
Citation: Luo, M.; Liu, X.; Zhao, Z.;

Wang, F.; Shao, C. Optimization of

Glycerol Extraction of Chlorogenic

Acid from Honeysuckle by Response

Surface Methodology. Processes 2023,

11, 110. https://doi.org/10.3390/

pr11010110

Academic Editors: Dariusz Dziki,

Francesca Blasi, Won Byong Yoon,

Akiyoshi Sawabe and

Beata Biernacka

Received: 27 November 2022

Revised: 19 December 2022

Accepted: 20 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Optimization of Glycerol Extraction of Chlorogenic Acid from
Honeysuckle by Response Surface Methodology
Mingsheng Luo 1,2,* , Xinyue Liu 1,2, Zhijun Zhao 1,2,*, Fengli Wang 1,2 and Changke Shao 1,2

1 Beijing Institute of Petrochemical Technology, Beijing 102617, China
2 Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology,

Beijing 102617, China
* Correspondence: luoms9297@163.com (M.L.); zhaozj@tsinghua.org.cn (Z.Z.)

Abstract: Using honeysuckle as raw material, chlorogenic acid (CGA) was extracted with different
alcohols. Based on the single-factor experiment design, the relationship between each parameter and
the response value was explored by Box–Behnken method to optimize the process conditions. Best
extraction results were obtained under the conditions of solid-to-liquid ratio of 1:20, the ultrasonic
time of 40 min, the ultrasonic vibrator power of 240 w, and the CGA extraction rate of 2.98%. The
experimental data show that the extraction rate of CGA is related to the length of the alcohol carbon
chain and the number of hydroxyl groups in the extractant. The results from this work can provide
technical basis for the safe and efficient production of CGA from honeysuckle.

Keywords: response surface methodology; chlorogenic acid; glycerol; ultrasonic assisted
extraction; honeysuckle

1. Introduction

Honeysuckle is one of the important medicinal plants in East Asia and is widely used in
traditional Chinese medicine to treat a variety of chronic diseases [1]. Honeysuckle mainly
contains flavonoids [2], organic acid [3,4], phenols [5,6], trace nutritional elements [7,8],
and volatile asseutiae oil [9,10]. It provides curing effects of anti-inflammatory [11,12], anti-
tumor [13,14], anti-virus [15,16], anti-oxidant [17,18], and immunity enhancement [19,20].
The latest research found that honeysuckle is the main ingredient of some effective herbal
Chinese medicines for treating COVID-19-related symptoms, showing promising medicinal
and research value [21].

At present, popular approaches for extracting CGA are water extraction and alcohol
precipitation, ultrasonic-assisted extraction, microwave-assisted extraction, microwave–
ultrasonic combined extraction, and enzyme extraction [22]. Water extraction and alcohol
precipitation method can produce high extraction efficiency, and remove impurities such as
protein, polysaccharide, and tannin in the solution [23]. Commonly used organic solvents
include ethanol, methanol, propanol, etc. Considering the cost, safety and commercial
availability of the extractant, ethanol is generally selected over the other extractants [24].
However, due to the low yield of water extraction and alcohol precipitation, development
of better reagent for CGA is the key to the extraction process.

Glycerol can be used as an excellent safe food extractant. Therefore, its application can
thus be extended to the pharmaceutical area. In this paper, glycerol was used as the primary
extractant and water was used as the secondary reagent for CGA extractant. The ultrasonic
vibrator power, ultrasonic time, glycerol volume fraction, and solid-to-liquid ratio were
used as single-factor experimental design parameters to investigate their effect on the
CGA extraction from honeysuckle. The influence of acid extraction rate, the Box–Behnken
method in Design-Expert was used to design a three-factor and three-level experiment to
optimize the process [25]. The purpose of this study is to explore a green and optimized
method of extracting chlorogenic acid with glycerol.
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2. Experimental
Reagents and Materials

Table 1 gives the main experimental chemicals and their manufacturers. Table 2
shows the chromatographic parameters employed in this research; the CGA peaks in the
honeysuckle extract were clearly separated from other components. The standard curve
was determined by accurately weighing 10.0 mg of CGA standard product and 4.00 mL of
methanol to prepare a 2.50 mg/mL solution. The solution was prepared to the following
mass concentrations: 0.075, 0.15, 0.30, 0.60, and 1.20 mg/mL of CGA standard solutions. In
HPLC analysis, a standard curve with the mass fraction (x, mg/mL) and peak area (y) of
CGA as the following equation of y = 11677700x − 512544.42 (R2 = 0.9997).

Table 1. Chemicals.

