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Abstract: This study proposes a task-offloading and resource allocation strategy in multidomain
cooperation (TARMC) for the industrial Internet of Things (IIoT) to resolve the problem of the
non-uniform distribution of task computation among various cluster domain networks in the IIoT
and the solidification of traditional industrial wireless network architecture, which produces low
efficiency of static resource allocation and high delay in closed-loop data processing. Based on the
closed-loop process of task interaction of intelligent terminals in wireless networks, the proposed
strategy constructs a network model of multidomain collaborative task-offloading and resource
allocation in IIoT for flexible and dynamic resource allocation among intelligent terminals, edge
servers, and cluster networks. Considering the partial offloading mechanism, various tasks were
segmented into multiple subtasks marked at bit-level per demand, which enabled local and edge
servers to process all subtasks in parallel. Moreover, this study established a utility function for
the closed-loop delay and terminal energy consumption of task processing, which transformed the
process of multidomain collaborative task-offloading and resource allocation into the problem of task
computing revenue. Furthermore, an improved Cuckoo Search algorithm was developed to derive
the optimal offloading position and resource allocation decision through an alternating iterative
method. The simulation results revealed that TARMC performed better than strategies.

Keywords: cross-domain; MEC; resource allocation; IIOT

1. Introduction

With the rapid development of advanced industrial manufacturing modes such as In-
dustry 4.0, intelligent factory, and flexible manufacturing, communication technology and
the manufacturing industry have become deeply integrated in recent years. Consequently,
the digital and integrated industrial Internet of Things (IIoT) has emerged as a research
hotspot [1–5]. However, the advantages of the three major application scenarios of 5G are
incompatible and cannot coexist simultaneously. Moreover, the synchronous realization
of ultralow closed-loop delay transmission, large connection, and large-bandwidth trans-
mission is challenging for large-scale machine differentiated services. Therefore, further
research is required to transform existing industrial wireless network architectures and
resource allocation methods.

Currently, the mainstream wireless edge network adopts a centralized network mode on
the terminal side, [6,7], and the information is transmitted between the nodes via the access
edge server and cloud platform, which considerably increases the delay of data transmission
between the nodes. For the large-scale wireless edge network, this rigid and centralized
network mode poses problems such as high network-computation cost, serious resource
conflict, and reduced network performance, which yields inferior scalability of the edge
networks. This further raises the difficulty of supporting flexible, adaptive resource scheduling
and ubiquitous computing functions of industrial edge networks. To support a large IIoT, the
cluster domain network [8,9] contains numerous terminal nodes distributed in a certain region
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for constructing hierarchical networks using the clustering algorithm [10,11]. In addition,
mobile edge computing (MEC) [12,13] extends cloud services to network edges that effectively
coordinate the distributed edge resources. With the increasing performance requirements
for computation-intensive and delay-sensitive loads in IIoT, cluster domain networks and
MEC have emerged as potential solutions to accommodate complex IIoT applications for the
integrated management of IIoT communications, sensing, and computing resources [14].

The traditional industrial wireless network based on the IEEE 802 protocol [15] can
achieve only a 10 ms level delay in one-way communication transmission, which is vastly
inadequate to achieve the performance requirements of IIoT. On one hand, the hierarchi-
cal network control mode relying on the core network yields low resource-management
efficiency and does not fulfill the communication requirements of differentiated machine
services. On the other hand, considering the extremely low delay requirements of closed-
loop management for several IIoT applications in the manufacturing workshop, computing
tasks require more fine-grained offloading strategies. To fulfill the demand for efficient
interaction of information flow between massive machines in IIoT, the edge network should
allow a portion of the computing tasks in mobile devices to be processed locally, and the
remaining computing tasks are offloaded onto the server. According to the strict require-
ments for reliable real-time performance in industrial scenarios, computing tasks should
be processed for real-time stored industrial data. Therefore, low-delay computing task-
offloading methods and resource allocation strategies must be studied based on cluster
domain network structure.

2. Related Work

In recent years, the study of computational offloading strategies has emerged as a
research hotspot in the field of edge computing [16,17]. With various objectives, researchers
have proposed several computational offloading strategies. To minimize task execution
delay, Yang et al. [18] formulated a selection strategy for optimal offloading node as a
Markov decision process and minimized the offloading delay by adopting a value iteration
algorithm. Li et al. [19] studied a paradigm for dual computational offloading and proposes
a hierarchical, cell-based distributed algorithm to obtain the optimal dual offloading scheme
for implementing the overall delay minimization of task-offloading. Zhu et.al [20] studied
the single-user multi-edge-server MEC system based on downlink NOMA to minimize
task computation delay by jointly optimizing the NOMA-based transmission duration (TD)
and workload offloading allocation (WOA) among edge computing servers. Luo et al. [21]
proposed a self-taught-based distributed computational offloading algorithm to minimize
its delay and information cost. Huang et al. [22] proposed an efficient multidevice and multi-
BSs task-offloading scheme to minimize the delay of computational tasks. Gao et al. [23]
proposed a two-stage computational offloading scheme to minimize task processing delay.
Liao et al. [24] proposed a novel UAV-assisted edge computational framework that provided
edge computational offloading based on the user distribution of time-varying hotspots to
minimize average user delay. The current research primarily focuses on the simple network
structure model, which is limited to the optimization of the one-way empty port-time delay
that contradicts the closed-loop interaction characteristics of the information flow of the
industrial intelligent machine network.

