysis process.

Method Training Time (s) Testing Time (s) FAR (%) FDR (%)

rPCA (rT2) 0.0152 0.0003 19.33 100.00
rPCA (rSPE) 0.0145 0.0001 7.67 100.00
DPCA (D− T2) 13.3106 0.5665 22.67 100.00
DPCA (D− SPE) 13.2324 0.5647 1.00 100.00
K-SVD (RESI) 3.6734 0.0049 0.00 100.00
DDL (GFI) 12.8322 0.0004 5.67 100.00
DPL (DRE) 0.0662 0.2882 1.33 100.00
DRDPL (GAI) 0.6024 0.0012 0.00 100.00

Table 7. The comparison results of anode slippage in aluminum electrolysis process.

Method Training Time (s) Testing Time (s) FAR (%) FDR (%)

rPCA (rT2) 0.0200 0.0008 19.33 100.00
rPCA (rSPE) 0.0192 0.0007 7.67 100.00
DPCA (D− T2) 13.2074 0.5386 22.67 100.00
DPCA (D− SPE) 13.8177 0.5718 1.00 100.00
K-SVD (RESI) 4.0545 0.0053 0.00 100.00
DDL (GFI) 13.0848 0.0024 10.00 100.00
DPL (DRE) 0.0649 0.2841 1.33 100.00
DRDPL (GAI) 0.6090 0.0014 0.00 100.00

Figures 15 and 16 show the anomaly isolation results of occurring anode effect and
anode slippage, respectively. Figures 15a and 16a show the results of locating abnormal
blocks by BCI, and Figures 15b and 16b show the results of locating abnormal variables
by VCI in sub-blocks with the highest probability of anomalies. The location results show
that the fourth dimension (i13) of the first block is the most likely to have an anomaly in
aluminum electrolysis processes with anode effect and anode slippage, which is consis-
tent with the anomaly source location of the actual cell condition. In addition, for the
results of variable isolation in other blocks of aluminum electrolysis industrial process, see
Figures A2 and A3 in Appendix B.
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Figure 15. The anomaly isolation results of anode effect in aluminum electrolysis process. (a) BCI;
(b) VCI-Block 1.
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Figure 16. The anomaly isolation results of anode slippage in aluminum electrolysis process. (a) BCI;
(b) VCI-Block 1.

3.4. Fault Detection against Noisy Datasets

To test the robustness of the proposed DRDPL method, we add random Gaussian
noise to datasets by Data = Data +

√
Variance× randn(size(Data)). For the numerical

simulation experiment, TE process experiment with IDV (6), and aluminum electrolysis
process experiment with anode effect, 20 groups of samples are randomly selected for
testing, and average values are taken as the results of fault detection. The variance values are
set in ranges of {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}, {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
and {1.1× 105, 1.2× 105, 1.3× 105, 1.4× 105, 1.5× 105, 1.6× 105, 1.7× 105, 1.8× 105, 1.9×
105, 2.0× 105}, respectively. Figure 17 shows the experimental results in the case of noise.
We can find that the overall trend of FDR for each method decreases with the increase of
variance. It is worth noting that our proposed DRDPL method provides higher FDR than
other methods in most cases. That is, the DRDPL method is more robust to the interference
of noise due to the adoption of a more reasonable mechanism.

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 10 20 30 40 50 60 70 80 90 100 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

´
5

10

(a) (b) (c)

Figure 17. FDR of each method with varying variance. (a) Numerical simulation; (b) TE process with
IDV (6); (c) Aluminum electrolysis process with anode effect.

4. Conclusions

In this article, a process monitoring method based on distributed robust dictionary
pair learning (PRDPL) is proposed for anomaly detection and anomaly isolation. Firstly,
the reliable prior knowledge of industrial processes is integrated into the data-driven model
with block division, which is conducive to exposing small anomalies in high-dimensional
data. Then, a robust dictionary pair learning (RDPL) method is proposed to build a local
monitoring model for each sub-block to obtain robust dictionary pairs. Finally, Bayesian
inference method is introduced to realize anomaly detection. To further find the anomaly
sources, the block contribution index and variable contribution index are defined to locate
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abnormal blocks and abnormal variables, respectively. Thus, the applicability and reliability
of the proposed method have been demonstrated in a numerical simulation, Tennessee
Eastman processes and aluminum electrolysis processes. Particularly, our method performs
well in anomaly detection, computation time, and robustness together. It is worth noted
that the prior process knowledge used for division has not been systematized. Therefore,
a more accurate block division method based on the fusion of knowledge and data is
worth further study. In addition, how to obtain adaptive dictionary learning models by
considering abnormal samples is a meaningful research direction.
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Appendix A

The introduction of each variable in TE benchmark test is shown in Table A1. The de-
scriptions of 28 kinds of disturbances in TE process are shown in Table A2.