Raw Materials and Reagents Manufacturer

Honeysuckle pollen Bozhou Celebration Medicine Hall, Anhui, China
CGA standard Beijing InnoChem Science & Technology Co., Ltd., Beijing, China

Anhydrous ethanol (analytical grade) Aladdin Biochemical Technology Co., Ltd., Shanghai, China
Phosphoric acid (analytical grade) Aladdin Biochemical Technology Co., Ltd., Shanghai, China

Sodium hydroxide (analytical grade) Beijing Chemical Works, Beijing, China
Acetonitrile (chromatographic grade) Beijing Mindray Technology Co., Ltd., Beijing, China

Distilled water Watsons Distilled Water Co., Ltd., Beijing, China

Table 2. Waters 2695 HPLC used in this study.

Chromatographic Conditions Parameter

Waters 2487 UV detector 2 channel, tunable UV/Vis
C18 Column (Kromasil 100–5 4.6 mm × 250 mm) AkzoNobel Sweden

Mobile phase V(acetonitrile): V (0.4% phosphoric acid) = 1:9
Detection wavelength 327 nm
Column temperature 25 ◦C

Flow rate 1 mL/min
Injection volume 5 µL

The raw material of honeysuckle powder is purchased in Bozhou, Anhui Province,
China. According to Chinese Pharmacopoeia as reference, the raw material is air-dried
overnight before grinding into powders smaller than 3 mm using a 50-mesh standard
stainless-steel sieve. An extractant amount of 3, 6, 9, 12, and 15 mL is accurately weighed
and mixed with water to prepare a two-phase extract containing 20, 40, 60, 80, and 100%
of alcohol, and a series of extractants is prepared. Next, five samples of 1.00 g honey-
suckle powder are weighed and dissolved in the above extracts. It is carefully shaken to
completely mix the honeysuckle powder and the extract, then the sample is put into an
ultrasonic vibrator for extraction at 25 ◦C for 30 min. The sample is filtered with an organic
membrane and diluted 10 times with a mobile phase. Peak areas were determined with
liquid chromatography and CGA content was calculated by the following formula [26]:

Extraction yield (mg/g) =
Mass of CGA determined (mg)

Mass of dried ramie leaves powder (g)
(1)

3. Results and Discussion
3.1. Extraction Using Different Alcohols
3.1.1. Effects of Alcohol Types

Alcohols with different carbon chains were selected as extractant, and the extraction ef-
fects of ethanol, n-propanol, n-butanol, and n-amyl alcohol with different volume fractions
on CGA were determined, as shown in Figure 1a. The relative standard deviation ranged
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from 0.5 to 2.5%, demonstrating the high accuracy of the method (b). It can be shown from
the figure that the extraction rate of CGA increases with the growing carbon chain of the
alcohol. When n-butanol was used, the extraction rate is higher than that using ethanol.
However, when n-amyl alcohol was used, the extraction rate decreased significantly, which
may be attributed to the saturation of the binding sites of CGA and the main carbon chain
of alcohols, so carbon chain extension alone does not enhance the extraction rate [27].
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Figure 1. (a) Effects of alcohols with different carbon chain lengths on the extraction rate of CGA.
(b) Standard deviation of the effect of carbon chain length on extraction rate.

3.1.2. The Effect of Hydroxyl Number

To explore the effect of alcohols with different hydroxyl numbers on the extraction
rate of CGA, alcohols with different numbers of hydroxyl side chains were selected as
extractants, such as ethanol, ethylene glycol, propylene glycol, and glycerol. Figure 2a
shows that the extraction rate of CGA grows with the increase in the number of hydroxyl
groups, while Figure 2b indicates a standard deviation between 0.5 and 3.0%, with small
differences in data and high accuracy. When glycerol is used, the extraction rate is as high
as 2.67%, which is higher than that from other alcohols due to the principle of similar
compatibility of side chain functional groups. Glycerol can reduce the water activity of food
and prolong the shelf life of food [28], and its physicochemical property makes it suitable
for the use of CGA as medicine. Compared with n-butanol, glycerol is safer, greener, and a
more efficient extractant for CGA production.
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3.2. Single−Factor Experimental Design
3.2.1. Effect of Solid/Liquid Ratio on Extraction Rate

At 25 ◦C, the ultrasonic vibrator was set to 300 W, 30 min, using 60% glycerol extractant
to study the effect of solid/liquid ratio on extraction rate. It can be seen from Figure 3 that
the extraction rate of CGA grows linearly with the increase in the extractant volume when
the solid/liquid ratio is in the range of 1:5 to 1:20 before slightly leveling off. This may be
because the dissolution rate of CGA gradually increases and then stabilizes as the volume
of the extractant increases. Therefore, the optimum ratio of solid to liquid is determined at
1:20 in view of raw material cost saving.
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3.2.2. Effect of Glycerol Volume Fraction