To minimize total energy consumption, Fang et al. [25] proposed a content-aware
multi-subtask-offloading problem based on the individual features of subtasks with various
delay requirements, under which the offloading decision and channel allocation were
optimized. Aiming to obtain resource allocation and offloading decisions, Wu et al. [26]
developed an efficient two-layer optimization algorithm for resolving the residual energy
maximization problem. Chen et al. [27] formulated the offloading task as a stochastic
optimization problem and proposed an energy-efficient dynamic offloading algorithm that
minimized the energy consumption of task-offloading. In addition, Bozorgchenani et al. [28]
modeled task-offloading in MEC as a constrained multi-objective optimization problem
that minimizes both the energy consumption and task processing delay of the mobile
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devices. More recently, Zhang et.al [29] proposed an energy-saving algorithm based on
deep reinforcement learning to optimize the overall energy cost in real-time multi-user MEC
systems. However, the delay and energy consumption performance may bear distinct weight
coefficients, for instance, the system focuses on the delay performance by increasing the
delay weight, which consequently places higher requirements for optimizing and offloading
the system task.

To reduce service response delay and energy expenditure, the user can opt to offload
the task to the edge server or the cloud server for execution. Therefore, offloading schemes
that combine delay demand and energy consumption demand should be considered.
Lu et al. [30] designed a multitask-offloading policy that could handle dense offloading
requests from various mobile devices to optimize the overall execution delay and en-
ergy consumption. Wang et al. [31] developed an efficient multi-objective evolutionary
algorithm to solve the problems of minimizing the response time, minimizing the energy
consumption, and minimizing the cost. Guan et al. [32] proposed a novel MEC-based
mobility-aware offloading model to address the in-cloud offloading scheduling problem
and the load between cloud sensing problems by offloading execution efficiency, task pro-
cessing delay, and energy efficiency. Aiming to reduce system energy consumption as well
as computational task delay, Chen et al. [33] proposed a robust computational offloading
strategy with fault recovery capabilities in intermittently connected small cloud systems.
Fang et al. [34] investigated the multi-user computational task offload problem in device-
enhanced MEC based on the perspective of joint optimization of channel allocation, device
pairing, and offload modes, considering the significance of delay and energy consumption
to maximize the total offload benefit of all computationally-intensive users in the network.

The existing work mainly studies the offloading scheme of minimizing time delay,
energy consumption or synthesis under the traditional industrial wireless network archi-
tecture, and solves some optimization problems of one-way air port delay and energy
consumption under the simple network structure. However, the joint optimization of
task-offloading delay and energy consumption can be realized only with the traditional
network architecture. In case of multidomain network collaboration and extremely low
closed-loop delay demand of IIoT, the utility aspect of network closed-loop delay and
terminal energy consumption cannot still be effectively balanced. So, we developed an
improved multidomain collaborative task-offloading mechanism to deeply analyze the
impact of the multidomain resource linkage collaboration mode on the task-offloading pro-
cess of intelligent terminals in the workshop in order to solve the problem of non-uniform
distribution of task computation in the traditional hierarchical network and improve the
utilization of idle resources in the full-domain network in the workshop. On the other
hand, we established a utility function on task processing closed-loop time delay and ter-
minal energy consumption to transform the multidomain collaborative task-offloading and
resource allocation process into a task computation gain problem in order to solve the prob-
lems of low static resource allocation efficiency and high data processing closed-loop time
delay in traditional industrial wireless networks. An improved Cuckoo Search algorithm
is proposed to calculate the optimal offloading location and resource allocation decision
to effectively weigh the network closed-loop delay and terminal energy consumption to
improve the network communication performance of a flexible manufacturing workshop.

The primary contributions of this paper are summarized as follows:

(1) This study proposes a task-offloading and resource allocation strategy in multidomain
cooperation (TARMC), to investigate the closed-loop process of intelligent terminal
task interaction in wireless networks and the partial offloading mechanism of edge
network for IIoT.

(2) A utility function was established for the closed-loop delay and terminal energy
consumption of task processing to transform the multidomain collaborative task-
offloading and resource allocation process into a task computing revenue problem.

(3) An improved Cuckoo Search algorithm was developed to compute the optimal of-
floading location and resource allocation decisions. In addition to strengthening
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the network load balance, this algorithm effectively reduced the delay and energy
consumption of task processing.

(4) An experiment was designed to compare TARMC, a genetic algorithm (GA) and sim-
ulated annealing algorithm (SA), to validate the optimization of delay and energy con-
sumption in the multidomain collaboration method based on a real IIoT environment.