Table A1. The process variables of TE benchmark test.

No. Variables No. Variables

1 A feed (stream 1) 17 Stripper underflow (stream 11)
2 D feed (stream 2) 18 Stripper temperature
3 E feed (stream 3) 19 Stripper steam flow
4 A and C feed (stream 4) 20 Compressor work
5 Recycle flow (stream 8) 21 Reactor cooling water outlet temperature
6 Reactor feed rate (stream 6) 22 Separator cooling water outlet temperature
7 Reactor pressure 23 D feed flow (stream 2)
8 Reactor level 24 E feed flow (stream 3)
9 Reactor temperature 25 A feed flow (stream 1)
10 Purge rate (stream 9) 26 A and C feed flow (stream 4)
11 Product separator temperature 27 Purge valve (stream 9)
12 Product separator level 28 Separator pot liquid flow (stream 10)
13 Product separator pressure 29 Stripper liquid product flow (stream 11)
14 Product separator underflow (stream 10) 30 Reactor cooling water flow
15 Stripper level 31 Stripper liquid product flow (stream 11)
16 Stripper pressure
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Table A2. The disturbances of TE process.

Number Disturbance Description Type

IDV (1) A/C feed ratio, B composition constant (stream 4) Step
IDV (2) B composition, A/C ratio constant (stream 4) Step
IDV (3) D feed temperature (stream 2) Step
IDV (4) Reactor cooling water inlet temperature Step
IDV (5) Condenser cooling water inlet temperature Step
IDV (6) A feed loss (stream 1) Step
IDV (7) C header pressure loss-reduced availability (stream 4) Step
IDV (8) A, B, C feed composition (stream 4) Random variation
IDV (9) D feed temperature (stream 2) D feed temperature

IDV (10) C feed temperature (stream 4) Random variation
IDV (11) Reactor cooling water inlet temperature Random variation
IDV (12) Condenser cooling water inlet temperature Random variation
IDV (13) Reaction kinetics Slow drift
IDV (14) Reactor cooling water valve Sticking
IDV (15) Condenser cooling water valve Sticking
IDV (16) Unknown Unknown
IDV (17) Unknown Unknown
IDV (18) Unknown Unknown
IDV (19) Unknown Unknown
IDV (20) Unknown Unknown
IDV (21) A feed temperature (stream 1) -
IDV (22) E feed temperature (stream 3) -
IDV (23) A feed pressure (stream 1) -
IDV (24) D feed pressure (stream 2) -
IDV (25) E feed pressure (stream 3) -
IDV (26) A and C feed pressure (stream 4) -
IDV (27) Pressure fluctuation in the cooling water re-circulating unit of the reactor -
IDV (28) Pressure fluctuation in the cooling water re-circulating unit of the condenser -

Appendix B

In the actual industrial production process, the purpose of anomaly isolation is to find
the block with the highest probability of anomalies, so as to provide the basis for process
control and decision. Therefore, the variable isolation results of TE process and aluminum
electrolysis industrial process except for the most likely abnormal blocks are shown in
Figures A1, A2 and A3, respectively.
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Figure A1. The variable isolation results in TE process. (a) Block 2 with IDV (6); (b) Block 3 with IDV
(6); (c) Block 4 with IDV (6); (d) Block 3 with IDV (14).
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Figure A2. The variable isolation results in anode effect of aluminum electrolysis industrial process.
(a) Block 2; (b) Block 3; (c) Block 4.
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Figure A3. The variable isolation results in anode slippage of aluminum electrolysis industrial
process. (a) Block 2; (b) Block 3; (c) Block 4.
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