As shown in Figure 4, the effect of glycerol volume fraction on the extraction rate
was investigated at 25 ◦C, using an ultrasonic liberator of 300 W for 30 min, and the raw
material-to-liquid ratio at 1:20. It can be seen from the figure that the highest extraction
rate of CGA is obtained when the volume fraction of glycerol is 60%. Therefore, when
the volume fraction of glycerol is at 60%, the yield of CGA reaches the maximum value of
2.60%, and further increase in volume fraction does not improve the extraction rate of CGA.
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The esterification of caffeic acid and quinic acid forms CGA, which contains multiple
chemical bonds with different polarities [29]. In view of the combination and the similar
compatibility principle of the hydroxyl groups of chlorogenic acid, glycerol forms new
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free hydroxyl groups due to the hydrolysis of dissolution (Figure 5), which improves the
extraction rate of chlorogenic acid.
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3.2.3. The Effect of Ultrasonic Vibrator

To probe the influence of ultrasonic vibration power on the extraction rate, the ul-
trasonic operation time was set to 30 min, the volume fraction of glycerol at 60%, and
the solid raw material-to-extractant liquid ratio at 1:20 for the extractant experiment at
ambient temperature. Figure 6 shows that the extraction rate of CGA increases rapidly
between 150 W and 180 W, which proves that the ultrasonic vibrator has a significant effect
on the extraction of CGA. With the power of 270 W, the peak area reaches the maximum
yield of 2.92%. This is because the ultrasonic wave may facilitate the extraction process
by exerting a strong destructive force on the cell wall. The decrease in the extraction rate
when supersonic vibrating powder over 270 W was used, which can be attributed to the
complete precipitation of CGA. Further increasing the power will destroy the structure of
CGA and lead to a decrease in the extraction rate.
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3.2.4. Effect of Ultrasonic Time

To study the influence of ultrasonic time on extraction rate at 25 ◦C, a sample was
investigated under the conditions of the ultrasonic vibrator of 270 W, the glycerol volume
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fraction of 60%, and the solid material-to-liquid ratio at 1:20. The results from Figure 7
show that when the ultrasonic time is set in the range of 10–30 min, the extraction rate is
positively correlated with the ultrasonic time. However, when the ultrasonic vibration time
is greater than 30 min, CGA is unstable and easily oxidized because it contains 5 active
hydroxyl groups, 1 carboxyl group, and diphenol hydroxyl group. Long–time ultrasonic
vibration may cause CGA decomposition. Hence, 30 min was determined as the optimum
extraction time.
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3.3. Optimization of the Extraction Parameters by Response Surface Methodology
3.3.1. Response Surface Experimental Design

To further improve the extraction rate of CGA, the extraction conditions of glycerol
were optimized by response surface method [30]. Ultrasonic vibrator power (A), glycerol
volume fraction (B), and ultrasonic operation time (C) were selected to optimize the CGA
extraction from honeysuckle. The Box–Behnken [31] three-factor and three-level experi-
mental design was summarized in Table 3. On the bases of the single-factor experiment, the
material-to-liquid ratio was set at 1:20 for the sake of cost saving. The ultrasonic time (A)
and the volume fraction of glycerol (B) were selected under constant temperature conditions
of the ultrasonic vibrator (C) to optimize the extraction process of CGA in honeysuckle.
The prediction test plan is shown in Table 4.

Table 3. Factors and levels in response surface design.

Level
A

Ultrasonic Vibrator
(W)

B
Glycerol Volume Fraction

(%)

C
Ultrasound Time

(min)

−1 240 50 20
0 270 60 30
1 300 70 40

Table 4. Scheme and experimental results of response surface design.

Test Number
A

Ultrasonic Vibrator
(W)

B
Glycerol Volume

Fraction
(%)

C
Ultrasound

Time
(min)

Extraction
Rate
(%)

1 −1 −1 0 2.925
2 1 −1 0 2.869
3 −1 1 0 2.830
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Table 4. Cont.

Test Number
A

Ultrasonic Vibrator
(W)

B
Glycerol Volume

Fraction
(%)

C
Ultrasound

Time
(min)

Extraction
Rate
(%)

4 1 1 0 2.872
5 −1 0 −1 2.862
6 1 0 −1 2.954
7 −1 0 1 2.987
8 1 0 1 2.940
9 0 −1 −1 2.860
10 0 1 −1 2.831
11 0 −1 1 2.872
12 0 1 1 2.915
13 0 0 0 2.904
14 0 0 0 2.918
15 0 0 0 2.917
16 0 0 0 2.929
17 0 0 0 2.900

3.3.2. Model Evaluation

The quadratic polynomial regression fitting result on the test data is shown in Table 4
and then to obtain the mathematical model is obtained as the follows:

Y = 2.91 + 0.003838A − 0.009750B + 0.026C + 0.024AB − 0.035AC + 0.018BC + 0.013A2 − 0.053B2 + 0.008828C2

The Table 5 value of “F” is employed to express the accuracy of the results from
representative samples of proper population. The results of F = 8.79 and p = 0.0046 < 0.01
of the model suggest that the difference between the quadratic models used in this experi-
ment is significant. The quadratic term of glycerol volume fraction was highly significant
(p < 0.001). The interactions between one-factor parameter of ultrasonic time (C) and two-
factor ultrasonic vibrator and time (A × C) were significant, while the other interaction
parameters were not significant (0.01 ≤ p < 0.05 and p ≥ 0.05), indicating that the experimen-
tal error is minor. The determinant R2 = 0.9187 and the prediction R2 = −0.0353 suggest that
the overall mean can better predict the response than the current model. It also indicates
that the model can respond well to the changes in response values. The significance of the
affecting factors is in the order of ultrasonic time, glycerol volume fraction, and ultrasonic
vibrator power.

Table 5. Variance analysis of regression model.

Source of
Variance Sum of Square Degrees of

Freedom Mean Square F Value p Value

Model 2.700 × 10−2 9 3.022 × 10−3 8.79 0.0046
A 1.178 × 10−4 1 1.178 × 10−4 0.34 0.5767
B 7.605 × 10−4 1 7.605 × 10−4 2.21 0.1806
C 5.341 × 10−3 1 5.341 × 10−3 15.53 0.0056

AB 2.401 × 10−3 1 2.401 × 10−3 6.98 0.0333
AC 4.851 × 10−3 1 4.851 × 10−3 14.11 0.0071
BC 1.296 × 10−3 1 1.296 × 10−3 3.77 0.0934
A2 7.434 × 10−4 1 7.434 × 10−4 2.16 0.1850
B2 1.2 × 10−2 1 1.200 × 10−2 34.24 0.0006
C2 3.251 × 10−4 1 3.251 × 10−4 0.95 0.3633
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Table 5. Cont.

Source of
Variance Sum of Square Degrees of

Freedom Mean Square F Value p Value

Residual 2.407 × 10−3 7 3.439 × 10−4

Lack of fit 1.862 × 10−3 3 6.207 × 10−4 4.55 0.0886
Pure error 5.452 × 10−4 4 1.363 × 10−4

Sum 3.000 × 10−2 16

p < 0.001 highly significant; 0.001 ≤ p < 0.05 moderately significant; and p ≥ 0.05 insignificant [32].

3.3.3. Response Surface Analysis

Response surface optimization of CGA extraction is represented in a 3D model di-
agram, as shown in Figure 8. The results indicate that when ultrasonic vibrator power
remains unchanged, ultrasonic time is more significant than glycerol volume fraction.
When ultrasonic time remains unchanged, ultrasonic vibrator power is more significant
than glycerol volume fraction. Therefore, the influence of ultrasonic vibrator time and
power is more significant than other factors. Through the optimization analysis, the op-
timal extraction conditions were determined with an ultrasonic vibrator power of 240 W,
glycerol volume fraction of 58.5%, ultrasonic time of 40 min, and solid/liquid ratio of 1:20,
for a predicted extraction rate of 2.99%. Actual experiments were carried out under the
above conditions, and the CGA extraction rate of 2.98% was produced. This result is fairly
consistent with the predicted value of the Box–Behnken experimental design model.
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Figure 8. Response surface plots showing the effects of variables on the average extraction yield
of CGA: (a) interaction of the ultrasonic vibrator and glycerol volume fraction, (b) interaction of
the glycerol volume fraction and ultrasonic time, and (c) interaction of the ultrasonic time and
ultrasonic vibrator.

3.3.4. Verification of Experimental Data with Predicted Modeling Data

The optimal extraction conditions were obtained by Box–Behnken fitting and three
parallel experiments were performed to verify the prediction results. The results are shown
in Table 6 through three parallel experiments and the CGA extraction rates are all at
about 2.98%, which is 0.01% different from the Box–Behnken fitting prediction value of
2.99%, indicating that the equation fits conditions properly and the established model is
reasonably reliable.
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Table 6. Validation fitting results under optimal process conditions.

Extraction Cycles CGA Extraction Rate/% Average Extraction Yield/%

1 2.99
2.982 2.98

3 2.98

4. Conclusions

This experiment innovatively proposed the use of glycerol to extract CGA from
honeysuckle. The optimized process was obtained by the response surface analysis method,
using ultrasonic power of 240 W, glycerol volume fraction of 58.5%, ultrasonic time of
40 min, and material-to-liquid ratio of 1:20 to obtain the optimized extraction rate of 2.98%,
which was 11.3% higher than that using traditional ethanol extractant. The experimental
design method in this paper facilitates the optimization of the extraction process using
a simple but reliable approach. The results from this work can provide a promising
application in the extraction of CGA for traditional Chinese medicine.
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