3. System Model
3.1. System Model

The TARMC network model comprises the terminal layer, network layer and resource
management layer, as depicted in Figure 1. The terminal layer includes industrial intel-
ligent terminals (e.g., robotic arms, AGV) with varying computing needs. In addition, it
covers the corresponding application scenarios (e.g., industrial vision, AGV collaboration,
and industrial detection), responsible for real-time local processing of computing tasks,
establishing communication links with network layer equipment, and requesting collab-
orative task-offloading services. The set of industrial intelligent terminals is defined as
D = {D1, D2, . . . , Di, . . . , DN}, which is responsible for offloading the task to the edge
server on the router end. The network layer contains multiple routers with edge servers
deployed around it, which is responsible for communicating and exchanging data with
other cluster domain networks. This feature enables high real-time information interac-
tion and multidomain collaborative task-offloading services for the terminal layer. The
set of edge servers can be expressed as S =

{
S1, S2, . . . , Sj, . . . , SJ

}
and is responsible for

providing computing resources to complete the computing task. Furthermore, the resource
management layer hosts a 5G intelligent control base station and cloud platform, which
analyzes the computing requirements of various industrial terminals and offers resource
allocation strategies to edge servers.
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Figure 1. System model for task-offloading and resource allocation.

Upon assigning a computing task to the industrial intelligent terminal, a computing
task service request will be uploaded, and the service demand will be reported by the 5G
intelligent control base station through the access network. Thereafter, the edge server on
the base station end receives the task request and sends a service response. The task is
computed in the local processing if the industrial intelligent terminal can compute tasks
within the scope of local computing power. In case the local computing power is insufficient,
the 5G intelligent control base station offloads the task to an edge server installed in the
remaining cluster domain networks within the communication range for processing. After
processing, the calculation results will be fed back to each intelligent terminal. For non-
real-time service requirements, the 5G intelligent control base station offloads the tasks to
the cloud platform under a more accurate resource scheduling strategy and accessed from
the cloud network.
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The total frequency spectrum of the network system is segmented into orthogonal
sub-channels, each with a bandwidth of B Hz. Under normal operation of the system, each
industrial intelligent terminal provides a computing task for processing. Let us assume that
the computing task quantity of the industrial intelligent terminal Di is li, measured in Mbits;
ηi denotes the ratio of output and input data for task Di, i.e., the feedback received after task
calculation is ηili. The computing tasks of the industrial intelligent terminal Di can be either
locally processed or offloaded to the edge server for processing. bi represents the local
offloading ratio for an industrial intelligent terminal computing task, where (bi ∈ [0, 1]).

Subsequently, the industrial intelligent terminal forwards the computing task to the
edge server on the 5G intelligent control base station for task-offloading, and the data
require to be transmitted through the subchannel corresponding to the 5G intelligent
control base station. According to [35], the uplink transmission rate from the industrial
intelligent terminal Di to the edge server Sj is expressed using Shannon’s formula as:

ri,j = B log2

(
1 +

pihk
i,j

N0

)
(1)

where pi denotes the transmission power of the industrial intelligent terminal Di, hk
i,j

represents the channel gain of the industrial intelligent terminal Di and the edge server Sj

on the sub-channel k.hi,j = ξ0d−λ
i,j σ2, where ξ0 is the path loss at a distance of one meter;

d−λ
i,j symbolizes the propagation loss, d indicates the propagation distance, λ denotes the

path loss exponent; σ2 represents the Rayleigh fading parameters; N0 indicates the noise
power of Gaussian channel.

The computing resource allocated by the industrial intelligent terminal Di for local
processing of the computing task is denoted as (CPU cycles/second), and the CPU cycles
required for processing 1 bit data is expressed as δLocal . Thus, the delay in local task
processing can be derived as

tlocal
i =

libiδLocal
fi

(2)

If the power of the industrial intelligent terminal Di at idle is Plocal
i , the energy con-

sumption of processing the calculation task can be locally evaluated as follows:

Elocal
i = Plocal

i tlocal
i + ρ f 3

i tlocal
i (3)

where ρ f 3
i tlocal

i denotes the additional energy consumption during the terminal computing
task, ρ indicates the CPU architecture constant and ρ = 10−27. The industrial intelligent
terminal Di can process the computational tasks through collaboration between local
computing and edge computing. If the industrial intelligent terminal Di is processing a
portion of the local computing tasks, all the remaining computing tasks are transmitted
to the edge server Sj most proximate to the terminal, which schedules and assigns the
remaining computing tasks to the other edge servers and jointly completes the task offload.
As the edge servers communicate through a wired network, the transmission time is
negligible, and further potential delays (e.g., packet preprocessing and queuing delays) can
be neglected. The transmission delay generated when the smart terminal Di transmits all
the remaining computing tasks to the nearest edge server Sj can be derived as follows:

ts
i =

li(1− bi)

ri,j
(4)

Therefore, the transmission energy consumption of the computing task offloaded by
Di to Sj can be derived as follows:

Ee
DiSj

= pits
i (5)
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The computing resource allocated by the edge server Sj to the industrial intelligent
terminal Di is f i

j , the CPU of the edge server to process 1 bit data is δMEC, and the power

required to perform the computing task is Pi
j . After offloading the task, multiple edge

servers can perform the computing task, and the processing time of the computing task on
the edge server Sj can be evaluated as follows:

tm
i,j =

ωi,jli(1− bi)δMEC

f i
j

(6)

where ωi,j denotes the ratio of computing tasks on edge server Sj to total computing task
of Di offloaded to servers. Let us assume that the transmitting power of the edge server
Sj to pj. After processing the task, the multiple collaborative edge servers will feedback
the results of the remaining tasks to the edge server Sj located near the intelligent terminal.
Thus, the transmission delay occurring when Sj feeds back all the remaining task results to
the terminal Di can be expressed as follows:

tc
i =

(1− bi)liηi
ri,j

(7)

Therefore, if the intelligent terminal Di receives the edge server Sj feedback result, the
corresponding transmission energy consumption will be:

Eo f f load
i = pi · tc

i (8)

Considering the simultaneous processing of the computing tasks on multiple edge
servers, the industrial intelligent terminal Di records the total processing duration of
offloading the remaining tasks to the edge server for auxiliary computing process as Tm

i ,
and Tm

i = max
j=1,2,...,M

tm
i,j. Therefore, in case the remaining computing task is offloaded to

the edge server and the feedback data is received, the multidomain collaborative task-
processing delay can be expressed as follows:

to f f load
i = ts

i + Tm
i + tc

i (9)

In case the industrial intelligent terminal Di completes the corresponding computing
task in local processing, it waits for the edge server to process together and provides
feedback to Di for the final result. In another case, if the industrial intelligent terminal Di
has not yet completed the local processing of the corresponding computing task, whereas
the edge server has completed collaborative computing, the industrial intelligent terminal
Di receives the feedback of the final result after processing the local computing task.
Therefore, the closed-loop time delay of the task processing at the industrial intelligent
terminal Di can be stated as follows:

ti =

{
to f f load
i , tlocal

i < to f f load
i

tlocal
i , tlocal

i ≥ to f f load
i

(10)

For the industrial intelligent terminal Di, the total energy consumption is stated as follows

Ei =

 Elocal
i + Ee

DiSj
+ Eo f f load

i , ts
i + Tm

i < tlocal
i

Elocal
i + Ee

DiSj
+ Eo f f load

i + Plocal
i (ts

i + Tm
i − tlocal

i ), ts
i + Tm

i ≥ tlocal
i

(11)

The total closed-loop time for task processing of all industrial intelligent terminals in
the system can be expressed as:
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Ttotal =
N

∑
i=1

ti (12)

The total power consumption of all industrial intelligent terminals to complete the
task-offloading can be stated as

Etotal =
N

∑
i=1

(Ei) (13)

3.2. Optimization Objective

In practice, the delay and energy consumption performance can exhibit varying
weight coefficients, for instance, the system improves the delay weight to focus on the
delay performance when the AGV is included in route planning. Let us assume that the
two weight coefficients are denotes as ωT and ωE, respectively. The impact of such delay
and energy consumption on the performance of industrial intelligent terminals can be
adjusted through ωT and ωE, and such a design can expand the applicability of the model.
This study considers the premise of ensuring the energy consumption of all industrial
intelligent terminals to complete task-offloading, minimizes the closed-loop delay of task
processing, and obtains the optimal resource allocation strategy along with the computing
task-offloading scheme of the edge server. The utility function is defined as follows:

f (b, f ) =
1
N

(
N

∑
i=1

ωTti +
N

∑
i=1

ωEEi

)
(14)

The optimization objective can be expressed as:

min
b,p, f

f (b, f )

s.t.C1 : bi ∈ [0, 1], ∀i
C2 : 0 ≤ fi ≤ fi,max, ∀i
C3 : 0 ≤ f i

j ≤ f j,max, ∀i
C4 : ti ≤ ti,max, ∀i, j

(15)

where constraint C1 represents the range of offloading ratio for the industrial intelligent
terminal computing task; C2 indicates that the industrial intelligent terminals do not exceed
the maximum allocated local computing resources; C3 represents that the computing
resources allocated to the edge server for industrial intelligent terminal tasks do not exceed
the maximum allocated computing resources of the edge server; C4 indicates the maximum
value of the task calculation delay for the industrial intelligent terminal.

4. Improved Cuckoo Search Algorithm

Unlike the NP difficult problem under complete offloading mechanism, Equation (15)
can be reduced to the ordinary combination optimization problem under partial offloading
mechanism. To this end, an improved Cuckoo Search algorithm is proposed in this paper. In
principle, the algorithm can weigh the number of local and global searches through adaptive
discovery probability and step size, as well as conduct a local fine search representing the
global optimal solution to improve the operation accuracy and search efficiency. The idea
of a differential evolution algorithm is introduced to adjust, cross, and select the process of
nest update position. By inheriting the optimal solution genetic information, the algorithm
avoids intersection with the local optimal and converges speedily to provide the optimal
resource allocation results.

Let us assume the nest location xt
i of the i-th nest in generation t and M denotes the

dimensionality, where xt
i =

{
xt

i1, xt
i2, . . . , xt

im, . . . , xt
iM
}

. According to [36], the cuckoo’s
updated expression of the path and location for deriving a parasitic nest follows:
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xt+1
i,m = xt

i,m + α · Rand · Levy(β1), i = 0, 1, 2, . . . , J (16)

where xt+1
i denotes the new position of the i-th nest at nest position xt

i in generation t after a
global update. xt

i,m denotes the value of the i-th nest in the m-dimension in the nest position
at generation t. α indicates a step factor and Rand symbolizes a uniform distribution
between (0, 1). Levy(β1) represents a random wandering process formed by the flight of
cuckoo Levy, Levy(β1) ∼ u = t−β1 , (1 < β1 ≤ 3), where β1 represents the impact factor,
typically, β1 = 1.5; According to the [36], the expression for the Levy distribution is stated
as follows.

Levy(β1) = 0.01 · u
|v|1/β1

·
(

xt
j,m − bt

g,m

)
, j, g = 0, 1, 2, . . . , J (17)

where u and v both follow a normal distribution, i.e., u ∼ N(0, σ2
u), v ∼ N(0, σ2

v ),

σu =

{
Γ(1+β1)·sin(π·β1/2)

Γ[(1+β1)/2]·β1·2(β1−1)/2

}1/β3

, σv = 1.

bt
g =

{
bt

g,1, bt
g,2, . . . , bt

g,m . . . , bt
g,M

}
denotes the current optimal solution space covered

by the algorithm in the current search state, and if the current nest location corresponds
with the optimal solution space, the magnitude of step adjustment is 0, i.e., Levy(β1)= 0.
In addition, the host bird of a parasitized nest will abandon the nest with an Pα probability
of recognizing an egg parasitized by a cuckoo.

4.1. Adaptive Adjustment of Discovery Probabilities

In the original cuckoo algorithm, a given discovery probability is generally used to
control the global search and preference random wandering process, which is conducive
toward the balance between global and local search as the number of iterations increases.
Thus, to improve the algorithm’s search performance, this study applies dynamic discovery
probability instead of fixed discovery probability Pα

Pα =


1

1+ tit
Tit
·e

, 0 < tit ≤ β2Tit

1− e
tit
Tit
−1

+ γ · tit
Tit

, β2Tit < tit ≤ Tit

(18)

where γ denotes the correction factor, generally, γ = 0.1, and β2 indicates the trade-off
factor, mostly, 0.5 ≤ β2 ≤ 1. This segmentation function represents a progressive decline in
the probability of discovery Pα till the number of iterations tit reaches β2Tit, and it is suitable
for global searches over a large area with improved search efficiency. As the number of
iterations tit exceeds that of β2Tit, the probability of discovery decreases significantly,
thereby enabling local search in a small area to improve the search accuracy.

4.2. Adaptive Adjustment of Step Size

Similarly, the step size of the Levy flight can be continuously decreased with the adaptive
adjustment of the step-size factor in each iteration. Specifically, a larger step-size factor in the
early iterations of the algorithm is conducive toward improving the global search capability
of the algorithm and ensuring speedy convergence in the early stages of the algorithm. In the
later stages of the algorithm iteration, the scope of the local search is narrowed by decreasing
the step size for enhancing the local search performance of the algorithm.

α = β3e(−
tit
Tit

+1) (19)

where β3 denotes the correction factor, typically, β3 = 0.5. In addition, after a global search in
the Levy flight, certain solutions will further perform a local search to update the location,
thereby retaining a more accurate set of solutions. During this local search, differential
evolution of xt

i,m is performed by analyzing the differences between current and excellent
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individuals in the population to ensure that a great amount of genetic information from the
excellent individuals is inherited by their offspring. The specific process is stated as follows.

4.3. Differential Evolution

First, the genetic information of multiple individuals can be obtained by mutating the
individuals through a differential strategy, wherein the mutated individual ut

i,m is expressed as

ut
i,m = xt

i,m + κ ·
(

xt
p,m − xt

q,m

)
, p, q = 0, 1, 2, . . . , J (20)

where κ denotes the scaling factor, xt
p,m represents the value in the m-th dimension of the

nest position in generation t. After variation, individual ut
i,m retains an amount of informa-

tion regarding maternal xt
i,m, and, simultaneously, inherits information from individuals

xt
p,m and xt

q,m to realize the transmission of the information between individuals. Thereafter,
the candidate individual vt

i,m is generated by crossing over the maternal and intervariant
information, thus ensuring that at least one set of individual information in the succeeding
generation is contributed by the variant individual. The vt

i,m can be expressed as:

vt
i,m =

{
ut

i,m, α2 ≤ CR or m = β4
xt

i,m, otherwise
(21)

where CR ∈ [0, 1] denotes the cross probability, α2 = rand(0, 1) represents the random
number generated in [0, 1] interval, and β4 = unidrnd(M) indicates the random positive
integer generated in [1, M] interval.

Finally, the dominant relationship between individual vt
i,m and parent xt

i,m is determined
by comparing the optimized objective function size, and a new generation of individual xt+1

i,m is
generated to inherit the traits of excellent individuals in the succeeding generation.

xt+1
i,m =

{
vt

i,m, T(vt
i,m) < T(xt

i,m)

xt
i,m, otherwise

(22)

In summary, the specific flow of the improved Cuckoo Search algorithm is stated as
follows in Algorithm 1.

Algorithm 1 Improved Cuckoo Search Algorithm

InpuT: System parameters include set D of industrial intelligent terminal, set S of edge server,
calculation task amount li of industrial intelligent terminal Di and other indicators;
The cuckoo algorithm parameters include the nest position set xt

i =
{

xt
i1, xt

i2, . . . , xt
im, . . . , xt

iM
}

,
the maximum number of iterations tmax, etc.
Initialization: Initialize the nest position and other parameters to record the current optimal solution.
Output: begin

1. for t < tmax do
2. Update Bird’s Nest location according to Equation (16)
3. Calculate and obtain the optimal solution according to Equation (15), and preserving the

optimal solution space.
4. Adaptive adjustment of discovery probability and step size according to Equation (18)

and Equation (19)
5. if rand(0, 1) > Pα then
6. Differential evolution according to Equations (20) and (21) and Equation (21) to locally

update the nest position and obtain the optimal solution.
7. end if
8. end for
9. Outputs optimal task-offloading and resource allocation results.
10. end
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Due to the combinatorial nature of the optimization problem, this paper first ana-
lyzes the time complexity of each embedded subprocess in the improved Cuckoo Search
algorithm, and finally performs an overall analysis. Assume that the time to generate
distributed random numbers is ξ1, the population size is N, and the dimensionality of
the problem is M. In the first iteration, the complexity of updating the positions of all
nests is O(ξ1 + NM), the complexity of computing the optimal solution is O(NM), the
complexity of adaptively adjusting the discovery probability and step size is O(1), and
the complexity of the global search is O(N). Because the discovery probability Pα changes
adaptively, the number of populations in the differential evolution process also changes
dynamically, the number of evolving populations is set to Pα · N, and the complexity of
differential evolution is O(PαNM), where PαNM ∈ (0, NM). Therefore, the complexity of
the improved Cuckoo Search algorithm after one iteration is O(2NM) = O(NM) in the
worst case. Moreover, we considered that the number of iterations of the algorithm cannot
give a closed-form solution, this paper assumes that the maximum number of iterations
is tmax. The complexity of the improved Cuckoo Search algorithm in the worst case is
O(tmax NM) when it iterating to the last convergence at same time. In addition, because
the processes of global search and local search in this algorithm are jointly optimization, its
convergence speed is fast, and we will verify the algorithm convergence by simulation in
the next section.

5. Simulation and Results

An industrial manufacturing scenario within 300 m × 300 m area was simulated
in MATLAB to cross-sectional to compare the performance of the TARMC strategy with
those of GA algorithm [37] and SA algorithm [38]. The variations in closed-loop delay
and endpoint energy consumption in processing tasks were obtained from simulations of
non-cross-domain and cross-domain collaborative network architectures. In addition, we
analyzed the impact of various resource allocation algorithms on the closed-loop delay
and terminal energy consumption of task processing in case of interaction with multiple
orders of magnitude of industrial smart terminals. The specific simulation parameters are
summarized in Table 1.

Table 1. Simulation parameters.

Parameters Numerical Values

Sub-channel bandwidth, B 1 MHz
Number of CPU cycles in industrial intelligent terminals, δLocal [500, 2000] cycles/bit

Number of CPU cycles for edge servers, δMEC [500, 2000] cycles/bit
Industrial intelligent terminal idle operating power, Plocal

i 0.3 W
Industrial intelligent terminal transmission power, pi 1.3 W

Industrial Smart Terminal Computing Resources, fi,max 4 GHz
Edge server computing resources, f j,max 20 GHz

Channel gain, hi,j 10−5

Gaussian white noise, N0 10−13 W

The trend of variations in the average closed-loop delay during processing tasks
under the simulated resource allocation strategies is presented in Figure 2, where the
horizontal axis represents the number of iterations and the vertical axis represents the
average closed-loop delay of task processing. Furthermore, the plots with diamond, circular,
star, vertical, triangular, and rectangular curves represent the TARMC strategy, TARMC
strategy under non-cross-domain networks, GA strategy, and GA strategy under non-
cross-domain networks, SA strategy, and SA strategy under non-cross-domain networks,
respectively. As observed, the average closed-loop delay for processing tasks with TARMC,
GA skimming, and SA strategies under cross-domain networks was much less than that
of TARMC, GA and SA strategies under non-cross-domain networks. This is because the
number and types of industrial terminals vary for each cluster domain network in the actual
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industrial production, and the corresponding task calculation quantity varies as well. If the
task is calculated only in the current cluster domain network, the computational resource
allocation of the global network in this industrial area is non-uniform, thereby resulting
in low resource utilization and increased average closed-loop delay of task processing.
A multidomain collaborative network enables cross-domain computing processing in
performing tasks, which allocates numerous real-time tasks to cluster domain networks
with more idle resources for collaborative computing. Thus, this feature reduces the task
processing delay and diminishes the corresponding average closed-loop delay for task
processing. In addition, the average closed-loop delay of processing tasks with the TARMC
strategy is substantially less than that of the GA and SA strategies. This is because the
TARMC strategy considers the task between large-scale industrial intelligent terminals,
edge servers, and the cluster domain network communication interaction process according
to the intelligent manufacturing workshop closed-loop control business requirements. In
addition, it formulates the average closed-loop delay of task processing as an optimization
function to ensure the communication performance of new IIoT networks, which effectively
reduces the average closed-loop delay of task processing. However, the GA and SA
strategies are based on a simple network model, considering the one-way empty port
delay as the optimization goal and ignoring the impact of the task interaction between
edge servers and cluster domain network on the overall delay. Thus, they are unable to
satisfy the network requirements of intelligent manufacturing workshop, which increases
the average closed-loop delay of task processing. As observed in Figure 2, the average
closed-loop delay for task processing with TARMC strategy under multidomain synergy
was 1.8401 s, whereas that for TARMC strategy under non-cross-domain networks was
2.6372 s, demonstrating an improvement of 30.2%. In addition, the average closed-loop
delay in processing tasks with GA and SA strategies under multidomain collaboration was
3.2867 s and 2.0797 s, respectively, which corresponds to a performance improvement of
44.0% and 11.5% in comparison with the latter.
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Figure 2. Variations in closed-loop delay of task processing under various resource allocation policies.

The trend of variations in average energy consumption between multiple resource allo-
cation strategies is discussed herein. In Figure 3, the horizontal axis represents the number
of iterations, and the vertical axis denotes the average energy consumption. Furthermore,
the plots with diamond, circular, star, vertical, triangular, and rectangular curves represent
the TARMC strategy, TARMC strategy under non-cross-domain networks, GA strategy,
and GA strategy under non-cross-domain networks, SA strategy, and SA strategy under
non-cross-domain networks, respectively. As observed, the average energy consumption of
the TARMC, GA skimming and SA strategies under cross-domain networks is considerably
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less than the TARMC, GA strategy, and SA strategy under non-cross-domain networks.
This is because the multidomain collaborative network can completely schedule the com-
puting resources in the entire region, reduce the delay of industrial intelligent terminals
in the local processing tasks, decrease the computing energy consumption of industrial
intelligent terminals, and eventually, improve the average energy consumption of industrial
intelligent terminals compared to the non-cross-domain network mode. In addition, the
average energy consumption of the TARMC strategy is much less than that of the GA
and SA strategies, as indicated in the figure. This is because the TARMC strategy can
adaptively adjust the weight of the closed-loop delay and average energy consumption of
task processing according to the requirements of the industrial intelligent terminal business,
evaluate the priority of optimizing the average energy consumption, and thus, effectively
reduce the average energy consumption. However, the GA and SA strategies only consider
the impact of one-way air interface delay on the data processing process of industrial
intelligent terminals, which inevitably sacrifices energy consumption in the optimization
process, resulting in high average energy consumption. Moreover, as noted from Figure 3,
the average energy consumption of the TARMC strategy under multidomain collaboration
was 0.5091 J, whereas that under non-cross-domain networks was 1.2462 J, corresponding
to an improvement of 59.2%. In addition, the average energy consumption of GA and SA
strategies under multidomain collaboration was 1.3090 J and 0.9193 J, respectively, which
improved by 61.1% and 44.6% in comparison to the latter.
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Figure 3. Average energy consumption of industrial intelligent terminals varies with resource
allocation strategies.

The variations in delay of processing various tasks in multiple stages with several
data sizes are plotted in Figure 4, wherein the horizontal axis represents the average size of
the task data volume, and the vertical axis represents the delay. In the bar graph, the delay
in task processing in various processes is stated as follows (from left to right): closed-loop
processing, multidomain collaborative computing process, and local computing process. As
observed from the figure, compared to the delay in the first two processes, the task exhibits
the lowest processing delay during the local calculation process, and it gradually increases
with the amount of task data, before eventually its convergence. This is because the local
limited resources fail to execute the task of higher data volume. If the amount of data of
the pending task attains the maximum limit of local computing processing, it will request
multidomain collaborative processing instead of allocating new tasks to local processing.
During this process, the delay in processing the task of local calculation gradually increases
before stabilizing. Moreover, in the process of the multidomain collaboration task, the
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processing delay increases with the amount of data related to the task under process, and
accordingly, the delay of the closed-loop process increases. Therefore, the processing delay
in the calculation process is reasonably less than that of the other two processes, with a
slow growth rate.
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This paper considered the energy consumption of industrial intelligent terminals at
various stages of several task data sizes. In Figure 5, the horizontal axis represents the
average size of task data volume, and the vertical axis represents energy consumption. In
the bar chart, the energy consumption of industrial intelligent terminals in the closed-loop
process of task processing, energy consumption in the process of multidomain collaborative
computing, and energy consumption in the local calculation process are presented. As
observed, the industrial intelligent terminal consumes the least energy in the multidomain
collaborative computing process compared with that in the previous two processes, and
the energy consumption of the industrial intelligent terminal in all processes increased
with the task data volume. This is because the energy consumption of the industrial intelli-
gent terminal in the process of multidomain collaborative computing primarily includes
industrial terminal local computing after the end of standby energy consumption, transmit-
and-accept-task data energy consumption, and local computing energy consumption. In
the process of task computing and CPU computing energy consumption, task closed-loop
process includes the energy consumption of the above-mentioned two processes. Owing to
the extremely short time span of transmitting and receiving data, the process exhibits the
lowest energy consumption, which often results in the lowest energy consumption in the
domain collaborative computing process. Simultaneously, an increase in the amount of task
data increases the time to transmit and receive the data, increases CPU computing time, the
increases computing energy consumption, and eventually, increases energy consumption
in all the processes.

The variations in delay of processing tasks at various stages for multiple industrial
intelligent terminals is presented in Figure 6, where the horizontal axis indicates the number
of industrial intelligent terminals, and the vertical axis represents the delay. In the bar
graph, from left to right: delays of processing task in closed-loop process, the task during
multidomain collaborative computing process, and the processing delay of task during
local computing process. As depicted in Figure 6, the delay in processing tasks at various
stages increases with the number of terminals. This is because the network task data
doubles upon increasing the number of industrial intelligent terminals. In global network
resources allocation, considering each task provides maximum delay and the network
load should be balanced, the collaborative computing resources are allocated with several
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terminals to ensure the normal operation of various intelligent terminals, which increases
the network delay.
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Figure 6. Delay variations in various task processing stages for multiple industrial intelligent terminals.

In this study, the energy consumption varied with the number of industrial intelligent
terminals and the task processing was considered in multiple stages. In Figure 7, the
horizontal axis represents the number of industrial smart terminals and the vertical axis
represents energy consumption. In the bars graph, the energy consumption for various
cases is stated as follows (from left to right): industrial intelligent terminal in the closed-
loop process of task processing, the process of multidomain collaborative computing, and
the process of local computing. As observed from the graph, the energy consumption of
industrial intelligent terminals in the closed-loop process of task processing is not easily
affected by the variations in the number of intelligent terminals and is minimized if the
number of terminals reaches 150. This is because the proposed TARMC strategy can
categorize various tasks into several subtasks with an extremely small volume of data.
As the number of intelligent terminals increases, the amount of task data in the global
network increases. However, the data amount of the segmented subtasks for multidomain
collaborative computing remains negligibly small, and the impact of subtask data growth
can be minimized by flexibly scheduling the global network computing resources. At this
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instant, the delays in processing and data of the industrial terminal transmission process are
low, and the corresponding energy consumption is not easily affected by the growth of the
number of intelligent terminals. In addition, as the improved Cuckoo Search algorithm of
this strategy obtained a global approximate optimal solution through continuous iteration,
the energy consumption fluctuated as the number of intelligent terminals increased, and it
was minimized as the number of terminals reached 150.
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6. Conclusions

This study proposed a task-offloading and resource allocation strategy in multidomain
cooperation for the IIoT. First, this strategy deeply examines the closed-loop process of
information flow interaction between various layers of intelligent terminals in the wireless
network, constructs a multidomain collaborative task-offloading and resource allocation
network model for the IIoT, and efficiently allocates the resources between intelligent
terminals, edge servers, and cluster domain networks according to the dynamic changes
of the network load. Subsequently, various tasks are segmented and identified, enabling
local and edge servers to process all subtasks in parallel. Simultaneously, the joint task-
processing closed-loop delay and terminal energy consumption utility function of the
intelligent terminal are developed around the machine, transforming the multidomain
collaborative task-offloading and resource allocation process into the problem of task
calculation revenue. Moreover, a modified Cuckoo Search algorithm was developed
through the iterative alternating solution, which calculated the optimal offloading location
and resource allocation decisions. The simulation results revealed that the TARMC strategy
effectively improved the closed-loop delay and energy consumption of task processing
compared with the GA- and SA-based resource allocation strategies. Furthermore, it
verified that the delay and energy consumption optimization performance of multidomain
collaborative methods is much higher than that of non-cross-domain methods. In future,
we will continue to develop flexible manufacturing scenarios of the wireless-network
resource-scheduling scheme, considering the workshop-level massive heterogeneous data
information fusion method. In addition, the coupling correlation between the variations
in physical environment and digital space should be further explored to improve the
efficiency of multidimensional resource scheduling, enhance the overall real-time data
interaction from factory production lines (businesses, control instructions, etc.), and increase
production decision-making efficiency.
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